1. Field of Invention
This invention relates to the improvement of urethane compression springs, which universal shape is that of a smooth pipe-type rod. As the generic urethane rod is compressed, the rod bulges. Recognizing that pervasive reality, this invention minimizes or eliminates that compressive bulging distortion.
2. Status of Prior Art
While seemingly incongruous the spring industry, which typically produces a wide variety and assortment of compression and tension springs in steel (and other metal alloys), surprisingly urethane compression springs are commonly produced as well.
Urethane is a polyether-elastomer that was discovered during the 2nd World War as a substitute for rubber. In many respects urethane has proven to be superior to natural rubber. As such, a significantly unusual function of urethane in the spring industry is its production and use as a compression spring. These urethane springs are designed to compliment steel wire compression spring applications, where corrosion, vibration and magnetism prevent the use of a conventional steel compression spring. Typical applications include: vibration dampening, corrosive environments, high loads in confined spaces, cycle and static loading; and, magnetic environments.
As compared to conventional steel springs, the advantages of urethane springs include the following:
The universal shape and form of a urethane compression spring consists of a pipe-type rod, having a smooth exterior surface as well as a smooth surface bore. The outside diameter and thickness of the rod's wall and the inside rod's bore diameter are produced in innumerable stock sizes and lengths. The urethane rods are also typically produced in four or more degrees of hardness (durometers), for example: 60A, 80A, 90A, and, 95A.
As typically explained in manufactures' literature, “ . . . urethane spring material is a polyether-elastomer that reacts similarly to an incompressible fluid. The volume of the material moved by compression is displaced laterally in the form of bulging sides. An approximation to the change in diameter of standard cylindrical urethane springs can be made by the inches of compression. The recommended maximum free (unloaded) length is 2.5 times the spring's outside diameter, although springs may be stacked with guide rods and washer-shaped spacers.”
The fact that urethane bulges when it is compressed, requires that the circular space or cavity that it functions in has to be larger in diameter than the urethane spring at rest. Aside from this looseness of the spring at rest being a possible disadvantage, the added size of the spring space or cavity as it may relate to other contiguous parts of an assembly, would likely be an additional disadvantage.
This invention provides the novel means to minimize or eliminate the disadvantageous bulging that results when urethane springs are compressed. An additional inherent functional advantage of the invention would be an increase in the spring-like elasticity of urethane compression springs.
Instead of an industry standard urethane compression spring, having a smooth outside surface and bore's inside surface, the invention's urethane compression spring is significantly different. The outside rod's surface and inside bore's surface has a series of equally spaced concentric indented circles. The depth, width and centerline spacing of the indented circles is based on specific technical and design considerations.
Aside from concentric indented circles the indentations could instead be a continuous spiral indentation, simulating a coil spring for the outside rod and inside bore surfaces. As with the concentric indented circles, the width, depth and angle of the continuous spiral indentation for the outside rod and bore surfaces would again be determined by technical and design considerations.
These urethane springs can be used in the bearing assembly and/or wheel assembly disclosed in U.S. Pat. Nos. 6,637,827; 6,848,750; and, 7,108,33; the content of which is hereby incorporated by reference into this specification.
Requiring an effective, realistic self-aligning spherical bearing for an inline skate wheel invention (as patented for example in U.S. Pat. No. 7,108,331), a novel spring activated self-aligning bearing was conceived using either a circular metal or urethane compression spring. While a metal compression spring within a confined space was a realistic consideration, a urethane compression spring was also considered to be a desirable choice for use in an inline skate wheel. However, one distinct problem of using a urethane compression spring became apparent—when urethane is compressed it expands. Resolving that problem led to this invention.
Accordingly, two comparable industry detail examples are displayed, illustrating the recommended stacking procedure that minimizes bulging when urethane springs 6 are compressed . . . On the left side (ed. noted as “A”), short sections of urethane springs are stacked on guide pin 9 and each stacked spring 6 is separated from each other by a stacking dished washer 8. In the comparable stacking procedure on the right side (ed. noted as “B”), short spring sections of urethane 6 are stacked on guide pin 9 and separated from each other by a stacking flat washer 7. The two exampled details of stacked short sections of urethane compression springs 6 to minimize bulging, clearly illustrates that even using recommended solutions, the disadvantage of compression spring “bulging” is still very evident.
In accordance with embodiments of the invention it would be assumed that these novel urethane compression springs would be pre-designed in classified groups of stock sizes inclusive of: diameters, depth and width of concentric circles; durometers; and, compressive loads.
While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those in the art that the foregoing and other form and details may be made therein without departing from the spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/136.236, filed Aug. 20, 2008, which is hereby incorporated by reference herein.
| Number | Date | Country | |
|---|---|---|---|
| 61136236 | Aug 2008 | US |