1. Field of the Invention
The invention relates to a lens assembly, more particularly to a miniaturized lens assembly. This invention also relates to a method for making the miniaturized lens assembly.
2. Description of the Related Art
Referring to
Referring to
Although the method disclosed in WO2004027880 can make a plurality of camera devices at the same time, the following disadvantages are encountered:
1. The alignment of the wafers and substrates used for making the camera devices is carried out along the optical axes. Such an alignment is troublesome and difficult to control precisely. Moreover, since there is no aligning mark for sawing the laminate, it is difficult to saw the laminate precisely.
2. The adhesive layers 8 are required for bonding the wafers and substrates together. That is to say, in addition to the first micro-spacer element 202 and the second micro-spacer element 502, a plurality of the adhesive layers 8 are required in each of the camera devices to bond the aforesaid components together. The total thickness of the camera device is thus still relatively large. Furthermore, it is required to control the thickness of each of the adhesive layers 8 carefully to obtain a predetermined spacing between two adjacent components of the camera device.
An object of the present invention is to provide a miniaturized lens assembly in which spacing and bonding of two adjacent components of the miniaturized lens assembly can be achieved simultaneously.
An other object of the present invention is to provide a method for making the miniaturized lens assembly.
Therefore, in one aspect of this invention, a miniaturized lens assembly includes an image-capturing unit, a lens unit, and a binding layer. The image-capturing unit includes an image-capturing member. The lens unit includes an image-projecting portion for projecting an image along an optical axis to the image-capturing member. The binding layer extends around the optical axis, and binds the image-capturing unit to the lens unit. The binding layer includes a photosensitive polymeric material and spaces apart the lens unit and the image-capturing unit.
In another aspect of this invention, a method for making the miniaturized lens assembly includes the steps of:
a) preparing an imaging substrate including a plurality of image-capturing members, and a lens substrate including a plurality of image-projecting portions that correspond respectively to the image-capturing members;
b) applying a photosensitive polymeric material to the lens substrate;
c) irradiating and developing the photosensitive polymeric material to form a binding layer having a plurality of through holes aligned respectively with the image-projecting portions on the lens substrate;
d) aligning the image-projecting portions of the lens substrate with the image-capturing members of the imaging substrate, and stacking the lens substrate and the imaging substrate together such that the binding layer is disposed between the lens substrate and the imaging substrate;
e) bonding the lens substrate to the imaging substrate by pressing the lens substrate and the binding layer against the imaging substrate while curing the binding layer by heating; and
f) separating the image-projecting portions from the lens substrate and separating the image-capturing members from the imaging substrate by cutting the lens substrate and the imaging substrate.
Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiment with reference to the accompanying drawings, of which:
Referring to
The image-capturing unit 13 includes an image-capturing member 11.
The first lens unit 23 includes a first image-projecting portion 21 for projecting an image along an optical axis to the image-capturing member 11.
The first binding layer 50 extends annularly around the optical axis, and binds the image-capturing unit 13 to the first lens unit 23. The first binding layer 50 includes a photosensitive polymeric material, and has a spacing thickness to space apart the first lens unit 23 and the image-capturing unit 13. In this preferred embodiment, the photosensitive polymeric material is a photoresist.
The second lens unit 63 includes a second image-projecting portion 61 for projecting the image along the optical axis to the image-capturing member 11 through the first image-projecting portion 21.
The second binding layer 70 extends annularly around the optical axis, and binds the second lens unit 63 to the first lens unit 23. The second binding layer 70 includes the photosensitive polymeric material and has a spacing thickness to space apart the first and second lens units 23,63. In this preferred embodiment, the photosensitive polymeric material is a photoresist.
The light-shielding member 90 surrounds the first binding layer 50, the first lens unit 23, the second binding layer 70, and the second lens unit 63, is coaxial with the optical axis, and has an opening 91 to permit projection of light onto the second image-projecting portion 61 of the second lens unit 63 and the first image-projecting portion 21 of the first lens unit 23.
The barrel 150 receives the image-capturing unit 13, the first binding layer 50, the first lens unit 23, the second binding layer 70, the second lens unit 63, and the light-shielding member 90. The barrel 150 has an opening 151 proximate to and aligned with the opening 91 of the light-shielding member 90 to permit projection of light onto the second image-projecting portion 61 of the second lens unit 63 and the first image-projecting portion 21 of the first lens unit 23.
The preferred embodiment of the method for making the miniaturized lens assembly 80 according to this invention includes the steps of:
A) Preparing an Imaging Substrate and a First Lens Substrate:
Referring to
B) Applying a Photosensitive Polymeric Material:
Referring to
C) Soft Baking:
The first lens substrate 20 together with the photosensitive polymeric material 30 is soft baked by heating at a temperature ranging from 60 to 90° C. to remove a solvent contained in the photosensitive polymeric material 30.
D) Irradiating and Developing:
The photosensitive polymeric material 30 is irradiated through a photo mask 40, which includes a plurality of through holes 41 aligned with the first image-projecting portions 21 of the first lens substrate 20 correspondingly, and two aligning holes 42 aligned with the first aligning marks 22 of the first lens substrate 20 correspondingly. In this preferred embodiment, the photosensitive polymeric material 30 is a positive photoresist. If a negative photoresist is used, the photo mask 40 should be changed with a photo mask having a pattern reverse to that of the photo mask 40.
Subsequently, the photosensitive polymeric material 30 is developed using a developing agent to dissolve the irradiated portions of the photosensitive polymeric material 30 to form a first binding layer 50, which has a plurality of first through holes 51 aligned respectively with the first image-projecting portions 21 on the first lens substrate 20, and two first aligning holes 52 aligned with the first aligning marks 22 of the first lens substrate 20 correspondingly.
E) Aligning and Stacking:
Referring to
F) Bonding:
The first lens substrate 20 is bonded to the imaging substrate 10 by pressing the first lens substrate 20 and the first binding layer 50 against the imaging substrate 10 while curing the first binding layer 50 under vacuum by heating at a temperature ranging from 90 to 300° C.
G) Preparing a Second Lens Substrate:
Referring to
H) Forming a Second Binding Layer:
Referring to
I) Aligning and Stacking:
Referring to
J) Bonding:
The second lens substrate 60 is bonded to the first lens substrate 20 via the second binding layer 70 using a bonding step similar to the aforesaid step F). Therefore, a laminate 700 is obtained, which includes the imaging substrate 10, the first binding layer 50, the first lens substrate 20, the second binding layer 70, and the second lens substrate 60 in sequence.
K) Cutting:
Referring to
L) Covering Each Semi-Product:
Referring to
M) Disposing Each of the Semi-Products in a Corresponding Barrel:
Referring again to
It should be noted that, according to specific optical requirements, a plurality of the second lens substrates 60 can be stacked on the first lens substrate 20 so that the miniaturized lens assembly 80 includes a plurality of the second lens units 63.
In view of the aforesaid, the miniaturized lens assembly 80 of this invention has the following advantages:
1) A plurality of the miniaturized lens assemblies 80 can be made at the same time. The manufacture of the miniaturized lens assembly 80 is relatively simple. Therefore, the productivity is increased significantly, and the production cost is reduced.
2) Since the imaging substrate 10, the first lens substrate 20, and the second lens substrate 60 are provided with the aligning marks 12, the first aligning marks 22, and the second first aligning marks 62, the stacking and cutting steps can be carried out simply and precisely.
3) In addition to acting as a binder for binding the imaging substrate 10, the first lens substrate 20, and the second lens substrate 60 together, the first binding layer 50 and the second binding layer 70 also act as spacers to space the imaging substrate 10 apart from the first lens substrate 20 and to space the first lens substrate 20 apart from the second lens substrate 60. Therefore, the overall thickness of the miniaturized lens assembly 80 of this invention can be controlled relatively easily and can be reduced as compared to the aforesaid prior art.
While the present invention has been described in connection with what is considered the most practical and preferred embodiment, it is understood that this invention is not limited to the disclosed embodiment but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
094122900 | Jul 2005 | TW | national |
This application is a divisional of U.S. patent application Ser. No. 11/439,117, filed on May 24, 2006. This application claims priority of Taiwanese Application No. 094122900, filed on Jul. 6, 2005.
Number | Date | Country | |
---|---|---|---|
Parent | 11439117 | May 2006 | US |
Child | 12947873 | US |