The present invention relates to method and system for providing reinforcement of bones. More specifically, the present invention relates to method and system for providing reconstructive surgical procedures and devices for reconstruction and reinforcement bones, including diseased, osteoporotic and fractured bones.
Bone fractures are a common medical condition both in the young and old segments of the population. However, with an increasingly aging population, osteoporosis has become more of a significant medical concern in part due to the risk of osteoporotic fractures. Osteoporosis and osteoarthritis are among the most common conditions to affect the musculoskeletal system, as well as frequent causes of locomotor pain and disability. Osteoporosis can occur in both human and animal subjects (e.g. horses). Osteoporosis (OP) and osteoarthritis (OA) occur in a substantial portion of the human population over the age of fifty. The National Osteoporosis Foundation estimates that as many as 44 million Americans are affected by osteoporosis and low bone mass, leading to fractures in more than 300,000 people over the age of 65. In 1997 the estimated cost for osteoporosis related fractures was $13 billion. That figure increased to $17 billion in 2002 and is projected to increase to $210-240 billion by 2040. Currently it is expected that one in two women, and one in four men, over the age of 50 will suffer an osteoporosis-related fracture. Osteoporosis is the most important underlying cause of fracture in the elderly.
One current treatment of bone fractures includes surgically resetting the fractured bone. After the surgical procedure, the fractured area of the body (i.e., where the fractured bone is located) is often placed in an external cast for an extended period of time to ensure that the fractured bone heals properly. This can take several months for the bone to heal and for the patient to remove the cast before resuming normal activities.
In some instances, an intramedullary (IM) rod or nail is used to align and stabilize the fracture. In that instance, a metal rod is placed inside a canal of a bone and fixed in place, typically at both ends. See, for example, Fixion™ IM (Nail), www.disc-o-tech.com. This approach requires incision, access to the canal, and placement of the IM nail. The nail can be subsequently removed or left in place. A conventional IM nail procedure requires a similar, but possibly larger, opening to the space, a long metallic nail being placed across the fracture, and either subsequent removal, and or when the nail is not removed, a long term implant of the IM nail. The outer diameter of the IM nail must be selected for the minimum inside diameter of the space. Therefore, portions of the IM nail may not be in contact with the canal. Further, micro-motion between the bone and the IM nail may cause pain or necrosis of the bone. In still other cases, infection can occur. The IM nail may be removed after the fracture has healed. This requires a subsequent surgery with all of the complications and risks of a later intrusive procedure.
External fixation is another technique employed to repair fractures. In this approach, a rod may traverse the fracture site outside of the epidermis. The rod is attached to the bone with trans-dermal screws. If external fixation is used, the patient will have multiple incisions, screws, and trans-dermal infection paths. Furthermore, the external fixation is cosmetically intrusive, bulky, and prone to painful inadvertent manipulation by environmental conditions such as, for example, bumping into objects and laying on the device.
Other concepts relating to bone repair are disclosed in, for example, U.S. Pat. No. 5,108,404 to Scholten for Surgical Protocol for Fixation of Bone Using Inflatable Device; U.S. Pat. No. 4,453,539 to Raftopoulos et al. for Expandable Intramedullary Nail for the Fixation of Bone Fractures; U.S. Pat. No. 4,854,312 to Raftopolous for Expanding Nail; U.S. Pat. No. 4,932,969 to Frey et al. for Joint Endoprosthesis; U.S. Pat. No. 5,571,189 to Kuslich for Expandable Fabric Implant for Stabilizing the Spinal Motion Segment; U.S. Pat. No. 4,522,200 to Stednitz for Adjustable Rod; U.S. Pat. No. 4,204,531 to Aginsky for Nail with Expanding Mechanism; U.S. Pat. No. 5,480,400 to Berger for Method and Device for Internal Fixation of Bone Fractures; U.S. Pat. No. 5,102,413 to Poddar for Inflatable Bone Fixation Device; U.S. Pat. No. 5,303,718 to Krajicek for Method and Device for the Osteosynthesis of Bones; U.S. Pat. No. 6,358,283 to Hogfors et al. for Implantable Device for Lengthening and Correcting Malpositions of Skeletal Bones; U.S. Pat. No. 6,127,597 to Beyar et al. for Systems for Percutaneous Bone and Spinal Stabilization, Fixation and Repair; U.S. Pat. No. 6,527,775 to Warburton for Interlocking Fixation Device for the Distal Radius; U.S. Patent Publication US2006/0084998 A1 to Levy et al. for Expandable Orthopedic Device; and PCT Publication WO 2005/112804 A1 to Myers Surgical Solutions, LLC for Fracture Fixation and Site Stabilization System.
In view of the foregoing, it would be desirable to have a device, system and method for providing effective and minimally invasive bone reinforcement to treat fractured or diseased bones.
One embodiment of the present invention provides a low weight to volume mechanical support for fixation, reinforcement and reconstruction of bone or other regions of the musculo-skeletal system. The method of delivery of the device is another aspect of the invention. The method of delivery of the device in accordance with the various embodiments of the invention reduces the trauma created during surgery, decreasing the risks associated with infection and thereby decreasing the recuperation time of the patient. The framework may in one embodiment include an expandable and contractable structure to permit re-placement and removal of the reinforcement structure or framework.
In accordance with the various embodiments of the present invention, the mechanical supporting framework or device may be made from a variety of materials such as metal, composite, plastic or amorphous materials, which include, but are not limited to, steel, stainless steel, cobalt chromium plated steel, titanium, nickel titanium alloy (nitinol), super elastic alloy, and polymethylmethacrylate (PMMA). The supporting framework or device may also include other polymeric materials that are biocompatible and provide mechanical strength, that include polymeric material with ability to carry and delivery therapeutic agents, that include bioabsorbable properties, as well as composite materials and composite materials of titanium and polyetheretherketone (PEEK™), composite materials of polymers and minerals, composite materials of polymers and glass fibers, composite materials of metal, polymer, and minerals.
Within the scope of the present invention, each of the aforementioned types of device may further be coated with proteins from synthetic or animal source, or include collagen coated structures, and radioactive or brachytherapy materials. Furthermore, the construction of the supporting framework or device may include radio-opaque markers or components that assist in their location during and after placement in the bone or other region of the musculo-skeletal systems.
Further, the reinforcement device may, in one embodiment, be osteo incorporating, such that the reinforcement device may be integrated into the bone.
In a further embodiment, there is provided a low weight to volume mechanical supporting framework or device deployed in conjunction with other suitable materials to form a composite structure in-situ. Examples of such suitable materials may include, but are not limited to, bone cement, high density polyethylene, Kapton®, polyetheretherketone (PEEK™), and other engineering polymers.
Once deployed, the supporting framework or device may be electrically, thermally, or mechanically passive or active at the deployed site within the body. Thus, for example, where the supporting framework or device includes nitinol, the shape of the device may be dynamically modified using thermal, electrical or mechanical manipulation. For example, the nitinol device or supporting framework may be expanded or contracted once deployed, to move the bone or other region of the musculo-skeletal system or area of the anatomy by using one or more of thermal, electrical or mechanical approaches.
An embodiment of the invention includes a lockable bone fixation device comprising: a sleeve adapted to be positioned in a space formed in a bone; a guidewire adapted to guide movement of the sleeve; and an actuable lock adapted to secure the sleeve within the space of the bone from an end of the device. The sleeve can be configured to be flexible, have apertures, be expandable and/or be bioabsorbable. Further, the sleeve can be removable from the space within the bone, if desired. The device is adapted and configured to access the space within the bone through an access aperture formed in a bony protuberance of the bone. In a further embodiment, a second sleeve can be provided that is adapted to fit within the first sleeve. Where a second sleeve is provided, the second sleeve can be used to control a retractable interdigitation process or teeth. The sleeve can accomplish this control by being configured with slots or apertures along its length through which the teeth extend when the slots are positioned over the teeth. Once the teeth are exposed through the second sleeve, the teeth or interdigitation process are adapted to engage bone. In still another embodiment of the invention, a cantilever adapted to retain the lockable bone fixation device within the space. Another embodiment of the invention includes adapting the sleeve to be expanded and collapsed within the space by a user. In still another embodiment, the device is adapted to be delivered by a catheter. In yet another embodiment, the distal end of the device is adapted to provide a blunt obdurator surface. In still another embodiment of the device, the distal end of the device is configured to provide a guiding tip. In yet another embodiment of the device, the device is adapted to receive external stimulation to provide therapy to the bone. In still another embodiment of the device, the device is adapted to receive composite material when the device is disposed within a lumen or opening within the body or bone.
In another embodiment of the invention, a bone fixation device is provided that comprises: a first sleeve having a retractable interdigitation process at a location along its length adapted to engage a bone; and a second sleeve sized adapted to activate the interdigitation process of the first sleeve. The bone fixation device can be configured to provide a flexible first or second sleeve. In another embodiment, the first or second sleeve can be provided with apertures, can be expandable and/or can be fashioned from bioabsorbable materials. In still other embodiments, either of the first or second sleeve can be removable. In yet another embodiment of the invention, the first and second sleeve are adapted to access a space of the bone through an access aperture formed in a bony protuberance of the bone. In still other embodiments, the second sleeve can be configured to provide a retractable interdigitation process or teeth. Apertures can also be provided in some embodiments, along the length of the device through which the retractable interdigitation process engages the bone. The apertures can, in some embodiments, be on the second sleeve. In some embodiments, the retractable interdigitation process can be adapted to engage bone when actuated by the second sleeve. In still other embodiments, a cantilever retains the bone fixation device within a space of the bone. Further, a first or second sleeve is adapted in some embodiments to be expanded and collapsed within the bone by a user. In still other embodiments, the device is adapted to be delivered by a catheter or catheter-like device. The catheter may be a single or multilumen tube. The catheter may employ methods or apparatus that power or shape the device for introduction and placement. The distal end of the device in some embodiments is adapted to provide a blunt obdurator surface. Additionally, the distal end of the device can have a guiding tip. In still other embodiments, the device is adapted to deliver therapeutic stimulation to the bone. In other embodiments the device is adapted to deliver therapeutic stimulation to the biological processes within bone. These processes are cellular in nature and provide therapeutic remedies to the health of the patient not related to bone. One such therapeutic application is anemia or hemophilia. In yet other embodiments, the device is adapted to receive composite material when the device is disposed within a lumen.
In still another embodiment of the invention, a method of repairing a bone fracture is disclosed that comprises: accessing a fracture along a length of a bone through a bony protuberance at an access point at an end of a bone; advancing a bone fixation device into a space through the access point at the end of the bone; bending a portion of the bone fixation device along its length to traverse the fracture; and locking the bone fixation device into place within the space of the bone. The method can also include the step of advancing an obdurator through the bony protuberance and across the fracture prior to advancing the bone fixation device into the space. In yet another embodiment of the method, the step of anchoring the bone fixation device within the space can be included. In still another embodiment of the method, a first sleeve and a second sleeve of the bone fixation device can be engaged to expand an interdigitation process into the bone.
An aspect of the invention discloses a removable bone fixation device that has a single end of introduction, deployment, and remote actuation wherein a bone fixation device stabilizes bone. The bone fixation device is adapted to provide a single end in one area or location where the device initiates interaction with bone. The device can be deployed such that the device interacts with bone. Remote actuation activates, deactivates, reduces bone, displaces bone, locks, places, removes, grips, stiffens device, compresses, adjusts, axially adjusts, torsionally adjusts, angularly adjusts, and releases the devices during its interaction with bone. A removable extractor can be provided in some embodiments of the device to enable the device to be placed and extracted by deployment and remote actuation from a single end. The device of the invention can be adapted and configured to provide at least one sleeve. Further the sleeve can be configured to be flexible in all angles and directions. The flexibility provided is in selective planes and angles in the Cartesian, polar, or cylindrical coordinate systems. Further, in some embodiments, the sleeve is configured to have a remote actuation at a single end. Additionally, the sleeve can be configured to have apertures. In still further embodiments, the sleeve is configured to minimize boney in-growth. Another aspect of the invention includes a bone fixation device in that has mechanical geometry that interacts with bone by a change in the size of at least one dimension of a Cartesian, polar, or spherical coordinate system. Further, in some embodiments, bioabsorbable materials can be used in conjunction with the devices, for example by providing specific subcomponents of the device configured from bioabsorbable materials. A second sleeve can be provided in some embodiments where the second sleeve is removable, has deployment, remote actuation, and a single end. Where a second sleeve is employed, the second sleeve can be adapted to provide a deployable interdigitation process or to provide an aperture along its length through which the deployable interdigitation process is adapted to engage bone. In some embodiments, the deployable interdigitation process is further adapted to engage bone when actuated by the sleeve. In some embodiments, the bone fixation device further comprises a cantilever adapted to retain the deployable bone fixation device within the space. The sleeve can further be adapted to be expanded and collapsed within the space by a user. One end of the device can be configured to provide a blunt obdurator surface adapted to advance into the bone. A guiding tip may also be provided that facilitates guiding the device through the bone. Further, the deployable bone fixation device can be adapted to receive external stimulation to provide therapy to the bone. The device can further be adapted to provide an integral stimulator which provides therapy to the bone. In still other embodiments, the device can be adapted to receive deliver therapeutic stimulation to the bone.
The invention also includes a method for repairing a bone fracture comprising: accessing a fracture along a length of bone through a bony protuberance at an entry portal; introducing the bone fixation device into the medullary canal through the entry portal; bending the bone fixation device along its length to advance into the medullary space in the bone; bending the bone fixation device along its length to traverse the fracture site; placing a flexible elbow in the medullary canal at the fracture site; stiffening the bone fixation device; locking the bone fixation device to the bone; reducing the fracture with the bone fixation device in place in the medullary canal; locking the flexible elbow to achieve intramedullary reduction of the fracture. The method can further include the step of introducing a guide wire into the medullary space through a bony protuberance at an entry portal. Additionally, the guidewire can be reamed through the bony protuberance at an entry portal. The location of the reamed boney canal can be determined by the fracture anatomy and bone anatomy. In some embodiments of the method, a sleeve can be advanced along the bone fixation device. In such embodiments, the sleeve can function to unlock the spikes from the fixation device. Once the spikes are unlocked from the fixation device, the spikes then fix the device to the bone. Locking butterfly rings can also be employed to lock the device to the bone. The butterfly rings can be locked to the fixation device in some embodiments. Additionally, the rings can be threaded over the device. In other embodiments, a guide jig guides screws through the butterfly rings. Further self tapping screws lock the butterfly rings to the bone and bone fixation device. A set screw can also be used to lock the device at the fracture site. The device can also be stiffened. In performing the method of the invention, fracture fragments can be reduced.
Yet another aspect of the invention includes a barb-screw comprising a sleeve, one or more teeth deployable at a distal end of the sleeve, and an actuable lock adapted to secure the sleeve within the space of the bone from an end of the device.
These and other features and advantages of the present invention will be understood upon consideration of the following detailed description of the invention and the accompanying drawings.
All publications, patents and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference.
The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
By way of background and to provide context for the invention, it may be useful to understand that bone is often described as a specialized connective tissue that serves three major functions anatomically. First, bone provides a mechanical function by providing structure and muscular attachment for movement. Second, bone provides a metabolic function by providing a reserve for calcium and phosphate. Finally, bone provides a protective function by enclosing bone marrow and vital organs. Bones can be categorized as long bones (e.g. radius, femur, tibia and humerus) and flat bones (e.g. skull, scapula and mandible). Each bone type has a different embryological template. Further each bone type contains cortical and trabecular bone in varying proportions.
Cortical bone (compact) forms the shaft, or diaphysis, of long bones and the outer shell of flat bones. The cortical bone provides the main mechanical and protective function. The trabecular bone (cancellous) is found at the end of the long bones, or the epiphysis, and inside the cortex of flat bones. The trabecular bone consists of a network of interconnecting trabecular plates and rods and is the major site of bone remodeling and resorption for mineral homeostasis. During development, the zone of growth between the epiphysis and diaphysis is the metaphysis. Finally, woven bone, which lacks the organized structure of cortical or cancellous bone, is the first bone laid down during fracture repair. Once a bone is fractured, the bone segments are positioned in proximity to each other in a manner that enables woven bone to be laid down on the surface of the fracture. This description of anatomy and physiology is provided in order to facilitate an understanding of the invention. Persons of skill in the art, will appreciate that the scope and nature of the invention is not limited by the anatomy discussion provided. Further, it will be appreciated there can be variations in anatomical characteristics of an individual, as a result of a variety of factors, which are not described herein.
The bone fixation device is suitable for reinforcing and/or repairing a bone. Further, the bone fixation device is adapted to be anatomically conformable. Still further, the bone fixation device is adapted to cross a fracture. Once actuated, the device anchors into a portion of the bone and then draws the bone segments effected by the fracture together. Kirshner or K-wires can also be used where there are additional fracture fragments.
The bone fixation device 100 has an actuator 110 at a proximal end 102. The actuator 110 enables a user to control the movement, insertion, deployment, removal, and operation of the device. The actuator 110 has internal threads (not shown) that engage threads 112 formed on a shaft or guidewire 120. The shaft 120 extends through a proximal bearing segment 132, intermediate bearing segments 134 and terminates in a distal bearing segment 136. Interposed between the bearing segments on shaft 120 are anchoring segments 140. The bearing segments control translation and bending of the device 100. In some embodiments, the bearing segments can withstand, for example, up to 800 lb of axial loading force. The anchoring segments 140 have radially extending teeth or grippers 142 that deploy upon actuation of the device 100 to interlock the device with the bone, as explained below.
The outer sheath 150 is a component of the device 100. The outer sheath surrounds a portion of the exposed length of the device 100. Slots 152 are provided along its length that enable the teeth 142 of the anchoring segment 140 to extend radially away from the external surface of the device 100 and into the bone when the device is actuated. The slots 152 can also be adapted to promote or control bending of the device, as will be appreciated below. In
Turning now to
513 or adapted to provide an indicator to facilitate deploying the teeth by providing an indication to the user of the relative position of the teeth relative to the slots on the sheath and relative to the plane within the bone. Thereby establishing the direction of flexibility of the device while in bone. Additionally, a central aperture 519 which forms a keyway can be provided for engaging an additional tool or device to control the deployment of the bone fixation device. For example, the central aperture 519 can be in the shape of a slit to accept, for example, the head of a flat head screw driver.
Turning now to
A challenge in bone fixation across the diaphysis to the metaphysis has been securing the cancellous bone in the metaphysis. This bone is sponge-like and can be brittle or vacuous, particularly in osteoporotic patients. A physician must choose between rigid to rigid surface fixation and rigid to porous surface fixation. One embodiment of a system capable of achieving rigid to porous fixation in skeletal bone is described here.
The actuable barb screw is adapted to provide a small diameter with great amount of surface area upon deployment; a combination of screw and barb capture modalities; locking threads to the device 3601; and an activation by removal of external force or by imparting energy to the device by thermal, electrical, optical, or mechanical means. Any frequency of the spectrum of electromechanical radiation may be used to impart such energy to the system.
As will be appreciated by those skilled in the art, the actuable barb screw can be configured to provide superior holding force and capture by employing rigid materials that change their radius of capture area after undergoing a change. Further, the barbs may be configured to be displaced as threads to aid insertion of the barb-screw.
Additional embodiments, methods, and uses are envisioned in accordance with the inventive attributes. Thus, for example, the drill can be used to bore an access opening into the trabecular (cancellous) bone at a bony protrusion located at a proximal 4401 or distal 4402 end of
In accordance with one embodiment of the method, an incision 4501 as shown in
A drill bit may be operated 4502 by the surgeon to bore an opening to create a space within a central portion of the fractured bone. See, U.S. Pat. No. 6,699,253 to McDowell et al. for Self-Centering Bone Drill. Although, as will be appreciated by those skilled in the art, any tool capable of boring through the layer of tissue and into the fractured bone may be used without departing from the scope of the invention. One example of such a device includes, but is not limited to, a coring reamer 4601 as shown in
The drill or reamer can be operated along the length of the bone in order to reach the location of the bone fracture. As would be appreciated by those skilled in the art, the use of a flexible reamer may require distal guidance 4602 to prevent inadvertent injury or damage to the surrounding bone. In order to provide such guidance, a wire, or other thin resilient, flexible entity of minimal cross sectional size, can be provided to provide such guidance. The guide wire is placed subsequent to creation of the access site and exposure of the space. A secondary access hole 4603 can be created distal to the initial access. The guide wire is then deployed using standard technique into the bone space, across the bone from the proximal access hole to the secondary access hole. Further, the device can use its distal end as an obdurator to create a path through the bone, through the intramedullary space, and/or across a fracture, is desired.
A centering entity 4604, may be used to “float” the guide wire away from the extremities of the inside feature of the space and bone. The guide wire and centering entity may be left in place throughout the procedure and may be present considerable advantages for subsequent cleaning, and placement of the reinforcement device. The second distal access may be optional. The centering entity, or visualization under fluoroscopy, may obviate the need for the distal access. In this embodiment of the use of the guide wire, the centering entity can be used independently of the distal access. Another embodiment eliminates both the distal access and the centering device. In that embodiment, only the guide wire is used to center the reaming tool. In another embodiment the guide wire is not used. The reaming tool is centered by technique of visualization under fluoroscopy or other means.
Thereafter, a channel within the bone, such as within the intramedullary space, is created and is cleaned to remove the bone and fat debris prior to the deployment of the reinforcement device through the space within the fractured bone. Irrigation and cleaning of the channel created in the bone would be accomplished using techniques known in the art. For example, irrigation can be accomplished using water, saline or ringers solution. Solutions that include other solutes may also be beneficial; for example, solutions of having functional or therapeutic advantage, as well as growth stimulation and anti-infection agents such as antibiotic, including gentomiacin.
A lavage system can also be used, such as a lavage system 4701 shown in
The coring reamer or drill can be used to create a space within the fractured bone, as well as past the location of the fracture itself The lavage system can be similarly configured to clean the debris within the space including at the location of the fracture. The reamer or drill may traverse the fracture site independently or in conjunction with a protective sheath across the fracture site. As will be appreciated by those skilled in the art, the space may be reamed from both ends, from a proximal opening and a distal opening up to the fracture site.
As discussed above, in accordance with one embodiment of the present invention, the physical trauma to the patient is substantially minimized in treating the bone fracture by limiting the incision to a relatively small location corresponding to the proximal end of the fractured bone, allowing faster patient recovery and wound healing.
This procedure can use a smaller opening than the procedure used for an intramedullary nail. Further, the device and its operation, minimizes or eliminates the risk of pain or necrosis of the bone.
Candidate materials for the devices and components would be known by persons skilled in the art and include, for example, suitable biocompatible materials such as metals (e.g. stainless steel, shape memory alloys, such a nickel titanium alloy nitinol) and engineering plastics (e.g. polycarbonate). See, for example U.S. Pat. No. 5,190,546 to Jervis for Medical Devices Incorporating SIM Memory Alloy Elements and U.S. Pat. No. 5,964,770 to Flomenblit for High Strength Medical Devices of Shape Memory Alloy. In one embodiment, the outer exoskeleton or sheath may be made of materials such as titanium, cobalt chrome stainless steel. Alternatively, the sheath can be made of biocompatible polymers such as polyetheretherketone (PEEK), polyarylamide, polyethylene, and polysulphone.
As will be appreciated by those skilled in the art, the polymer or thermoplastic used to make any of the components of the device, such can comprise virtually any non-radiopaque polymer well known to those skilled in the art including, but not limited to, polyether-etherketone (PEEK), polyphenylsolfone (Radel®), or polyetherimide resin (Ultem®). If desired, the polymer may also comprise a translucent or transparent material, or a combination of materials where a first material has a first radiopacity and the second material has a second radiopacity. Suitable PEEK can include an unfilled PEEK approved for medical implantation. The devices and components can be formed by extrusion, injection, compression molding and/or machining techniques, as would be appreciated by those skilled in the art.
Other polymers that may be suitable for use in some embodiments, for example other grades of PEEK, such as 30% glass-filled or 30% carbon filled, provided such materials are cleared for use in implantable devices by the FDA, or other regulatory body. The use of glass filled PEEK would be desirable where there was a need to reduce the expansion rate and increase the flexural modulus of PEEK for the instrument. Glass-filled PEEK is known to be ideal for improved strength, stiffness, or stability while carbon filled PEEK is known to enhance the compressive strength and stiffness of PEEK and lower its expansion rate. Still other suitable biocompatible thermoplastic or thermoplastic polycondensate materials may be suitable, including materials that have good memory, are flexible, and/or deflectable have very low moisture absorption, and good wear and/or abrasion resistance, can be used without departing from the scope of the invention. These include polyetherketoneketone (PEKK), polyetherketone (PEK), polyetherketoneetherketoneketone (PEKEKK), and polyetheretherketoneketone (PEEKK), and generally a polyaryletheretherketone. Further other polyketones can be used as well as other thermoplastics. Reference to appropriate polymers that can be used in the tools or tool components can be made to the following documents, all of which are incorporated herein by reference. These documents include: PCT Publication WO 02/02158 A1, to Victrex Manufacturing Ltd. entitled Bio-Compatible Polymeric Materials; PCT Publication WO 02/00275 A1, to Victrex Manufacturing Ltd. entitled Bio-Compatible Polymeric Materials; and PCT Publication WO 02/00270 A1, to Victrex Manufacturing Ltd. entitled Bio-Compatible Polymeric Materials. Still other materials such as Bionate®, polycarbonate urethane, available from the Polymer Technology Group, Berkeley, Calif., may also be appropriate because of the good oxidative stability, biocompatibility, mechanical strength and abrasion resistance. Other thermoplastic materials and other high molecular weight polymers can be used as well for portions of the instrument that are desired to be radiolucent.
Moreover, the outer exoskeleton structure, or sheath, may be a hybrid of metal components to accommodate the interdigitation features or die tubular part of the exoskeleton.
In still other embodiments, the device or components can be coated with therapeutic agents or can be configured from polymers with therapeutic agents incorporated therein.
The device may be of a variety of lengths and diameters. The length and diameter of the device may be determined by the fracture site and patient anatomy and physiology considerations. The length must traverse the fracture across its angularity to the internal diameter. The diameter ranges from the minimum to the maximum internal diameter for the space. Though not restricted to these values, the length may vary from 1000 mm to 1 mm and the diameter may range from 0.1 mm to 100 mm. These interdigitation features are designed to penetrate 25 to 75% of the cortical bone at the site of the fracture. The designs of the device allow for a multiple lengths of interdigitation in different devices and within the same device.
The interdigitation features, upon full deployment, may be configured to open out and into the surrounding bone to hold in place the fragments of the fractured bone. This can be achieved with the use of an inner sleeve 4901 as shown in
As will be appreciated by those skilled in the art, the device can be configured such that an outer sleeve is removable upon deployment of the interdigitation feature (e.g. expansion of the teeth away from the central axis). In another embodiment, the inner sleeve 5001 as shown in
While the description above relates to cross bone deployment, this stabilization device is suitable to communicate anatomical forces across any areas of weakened bone. The location of the weakened bone is identified by suitable diagnosis. The cross bone stabilization device 5101 as shown in
After positioning the reinforcement device at the desired location within the space so as to substantially be in contact, with the bone fracture, using a K-wire driver 5201 as shown in
More specifically, upon complete removal of the introducer described above from the central aperture, the bone fragments can be attached to the device by K-wires deployed using a K-wire driver so that the fragments are substantially and properly aligned with the bone structure guided by the reinforcement device during the recuperation process. Furthermore, optionally, bone cement, allographic bone, harvested bone, cadaver bone or other suitable bony matrices maybe introduced into the space after removing the introducer to substantially fill the space from the incision site to the reinforcement device. Moreover, prior to closing the incision site, a bone plug may be deployed at the opening of the space of the bone to substantially seal the bony matrix and/or to seal the space.
After the device has been implanted according to any of the techniques described herein, the incision site is closed with stitches, for example, to allow the fracture, and the fragments to heal.
In another embodiment of the device includes a plurality of independent structural members with inner or outer position across weakened or fractured bone. Though each independent structural member is placed uniquely in bone additional wires, threads, sutures may tie these together across bone so that the plurality of structural members are linked and form a rigid construction that resists anatomical and typical patient loading and forces. In
In similar construction an expandable device 5401 as shown in
In another example, the upper trochanteric region of the bone or other region of the musculo-skeletal system may be exposed and a hole may be cored out of the femoral neck 5501 as shown in
A corollary embodiment of the previously described art include axial translation from distal to proximal ends of the device thereby drawing bone and tissue together through shortening the axial distance distal to proximal. These embodiments have specific applications in fracture non-unions, joint fusions and certain fractures.
The devices disclosed herein can be deployed in a variety of suitable ways, as would be appreciated by those skilled in the art. For example, a provisional closed reduction of the fracture can be performed wherein a 1.5 to 2 inch incision is made overlying the metaphyseal prominence of the bone. Blunt dissection is then carried to the fascia whereupon the fascia is incised. The surgical approach to the central aspect (anterior-posterior) proceeds by either splitting the tendon or ligament or muscle longitudinally or by elevating structures of the bone in a subperiosteal fashion. The choice of the particular approach varies with respect to the fractured bone that is being treated. A specialized soft tissue retractor is placed onto the bone retracting the soft tissues away from the entry point of the bone.
A guide wire can then be drilled at an angle into the insertion point along the metaphyseal prominence. The angle of placement of the guide wire along the longitudinal axis of the bone depends on the fracture anatomy and particular bone being treated. The guide wire can then be placed under fluoroscopic guidance. An optimally chosen reamer is introduced over the guide wire opening the metaphyseal entry point. Both devices are then removed.
A curved guide wire is introduced across the open channel of the metaphysis and is advanced across the fracture site into the diaphysis of the bone. Sequential reaming appropriate for the particular device is performed to prepare the diaphysis. The distance from the fracture site to the entry point is estimated under fluoroscopy and the appropriate device is selected. The reamer is withdrawn and the device is introduced across the guide wire into the metaphysis and across the fracture into the diaphysis. Fluoroscopy confirms the location of the universal joint at the metaphyseal/diaphyseal fracture site.
The diaphyseal teeth of the device are deployed and the device is rigidly fixed to the diaphysis of the fractured bone distal to the fracture site. Any extension of the fracture into the joint can now be reduced in a closed fashion and held with K wires or in an open fashion via a dorsal approach to the intra-articular portion of the fracture. Metaphyseal locking flanges with targeting outriggers attached are now advanced (in to the metaphyseal bone) across the metaphyseal shaft. Using the attached targeting outrigger, guidewires are now placed through the metaphyseal locking flanges. The guidewires are directed fluoroscopically to stabilize the intra-articular portion of the fracture and/or to stabilize the metaphyseal fracture securely. Holes are drilled over the guidewires with a cannulated drill bit. Then, self tapping screws are advanced over the guidewires to lock the bone to the shaft and metaphyseal locking flange. The device is now locked within the proximal and distal bone fragments (metaphyseal or diaphyseal) and distal (diaphyseal) bone. This provides for rigid fixation of the comminuted intra-articular fragments to each other, and the fixation between these screws interlocking in to the metaphyseal flange component provides rigid fixation of these intra-articular fragments in the metaphyseal region to the diaphyseal shaft as well. The extremity and fracture is now manipulated until a satisfactory reduction is achieved as visualized under fluoroscopy. Thereafter, the fracture is manipulated under fluoroscopic guidance in order to achieve anatomic alignment of the bone fragments. Once optimal intramedullary reduction is achieved, the universal joint is locked. The fracture is now fixed securely. The guide wire is removed and the wound is closed repairing the periosteum over the metaphyseal entry point and repairing the fascia and closing the skin. A splint maybe applied.
While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
This application is a continuation application of Ser. No. 11/383,269, filed May 15, 2006 by Nelson entitled Minimally Invasive Actuable Bone Fixation Devices, to which application priority under 35 USC §120 is claimed, and which claims the benefit of U.S. Provisional Application No. 60/682,652, filed May 18, 2005 entitled Method and System for Providing Reinforcement of Bones, each of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
958127 | Hufrud | May 1910 | A |
1169635 | Grimes | Jan 1916 | A |
1790841 | Rosen | Feb 1931 | A |
2502267 | McPherson | Mar 1950 | A |
2685877 | Dobelle | Aug 1954 | A |
2998007 | Herzog | Aug 1961 | A |
3118444 | Serrato, Jr. | Jan 1964 | A |
3626935 | Pollock et al. | Dec 1971 | A |
3710789 | Ersek | Jan 1973 | A |
3759257 | Fischer et al. | Sep 1973 | A |
3760802 | Fischer et al. | Sep 1973 | A |
3779239 | Fischer et al. | Dec 1973 | A |
3791380 | Dawidowski | Feb 1974 | A |
3846846 | Fischer | Nov 1974 | A |
3955565 | Johnson, Jr. | May 1976 | A |
3978528 | Crep | Sep 1976 | A |
3986504 | Avila | Oct 1976 | A |
4007528 | Shea et al. | Feb 1977 | A |
4011602 | Rybicki et al. | Mar 1977 | A |
4016874 | Maffei et al. | Apr 1977 | A |
4091806 | Aginsky | May 1978 | A |
4146022 | Johnson et al. | Mar 1979 | A |
4164794 | Spector et al. | Aug 1979 | A |
4190044 | Wood | Feb 1980 | A |
D255048 | Miller | May 1980 | S |
4204531 | Aginsky | May 1980 | A |
4227518 | Aginsky | Oct 1980 | A |
4236512 | Aginsky | Dec 1980 | A |
4237875 | Termanini | Dec 1980 | A |
4246662 | Pastrick | Jan 1981 | A |
4262665 | Roalstad et al. | Apr 1981 | A |
4275717 | Bolesky | Jun 1981 | A |
4293962 | Fuson | Oct 1981 | A |
4294251 | Greenwald et al. | Oct 1981 | A |
4312336 | Danieletto et al. | Jan 1982 | A |
4338926 | Kummer et al. | Jul 1982 | A |
4351069 | Ballintyn et al. | Sep 1982 | A |
4352212 | Greene et al. | Oct 1982 | A |
4379451 | Getscher | Apr 1983 | A |
4409974 | Freedland | Oct 1983 | A |
4453539 | Raftopoulos et al. | Jun 1984 | A |
4457301 | Walker | Jul 1984 | A |
4462394 | Jacobs | Jul 1984 | A |
4467794 | Maffei et al. | Aug 1984 | A |
RE31809 | Danieletto et al. | Jan 1985 | E |
4492226 | Belykh et al. | Jan 1985 | A |
4503847 | Mouradian | Mar 1985 | A |
4519100 | Wills et al. | May 1985 | A |
4520511 | Gianezio et al. | Jun 1985 | A |
4522200 | Stednitz | Jun 1985 | A |
4552136 | Kenna | Nov 1985 | A |
4589883 | Kenna | May 1986 | A |
4590930 | Kurth et al. | May 1986 | A |
4604997 | De Bastiani et al. | Aug 1986 | A |
4621627 | De Bastiani et al. | Nov 1986 | A |
4622959 | Marcus | Nov 1986 | A |
4628920 | Mathys, Jr. et al. | Dec 1986 | A |
4632101 | Freedland | Dec 1986 | A |
4643177 | Sheppard et al. | Feb 1987 | A |
4651724 | Berentey et al. | Mar 1987 | A |
4653487 | Maale | Mar 1987 | A |
4667663 | Miyata | May 1987 | A |
D290399 | Kitchens | Jun 1987 | S |
4681590 | Tansey | Jul 1987 | A |
4697585 | Williams | Oct 1987 | A |
4705027 | Klaue | Nov 1987 | A |
4705032 | Keller | Nov 1987 | A |
4721103 | Freedland | Jan 1988 | A |
4776330 | Chapman et al. | Oct 1988 | A |
4781181 | Tanguy | Nov 1988 | A |
4805607 | Engelhardt et al. | Feb 1989 | A |
4813963 | Hori et al. | Mar 1989 | A |
4817591 | Klaue et al. | Apr 1989 | A |
4827919 | Barbarito et al. | May 1989 | A |
4828277 | De Bastiani et al. | May 1989 | A |
4854312 | Raftopoulos et al. | Aug 1989 | A |
4858602 | Seidel et al. | Aug 1989 | A |
4862883 | Freeland | Sep 1989 | A |
4871369 | Muller | Oct 1989 | A |
4875475 | Comte et al. | Oct 1989 | A |
4896662 | Noble | Jan 1990 | A |
4921499 | Hoffman et al. | May 1990 | A |
4927424 | McConnell et al. | May 1990 | A |
4932969 | Frey et al. | Jun 1990 | A |
4943291 | Tanguy | Jul 1990 | A |
4946179 | De Bastiani et al. | Aug 1990 | A |
4959066 | Dunn et al. | Sep 1990 | A |
4969889 | Greig | Nov 1990 | A |
4976258 | Richter et al. | Dec 1990 | A |
4978349 | Frigg | Dec 1990 | A |
4978358 | Bobyn | Dec 1990 | A |
4988349 | Pennig | Jan 1991 | A |
5002547 | Poggie et al. | Mar 1991 | A |
5002580 | Noble et al. | Mar 1991 | A |
5006120 | Carter et al. | Apr 1991 | A |
5013314 | Firica et al. | May 1991 | A |
5019077 | De Bastiani et al. | May 1991 | A |
5026374 | Dezza et al. | Jun 1991 | A |
5027799 | Laico et al. | Jul 1991 | A |
5030222 | Calandruccio et al. | Jul 1991 | A |
5034012 | Frigg | Jul 1991 | A |
5034013 | Kyle et al. | Jul 1991 | A |
5035697 | Frigg | Jul 1991 | A |
5037423 | Kenna | Aug 1991 | A |
5041114 | Chapman et al. | Aug 1991 | A |
5041115 | Frigg et al. | Aug 1991 | A |
5053035 | McLaren | Oct 1991 | A |
5057103 | Davis | Oct 1991 | A |
5062854 | Noble et al. | Nov 1991 | A |
5066296 | Chapman et al. | Nov 1991 | A |
5084050 | Draenert | Jan 1992 | A |
5092892 | Ashby | Mar 1992 | A |
5098433 | Freedland | Mar 1992 | A |
5102413 | Poddar | Apr 1992 | A |
5108404 | Scholten et al. | Apr 1992 | A |
5112333 | Fixel | May 1992 | A |
5116335 | Hannon et al. | May 1992 | A |
5116380 | Hewka et al. | May 1992 | A |
5122141 | Simpson et al. | Jun 1992 | A |
5122146 | Chapman et al. | Jun 1992 | A |
5124106 | Morr et al. | Jun 1992 | A |
5147408 | Noble et al. | Sep 1992 | A |
5152766 | Kirkley | Oct 1992 | A |
5163963 | Hewka et al. | Nov 1992 | A |
5171324 | Campana et al. | Dec 1992 | A |
5176681 | Lawes et al. | Jan 1993 | A |
5178621 | Cook et al. | Jan 1993 | A |
5190544 | Chapman et al. | Mar 1993 | A |
5190546 | Jervis | Mar 1993 | A |
5192281 | de la Caffiniere | Mar 1993 | A |
5197966 | Sommerkamp | Mar 1993 | A |
5197990 | Lawes et al. | Mar 1993 | A |
5201735 | Chapman et al. | Apr 1993 | A |
5201767 | Caldarise et al. | Apr 1993 | A |
5263955 | Baumgart et al. | Nov 1993 | A |
5268000 | Ottieri et al. | Dec 1993 | A |
5281224 | Faccioli et al. | Jan 1994 | A |
5292322 | Faccioli et al. | Mar 1994 | A |
5295991 | Frigg | Mar 1994 | A |
5303718 | Krajicek | Apr 1994 | A |
5314489 | Hoffman et al. | May 1994 | A |
5320622 | Faccioli et al. | Jun 1994 | A |
5320623 | Pennig | Jun 1994 | A |
5326376 | Warner et al. | Jul 1994 | A |
5334184 | Bimman | Aug 1994 | A |
5342360 | Faccioli et al. | Aug 1994 | A |
5342362 | Kenyon et al. | Aug 1994 | A |
5346496 | Pennig | Sep 1994 | A |
5350379 | Spievack | Sep 1994 | A |
5352227 | O'Hara | Oct 1994 | A |
5358534 | Dudasik et al. | Oct 1994 | A |
5364398 | Chapman et al. | Nov 1994 | A |
5368594 | Martin et al. | Nov 1994 | A |
5376090 | Pennig | Dec 1994 | A |
5380328 | Morgan | Jan 1995 | A |
5383932 | Wilson et al. | Jan 1995 | A |
5387243 | Devanathan | Feb 1995 | A |
5397328 | Behrens et al. | Mar 1995 | A |
5403321 | DiMarco | Apr 1995 | A |
5411503 | Hollstien et al. | May 1995 | A |
5415660 | Campbell et al. | May 1995 | A |
5417695 | Axelson, Jr. | May 1995 | A |
RE34985 | Pennig | Jun 1995 | E |
5433718 | Brinker | Jul 1995 | A |
5433720 | Faccioli et al. | Jul 1995 | A |
5441500 | Seidel et al. | Aug 1995 | A |
5443477 | Marin et al. | Aug 1995 | A |
5445642 | McNulty et al. | Aug 1995 | A |
5454813 | Lawes | Oct 1995 | A |
5454816 | Ashby | Oct 1995 | A |
5458599 | Adobbati | Oct 1995 | A |
5458651 | Lawes | Oct 1995 | A |
5472444 | Huebner et al. | Dec 1995 | A |
5478341 | Cook et al. | Dec 1995 | A |
5480400 | Berger | Jan 1996 | A |
5484438 | Pennig | Jan 1996 | A |
5484446 | Burke et al. | Jan 1996 | A |
5505734 | Caniggia et al. | Apr 1996 | A |
5514137 | Coutts | May 1996 | A |
5516335 | Kummer et al. | May 1996 | A |
5520695 | Luckman | May 1996 | A |
5531748 | de la Caffiniere | Jul 1996 | A |
5534004 | Santangelo | Jul 1996 | A |
5545162 | Huebner | Aug 1996 | A |
5549610 | Russell et al. | Aug 1996 | A |
5549706 | McCarthy | Aug 1996 | A |
5554192 | Crowninshield | Sep 1996 | A |
5556433 | Gabriel et al. | Sep 1996 | A |
5562673 | Koblish et al. | Oct 1996 | A |
5562674 | Stalcup et al. | Oct 1996 | A |
5562675 | McNulty et al. | Oct 1996 | A |
5571189 | Kuslich | Nov 1996 | A |
5571204 | Nies | Nov 1996 | A |
5573536 | Grosse et al. | Nov 1996 | A |
5578035 | Lin | Nov 1996 | A |
5586985 | Putnam et al. | Dec 1996 | A |
5591169 | Benoist | Jan 1997 | A |
5591196 | Marin et al. | Jan 1997 | A |
5593451 | Averill et al. | Jan 1997 | A |
5593452 | Higham et al. | Jan 1997 | A |
5605713 | Boltong | Feb 1997 | A |
5607431 | Dudasik et al. | Mar 1997 | A |
5613970 | Houston et al. | Mar 1997 | A |
5618286 | Brinker | Apr 1997 | A |
5618300 | Marin et al. | Apr 1997 | A |
5620449 | Faccioli et al. | Apr 1997 | A |
5624440 | Huebner et al. | Apr 1997 | A |
5643258 | Robioneck et al. | Jul 1997 | A |
5645545 | Bryant | Jul 1997 | A |
5645599 | Samani | Jul 1997 | A |
5658283 | Huebner | Aug 1997 | A |
5658287 | Hofmann et al. | Aug 1997 | A |
5658292 | Axelson, Jr. | Aug 1997 | A |
5658293 | Vanlaningham | Aug 1997 | A |
5658351 | Dudasik et al. | Aug 1997 | A |
5662648 | Faccioli et al. | Sep 1997 | A |
5662649 | Huebner | Sep 1997 | A |
5662712 | Pathak et al. | Sep 1997 | A |
5665090 | Rockwood et al. | Sep 1997 | A |
5665091 | Noble et al. | Sep 1997 | A |
5681316 | DeOrio et al. | Oct 1997 | A |
5681318 | Pennig et al. | Oct 1997 | A |
5683389 | Orsak | Nov 1997 | A |
5683460 | Persoons | Nov 1997 | A |
5688271 | Faccioli et al. | Nov 1997 | A |
5688279 | McNulty et al. | Nov 1997 | A |
5690634 | Muller et al. | Nov 1997 | A |
5693047 | Meyers et al. | Dec 1997 | A |
5693048 | Stalcup et al. | Dec 1997 | A |
5695729 | Chow et al. | Dec 1997 | A |
5697930 | Itoman et al. | Dec 1997 | A |
5702481 | Lin | Dec 1997 | A |
5702487 | Averill et al. | Dec 1997 | A |
5707370 | Berki et al. | Jan 1998 | A |
5718704 | Medoff | Feb 1998 | A |
5728096 | Faccioli et al. | Mar 1998 | A |
5741256 | Bresina | Apr 1998 | A |
5741266 | Moran et al. | Apr 1998 | A |
5749872 | Kyle et al. | May 1998 | A |
5749880 | Banas et al. | May 1998 | A |
5759184 | Santangelo | Jun 1998 | A |
5766178 | Michielli et al. | Jun 1998 | A |
5766179 | Faccioli et al. | Jun 1998 | A |
5766180 | Winquist | Jun 1998 | A |
5772662 | Chapman et al. | Jun 1998 | A |
5776194 | Mikol et al. | Jul 1998 | A |
5776204 | Noble et al. | Jul 1998 | A |
5779703 | Benoist | Jul 1998 | A |
5779705 | Matthews | Jul 1998 | A |
5782921 | Colleran et al. | Jul 1998 | A |
5785057 | Fischer | Jul 1998 | A |
5810750 | Buser | Sep 1998 | A |
5810820 | Santori et al. | Sep 1998 | A |
5810830 | Noble et al. | Sep 1998 | A |
5814047 | Emilio et al. | Sep 1998 | A |
5814681 | Hino et al. | Sep 1998 | A |
5816812 | Kownacki et al. | Oct 1998 | A |
5827282 | Pennig | Oct 1998 | A |
5829081 | Pearce | Nov 1998 | A |
5836949 | Campbell, Jr. et al. | Nov 1998 | A |
5849004 | Bramlet | Dec 1998 | A |
5849014 | Mastrorio et al. | Dec 1998 | A |
5849035 | Pathak et al. | Dec 1998 | A |
5855581 | Koblish et al. | Jan 1999 | A |
5863295 | Averill et al. | Jan 1999 | A |
5879352 | Filoso et al. | Mar 1999 | A |
5881878 | Faccioli et al. | Mar 1999 | A |
5882351 | Fox | Mar 1999 | A |
5893850 | Cachia | Apr 1999 | A |
5895390 | Moran et al. | Apr 1999 | A |
5897560 | Johnson | Apr 1999 | A |
5902302 | Berki et al. | May 1999 | A |
5908422 | Bresina | Jun 1999 | A |
5908423 | Kashuba et al. | Jun 1999 | A |
5912410 | Cordell | Jun 1999 | A |
5913867 | Dion | Jun 1999 | A |
5919194 | Anderson | Jul 1999 | A |
5925048 | Ahmad et al. | Jul 1999 | A |
5928235 | Friedl | Jul 1999 | A |
5928240 | Johnson | Jul 1999 | A |
5931830 | Jacobsen et al. | Aug 1999 | A |
5931839 | Medoff | Aug 1999 | A |
5948000 | Larsen et al. | Sep 1999 | A |
5948001 | Larsen | Sep 1999 | A |
5951556 | Faccioli et al. | Sep 1999 | A |
5951557 | Luter | Sep 1999 | A |
5954722 | Bono | Sep 1999 | A |
5954728 | Heller et al. | Sep 1999 | A |
5964770 | Flomenblit et al. | Oct 1999 | A |
5968047 | Reed | Oct 1999 | A |
5976134 | Huebner | Nov 1999 | A |
5976147 | LaSalle et al. | Nov 1999 | A |
5976188 | Dextradeur et al. | Nov 1999 | A |
5989260 | Yao | Nov 1999 | A |
5989261 | Walker et al. | Nov 1999 | A |
5993459 | Larsen et al. | Nov 1999 | A |
6004348 | Banas et al. | Dec 1999 | A |
6010505 | Asche et al. | Jan 2000 | A |
6010506 | Gosney et al. | Jan 2000 | A |
6013081 | Burkinshaw et al. | Jan 2000 | A |
6015413 | Faccioli et al. | Jan 2000 | A |
6017350 | Long | Jan 2000 | A |
6019761 | Gustilo | Feb 2000 | A |
6019762 | Cole | Feb 2000 | A |
6024745 | Faccioli et al. | Feb 2000 | A |
6027506 | Faccioli et al. | Feb 2000 | A |
6027534 | Wack et al. | Feb 2000 | A |
6033407 | Behrens | Mar 2000 | A |
6039742 | Krettek et al. | Mar 2000 | A |
6045556 | Cohen | Apr 2000 | A |
6053922 | Krause et al. | Apr 2000 | A |
6056756 | Eng et al. | May 2000 | A |
6077264 | Chemello | Jun 2000 | A |
6080159 | Vichard | Jun 2000 | A |
6093209 | Sanders | Jul 2000 | A |
6096040 | Esser | Aug 2000 | A |
6102911 | Faccioli et al. | Aug 2000 | A |
6106528 | Durham et al. | Aug 2000 | A |
6120504 | Brumback et al. | Sep 2000 | A |
6120509 | Wheeler | Sep 2000 | A |
6126661 | Faccioli et al. | Oct 2000 | A |
6126691 | Kasra et al. | Oct 2000 | A |
6127597 | Beyar et al. | Oct 2000 | A |
6129756 | Kugler et al. | Oct 2000 | A |
6129762 | Li | Oct 2000 | A |
6139583 | Johnson | Oct 2000 | A |
6143012 | Gausepohl | Nov 2000 | A |
6143033 | Paul et al. | Nov 2000 | A |
6162223 | Orsak et al. | Dec 2000 | A |
6162226 | DeCarlo, Jr. et al. | Dec 2000 | A |
6168632 | Moser et al. | Jan 2001 | B1 |
6171309 | Huebner | Jan 2001 | B1 |
6176871 | Pathak et al. | Jan 2001 | B1 |
6179839 | Weiss et al. | Jan 2001 | B1 |
6179842 | Spotomo et al. | Jan 2001 | B1 |
6197029 | Fujimori et al. | Mar 2001 | B1 |
6197031 | Barrette et al. | Mar 2001 | B1 |
6200321 | Orbay et al. | Mar 2001 | B1 |
6206880 | Karladani | Mar 2001 | B1 |
6221036 | Lucas | Apr 2001 | B1 |
6221074 | Cole et al. | Apr 2001 | B1 |
6224600 | Protogirou | May 2001 | B1 |
6224609 | Ressemann et al. | May 2001 | B1 |
6228123 | Dezzani | May 2001 | B1 |
6231576 | Frigg et al. | May 2001 | B1 |
6235029 | Faccioli et al. | May 2001 | B1 |
6261289 | Levy | Jul 2001 | B1 |
6270499 | Leu et al. | Aug 2001 | B1 |
6273876 | Klima et al. | Aug 2001 | B1 |
6273892 | Orbay et al. | Aug 2001 | B1 |
6280474 | Cassidy et al. | Aug 2001 | B1 |
6283969 | Grusin et al. | Sep 2001 | B1 |
6287310 | Fox | Sep 2001 | B1 |
6290725 | Weiss et al. | Sep 2001 | B1 |
6296603 | Turnlund et al. | Oct 2001 | B1 |
6296645 | Hover et al. | Oct 2001 | B1 |
6299642 | Chan | Oct 2001 | B1 |
6319253 | Ackeret et al. | Nov 2001 | B1 |
6332886 | Green et al. | Dec 2001 | B1 |
6336929 | Justin | Jan 2002 | B1 |
6348053 | Cachia | Feb 2002 | B1 |
6355042 | Winquist et al. | Mar 2002 | B2 |
6355069 | DeCarlo et al. | Mar 2002 | B1 |
6358250 | Orbay | Mar 2002 | B1 |
6358283 | Hogfors et al. | Mar 2002 | B1 |
6364824 | Fitzsimmons | Apr 2002 | B1 |
6364882 | Orbay | Apr 2002 | B1 |
6379359 | Dahners | Apr 2002 | B1 |
6379360 | Ackeret et al. | Apr 2002 | B1 |
6383188 | Kuslich et al. | May 2002 | B2 |
6395004 | Dye et al. | May 2002 | B1 |
6402753 | Cole et al. | Jun 2002 | B1 |
6406477 | Fujiwara | Jun 2002 | B1 |
6416516 | Stauch et al. | Jul 2002 | B1 |
6423096 | Musset et al. | Jul 2002 | B1 |
6425923 | Stalcup et al. | Jul 2002 | B1 |
6436148 | DeCarlo, Jr. et al. | Aug 2002 | B1 |
6440135 | Orbay et al. | Aug 2002 | B2 |
6443954 | Bramlet et al. | Sep 2002 | B1 |
6443992 | Lubinus | Sep 2002 | B2 |
6447513 | Griggs | Sep 2002 | B1 |
6447514 | Stalcup et al. | Sep 2002 | B1 |
6447515 | Meldrum | Sep 2002 | B1 |
6447518 | Krause et al. | Sep 2002 | B1 |
6461358 | Faccioli | Oct 2002 | B1 |
6461360 | Adam | Oct 2002 | B1 |
6468278 | Muckter | Oct 2002 | B1 |
6488684 | Bramlet et al. | Dec 2002 | B2 |
6491694 | Orsak | Dec 2002 | B1 |
6500209 | Kolb | Dec 2002 | B1 |
6508819 | Orbay | Jan 2003 | B1 |
6508820 | Bales | Jan 2003 | B2 |
6511481 | von Hoffmann et al. | Jan 2003 | B2 |
6520994 | Nogarin | Feb 2003 | B2 |
6524313 | Fassier et al. | Feb 2003 | B1 |
6527775 | Warburton | Mar 2003 | B1 |
6530925 | Boudard et al. | Mar 2003 | B2 |
6533788 | Orbay | Mar 2003 | B1 |
6537275 | Venturini et al. | Mar 2003 | B2 |
6540752 | Hicken et al. | Apr 2003 | B1 |
6551321 | Burkinshaw et al. | Apr 2003 | B1 |
6554833 | Levy et al. | Apr 2003 | B2 |
6554862 | Hays et al. | Apr 2003 | B2 |
6558388 | Bartsch et al. | May 2003 | B1 |
6562042 | Nelson | May 2003 | B2 |
6565573 | Ferrante et al. | May 2003 | B1 |
6572620 | Schon et al. | Jun 2003 | B1 |
6575973 | Shekalim | Jun 2003 | B1 |
6575986 | Overaker | Jun 2003 | B2 |
6575994 | Marin et al. | Jun 2003 | B1 |
6582453 | Tran et al. | Jun 2003 | B1 |
6607531 | Frigg | Aug 2003 | B2 |
6613052 | Kinnett | Sep 2003 | B1 |
6616742 | Lin et al. | Sep 2003 | B2 |
6620197 | Maroney | Sep 2003 | B2 |
6623487 | Goshert | Sep 2003 | B1 |
6629976 | Gnos et al. | Oct 2003 | B1 |
6632224 | Cachia et al. | Oct 2003 | B2 |
6641596 | Lizardi | Nov 2003 | B1 |
6648889 | Bramlet et al. | Nov 2003 | B2 |
6648890 | Culbert et al. | Nov 2003 | B2 |
6652529 | Swanson | Nov 2003 | B2 |
6652591 | Serbousek et al. | Nov 2003 | B2 |
6656189 | Wilson et al. | Dec 2003 | B1 |
6682568 | Despres, III et al. | Jan 2004 | B2 |
6685679 | Merdan | Feb 2004 | B2 |
6685706 | Padget et al. | Feb 2004 | B2 |
6688822 | Ritter et al. | Feb 2004 | B2 |
6695844 | Bramlet et al. | Feb 2004 | B2 |
6699251 | Venturini | Mar 2004 | B1 |
6699253 | McDowell et al. | Mar 2004 | B2 |
6706046 | Orbay et al. | Mar 2004 | B2 |
6706072 | Dwyer et al. | Mar 2004 | B2 |
6709436 | Hover et al. | Mar 2004 | B1 |
6712820 | Orbay | Mar 2004 | B2 |
6722368 | Shaikh | Apr 2004 | B1 |
6723129 | Dwyer et al. | Apr 2004 | B2 |
6730087 | Butsch | May 2004 | B1 |
6730090 | Orbay et al. | May 2004 | B2 |
6736818 | Perren et al. | May 2004 | B2 |
6749611 | Venturini et al. | Jun 2004 | B2 |
6755831 | Putnam et al. | Jun 2004 | B2 |
6755862 | Keynan | Jun 2004 | B2 |
6755866 | Southworth | Jun 2004 | B2 |
6767350 | Lob | Jul 2004 | B1 |
6767351 | Orbay et al. | Jul 2004 | B2 |
6780185 | Frei et al. | Aug 2004 | B2 |
6783529 | Hover et al. | Aug 2004 | B2 |
6783530 | Levy | Aug 2004 | B1 |
6783533 | Green et al. | Aug 2004 | B2 |
6786908 | Hover et al. | Sep 2004 | B2 |
6793655 | Orsak | Sep 2004 | B2 |
6793659 | Putnam | Sep 2004 | B2 |
6808527 | Lower et al. | Oct 2004 | B2 |
6821299 | Kirking et al. | Nov 2004 | B2 |
6827739 | Griner et al. | Dec 2004 | B2 |
6827741 | Reeder | Dec 2004 | B2 |
6840939 | Venturini et al. | Jan 2005 | B2 |
6855146 | Frigg et al. | Feb 2005 | B2 |
6855167 | Shimp et al. | Feb 2005 | B2 |
6863692 | Meulink | Mar 2005 | B2 |
6866455 | Hasler | Mar 2005 | B2 |
6866665 | Orbay | Mar 2005 | B2 |
6887243 | Culbert | May 2005 | B2 |
6887271 | Justin et al. | May 2005 | B2 |
6890333 | von Hoffmann et al. | May 2005 | B2 |
6893444 | Orbay | May 2005 | B2 |
6908465 | von Hoffmann et al. | Jun 2005 | B2 |
6926720 | Castaneda | Aug 2005 | B2 |
6926741 | Kolb | Aug 2005 | B2 |
6929692 | Tas | Aug 2005 | B2 |
6942666 | Overaker et al. | Sep 2005 | B2 |
6942668 | Padget et al. | Sep 2005 | B2 |
6949100 | Venturini | Sep 2005 | B1 |
6949124 | Serbousek et al. | Sep 2005 | B2 |
6951561 | Warren et al. | Oct 2005 | B2 |
6974482 | Zhu | Dec 2005 | B2 |
7001388 | Orbay et al. | Feb 2006 | B2 |
D518174 | Venturini et al. | Mar 2006 | S |
7008425 | Phillips | Mar 2006 | B2 |
7008428 | Cachia et al. | Mar 2006 | B2 |
7008451 | Justin et al. | Mar 2006 | B2 |
7011664 | Haney et al. | Mar 2006 | B2 |
7012106 | Yuan et al. | Mar 2006 | B2 |
7029476 | Hansson | Apr 2006 | B2 |
7029478 | Hollstien et al. | Apr 2006 | B2 |
7033363 | Powell | Apr 2006 | B2 |
7033365 | Powell et al. | Apr 2006 | B2 |
7041104 | Cole et al. | May 2006 | B1 |
7044978 | Howie et al. | May 2006 | B2 |
7052498 | Levy et al. | May 2006 | B2 |
7056322 | Davison et al. | Jun 2006 | B2 |
7060075 | Govari et al. | Jun 2006 | B2 |
7070601 | Culbert et al. | Jul 2006 | B2 |
7070616 | Majercak et al. | Jul 2006 | B2 |
7074224 | Daniels et al. | Jul 2006 | B2 |
7081119 | Stihl | Jul 2006 | B2 |
7083624 | Irving | Aug 2006 | B2 |
7090676 | Huebner et al. | Aug 2006 | B2 |
7097648 | Globerman et al. | Aug 2006 | B1 |
7097664 | Despres, III et al. | Aug 2006 | B2 |
RE39301 | Bertin | Sep 2006 | E |
7101376 | Semet | Sep 2006 | B2 |
7118574 | Patel et al. | Oct 2006 | B2 |
7122056 | Dwyer et al. | Oct 2006 | B2 |
7137987 | Patterson et al. | Nov 2006 | B2 |
7141052 | Manderson | Nov 2006 | B2 |
7141067 | Jones et al. | Nov 2006 | B2 |
7144399 | Hayes et al. | Dec 2006 | B2 |
7147639 | Berki et al. | Dec 2006 | B2 |
7147640 | Huebner et al. | Dec 2006 | B2 |
7153309 | Huebner et al. | Dec 2006 | B2 |
7156852 | Dye et al. | Jan 2007 | B2 |
7160302 | Warburton | Jan 2007 | B2 |
7160333 | Plouhar et al. | Jan 2007 | B2 |
7163563 | Schwartz et al. | Jan 2007 | B2 |
7175625 | Culbert | Feb 2007 | B2 |
7175631 | Wilson et al. | Feb 2007 | B2 |
7179260 | Gerlach et al. | Feb 2007 | B2 |
7188687 | Rudd et al. | Mar 2007 | B2 |
7189237 | Huebner | Mar 2007 | B2 |
7632277 | Woll et al. | Dec 2009 | B2 |
20020161369 | Bramlet et al. | Oct 2002 | A1 |
20020188297 | Dakin et al. | Dec 2002 | A1 |
20030045919 | Swoyer et al. | Mar 2003 | A1 |
20030236529 | Shluzas et al. | Dec 2003 | A1 |
20040213825 | Levy | Oct 2004 | A1 |
20040214311 | Levy | Oct 2004 | A1 |
20040230193 | Cheung et al. | Nov 2004 | A1 |
20050015154 | Lindsey et al. | Jan 2005 | A1 |
20050027294 | Woll et al. | Feb 2005 | A1 |
20050159749 | Levy et al. | Jul 2005 | A1 |
20050165395 | Orbay et al. | Jul 2005 | A1 |
20050177158 | Doubler et al. | Aug 2005 | A1 |
20050216007 | Woll et al. | Sep 2005 | A1 |
20050228391 | Levy et al. | Oct 2005 | A1 |
20050261781 | Sennett et al. | Nov 2005 | A1 |
20050267481 | Carl et al. | Dec 2005 | A1 |
20060015101 | Warburton et al. | Jan 2006 | A1 |
20060015123 | Fencl et al. | Jan 2006 | A1 |
20060064094 | Levy et al. | Mar 2006 | A1 |
20060084998 | Levy et al. | Apr 2006 | A1 |
20060200143 | Warburton | Sep 2006 | A1 |
20060200144 | Warburton | Sep 2006 | A1 |
20060229617 | Meller et al. | Oct 2006 | A1 |
20060264950 | Nelson et al. | Nov 2006 | A1 |
20060264951 | Nelson et al. | Nov 2006 | A1 |
20060264952 | Nelson et al. | Nov 2006 | A1 |
20080132896 | Bowen et al. | Jun 2008 | A1 |
20080140078 | Nelson et al. | Jun 2008 | A1 |
20080149115 | Hauck et al. | Jun 2008 | A1 |
20080161805 | Saravia et al. | Jul 2008 | A1 |
20080221620 | Krause et al. | Sep 2008 | A1 |
20090018542 | Saravia et al. | Jan 2009 | A1 |
20090228007 | Justin et al. | Sep 2009 | A1 |
20100023010 | Nelson et al. | Jan 2010 | A1 |
20100094347 | Nelson et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
2561552 | Nov 2005 | CA |
WO 9718769 | May 1997 | WO |
WO 9827876 | Jul 1998 | WO |
WO 9856301 | Dec 1998 | WO |
WO 9920195 | Apr 1999 | WO |
WO 0028906 | May 2000 | WO |
WO 0128443 | Apr 2001 | WO |
WO 0200270 | Jan 2002 | WO |
WO 0200275 | Jan 2002 | WO |
WO 0202158 | Jan 2002 | WO |
WO 2005112804 | Dec 2005 | WO |
WO 2006053210 | May 2006 | WO |
WO 2006124764 | Nov 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20070233105 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
60682652 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11383269 | May 2006 | US |
Child | 11565534 | US |