Minimally-invasive delivery systems

Information

  • Patent Grant
  • 12053379
  • Patent Number
    12,053,379
  • Date Filed
    Monday, February 22, 2021
    3 years ago
  • Date Issued
    Tuesday, August 6, 2024
    4 months ago
Abstract
A delivery tool includes a nosepiece that is fixed to a shaft, and distal to an implant, and an expandable element proximal to the nosepiece. Maximally-expanded, the expandable element (i) has an expanded external diameter at its widest part that is smaller than the expanded internal diameter of a lumen of the frame of the implant, (ii) tapers proximally away from the widest part and from the nosepiece, and (iii) is dimensioned to slide proximally through the lumen of the implant in its expanded state, between leaflets of the implant, and out of the lumen. When non-expanded, the widest part of the expandable element has a non-expanded external diameter that is smaller than the expanded external diameter of the expandable element. In a compressed state of the implant a portion of the expandable element is disposed within the lumen of the frame. Other applications are also described.
Description
FIELD OF THE INVENTION

Some applications of the present invention relate in general to valve replacement. More specifically, some applications of the present invention relate to prosthetic cardiac valves and techniques for implantation thereof.


BACKGROUND

Dilation of the annulus of a heart valve, such as that caused by ischemic heart disease, prevents the valve leaflets from fully coapting when the valve is closed. Regurgitation of blood from the ventricle into the atrium results in increased total stroke volume and decreased cardiac output, and ultimate weakening of the ventricle secondary to a volume overload and a pressure overload of the atrium.


SUMMARY OF THE INVENTION

Systems are described, each of which comprises a delivery tool for an implant, the delivery tool comprising a balloon at a distal portion of the tool. The balloon facilitates movement of the distal portion of the tool past potential anatomical and/or implanted obstacles, e.g., by providing a tapered surface. One described balloon serves as a nosecone of the delivery tool, facilitating distal movement of the distal portion of the tool through the vasculature. Another described balloon serves as a reverse nosecone that facilitates proximal movement of the distal portion of the tool through the implanted implant.


Also described is a sheath for retaining the implant on the distal portion of a delivery tool, and a system for unsheathing the implant.


Also described is a delivery tool that comprises a housing that defines a generally-helical track, and a controller that comprises an actuator. At least part of an implant is housed by the housing. Rotation of the actuator draws the housing proximally with respect to the implant by sliding an engaging element of the actuator along the track. This proximal movement of the housing deploys the implant from within the housing.


The technologies described may be used separately on different delivery tools, or in various combinations on a single delivery tool.


There is therefore provided, in accordance with an application of the present invention, apparatus, for use with an implant, the apparatus including a tool, the tool including:

    • a housing, at a distal part of the tool, the housing:
      • including a tubular wall that circumscribes a longitudinal axis of the distal part of the tool,
      • dimensioned to house at least part of the implant, and
      • defining a track that follows a generally-helical path around the longitudinal axis; and
    • a controller, including:
      • a rod that extends from a proximal part of the tool to the housing; and
      • an actuator, fixedly coupled to the rod, including an engaging element that engages the track, and rotatable with respect to the housing, the controller and the housing mechanically cooperating such that rotation of the actuator with respect to the housing slides the housing longitudinally with respect to the actuator.


In an application:

    • the housing is a proximal housing, and the part of the implant is a first part of the implant;
    • the proximal housing is configured to house the first part of the implant, and has a distal opening for deployment of the first part of the implant therethrough; and
    • the tool further includes a distal housing that is configured to house a second part of the implant, and has a proximal opening for deployment of the second part of the implant therethrough, the proximal opening of the distal housing facing the distal opening of the proximal housing.


In an application, the housing is dimensioned to house at least the part of the implant such that at least the part of the implant is coincident along the longitudinal axis with at least part of the track.


In an application, the housing is dimensioned to house at least the part of the implant such that the generally-helical path around the longitudinal axis is also around at least the part of the implant, and at least part of the track follows the generally-helical path around the longitudinal axis and at least the part of the implant.


In an application:

    • the tool further includes a catheter,
    • the rod extends through the catheter,
    • the controller and the housing mechanically cooperate such that rotation of the actuator with respect to the housing slides the housing proximally along and over part of the catheter.


In an application, the controller and the housing mechanically cooperate such that rotation of the actuator in a first direction with respect to the housing slides the housing proximally with respect to the actuator, and rotation of the actuator in a second, opposite direction with respect to the housing slides the housing distally with respect to the actuator.


In an application, the track is a first track, and the housing further includes a second track that follows a generally-linear path parallel to the longitudinal axis.


In an application, the track is a channel, and the engaging element is a spur that engages the track by protruding into the channel.


In an application, the track is a rail, and the engaging element is a notch that engages the track by receiving the rail.


In an application:

    • a first portion of the generally-helical path has a first pitch,
    • a second portion of the generally-helical path has a second pitch, the second portion being distal to the first portion, and the second pitch being greater than the first pitch, and
      • the track follows the generally-helical path that has the first portion that has the first pitch and the second portion that has the second pitch.


In an application:

    • the generally-helical path has a pitch that is progressively greater at progressively distal portions of the generally-helical path, and
    • the track follows the generally-helical path that has the pitch that is progressively greater at progressively distal portions of the generally-helical path.


In an application, the apparatus further includes the implant.


In an application, the apparatus further includes a shaft to which the implant is fixable, the shaft being slidably coupled to the housing, and extending proximally from the housing.


In an application:

    • the track is a first track,
    • the engaging element is a first engaging element,
    • the housing further includes a second track that follows a generally-linear path parallel to the longitudinal axis,
    • the tool further includes a second engaging element, fixedly coupled to the shaft, the second engaging element engaging the second track such that the shaft is rotationally fixed with respect to the housing.


In an application, the controller and the housing mechanically cooperate such that rotation of the actuator with respect to the housing slides the second track longitudinally with respect to the second engaging element.


In an application, the apparatus further includes the implant, fixedly coupled to the shaft, at least the part of the implant housed by the housing.


In an application, the rod is coaxial with the shaft.


In an application, the shaft is disposed within the rod.


In an application, the actuator defines a hole through which the shaft extends.


In an application, the shaft is rotationally fixed with respect to the housing.


In an application, at least part of the shaft is disposed within the housing.


There is further provided, in accordance with an application of the present invention, a method, including:

    • transluminally advancing, into a heart of a subject, a distal part of a tool, the distal part of the tool including a housing, the housing:
      • including a tubular wall that circumscribes a longitudinal axis of the distal part of the tool,
      • housing at least part of an implant, and
      • defining a track that follows a generally-helical path around the longitudinal axis; and
    • retracting the housing from at least the part of the implant by rotating a rod that is fixedly coupled to an actuator that includes an engaging element that is engaged with the track, such that the actuator rotates with respect to the housing and causes the housing to slide longitudinally with respect to the actuator.


There is further provided, in accordance with an application of the present invention, apparatus, including:

    • an implant; and
    • a tool, configured for transluminal delivery of the implant, the tool having a proximal part and a distal part, and including:
      • a shaft that extends longitudinally from the proximal part of the tool to the distal part of the tool;
      • a nosepiece, fixed to the shaft, and arranged with respect to the implant such that the implant extends proximally away from the nosepiece and over the shaft;
      • a sheath, configured to house the implant during transluminal delivery, and having a diameter that is dimensioned for transluminal delivery; and
      • a balloon, disposed at the distal part of the tool, and in fluid communication with the proximal part of the tool,


        and the balloon has:
    • a maximally-inflated state in which the balloon (i) has a widest part that has an inflated diameter that is less than the diameter of the sheath or at most 10 percent greater than the diameter of the sheath, and (ii) has a tapered portion that tapers longitudinally away from the widest part and from the nosepiece, and
    • a deflated state in which the widest part has a deflated diameter that is smaller than the inflated diameter.


In an application, the nosepiece is fixed to the distal end of the shaft.


In an application, the tapered portion tapers distally away from the widest part and from the nosepiece.


In an application, the tapered portion tapers proximally away from the widest part and from the nosepiece.


In an application, the apparatus has a delivery state in which the implant, the sheath, and the balloon are transluminally advanceable into a subject, and in which:

    • the implant is in a compressed state, and is housed by the sheath, and
    • the balloon is in its maximally-inflated state.


In an application, the apparatus has a delivery state in which the implant, the sheath, and the balloon are transluminally advanceable into a subject, and in which:

    • the implant is in a compressed state, and is housed by the sheath, and
    • the balloon is in its deflated state.


In an application, the balloon is slidably coupled to the shaft at least in the deflated state of the balloon.


In an application:

    • the implant (i) is constrainable, by a constraining force, in a compressed state in which the implant has a compressed diameter, and (ii) has an expanded state into which the implant automatically transitions upon removal of the constraining force, and in which the implant has an expanded diameter, and
    • the maximally-inflated diameter of the balloon is smaller than the expanded diameter of the implant.


In an application:

    • the implant is shaped to define a lumen therethrough,
    • the nosepiece is arranged with respect to the implant such that the implant extends proximally over the shaft with the shaft within the lumen of the implant,
    • the implant has an expanded state, and assumes the expanded state upon implantation of the implant, and
    • the nosepiece is dimensioned to be withdrawable proximally through the lumen while the implant is in its expanded state.


In an application, the implant is self-expanding to the expanded state.


In an application, the implant has a compressed state for transluminal delivery, and the nosepiece is not dimensioned to be withdrawable proximally through the lumen while the implant is in its compressed state.


There is further provided, in accordance with an application of the present invention, apparatus, including:

    • an implant:
      • constrainable, by a constraining force, in a compressed state in which the implant has a compressed diameter,
      • having an expanded state into which the implant automatically transitions upon removal of the constraining force, and in which the implant has an expanded diameter; and
    • a tool, configured for transluminal delivery of the implant, the tool including:
      • a shaft that extends longitudinally from a proximal part of the tool;
      • a nosepiece, fixed to the shaft, and arranged with respect to the implant such that the implant extends proximally away from the nosepiece and over the shaft; and
      • a balloon, in fluid communication with the proximal part of the tool, and the balloon has:
    • a maximally-inflated state in which the balloon (i) has a widest part that has an inflated diameter that is smaller than the expanded diameter, and (ii) has a tapered portion that tapers longitudinally away from the widest part and from the nosepiece, and
    • a deflated state in which the widest part has a deflated diameter that is smaller than the inflated diameter.


In an application, the nosepiece is fixed to the distal end of the shaft.


In an application, the tapered portion tapers distally away from the widest part and from the nosepiece.


In an application, the tapered portion tapers proximally away from the widest part and from the nosepiece.


In an application, the balloon is slidably coupled to the shaft at least in the deflated state of the balloon.


In an application:

    • the implant (i) is constrainable, by a constraining force, in a compressed state in which the implant has a compressed diameter, and (ii) has an expanded state into which the implant automatically transitions upon removal of the constraining force, and in which the implant has an expanded diameter, and
    • the maximally-inflated diameter of the balloon is smaller than the expanded diameter of the implant.


In an application:

    • the implant is shaped to define a lumen therethrough,
    • the nosepiece is arranged with respect to the implant such that the implant extends proximally over the shaft with the shaft within the lumen of the implant,
    • the implant has an expanded state, and assumes the expanded state upon implantation of the implant, and
    • the nosepiece is dimensioned to be withdrawable proximally through the lumen while the implant is in its expanded state.


In an application, the implant is self-expanding to the expanded state.


In an application, the implant has a compressed state for transluminal delivery, and the nosepiece is not dimensioned to be withdrawable proximally through the lumen while the implant is in its compressed state.


In an application, the tool further includes a sheath that is configured to house the implant during transluminal delivery, and has a diameter that is dimensioned for transluminal delivery.


In an application, the apparatus has a delivery state in which the implant, the sheath, and the balloon are transluminally advanceable into a subject, and in which:

    • the implant is in a compressed state, and is housed by the sheath, and
    • the balloon is in its maximally-inflated state.


In an application, the apparatus has a delivery state in which the implant, the sheath, and the balloon are transluminally advanceable into a subject, and in which:

    • the implant is in a compressed state, and is housed by the sheath, and
    • the balloon is in its deflated state.


There is further provided, in accordance with an application of the present invention, apparatus, including:

    • an implant; and
    • a tool, configured for transluminal delivery of the implant, the tool including:
      • a shaft that extends longitudinally from a proximal part of the;
      • a nosepiece, fixed to the shaft, and arranged with respect to the implant such that the implant extends proximally away from the nosepiece and over the shaft; and
      • a balloon, inflatable from a proximal part of the tool, and coupled to the shaft such that when inflated the balloon has a tapered portion that tapers distally away from the nosepiece.


In an application, the nosepiece is fixed to the distal end of the shaft.


In an application:

    • the implant:
    • is constrainable, by a constraining force, in a compressed state in which the implant has a compressed diameter, and
    • has an expanded state into which the implant automatically transitions upon removal of the constraining force, and in which the implant has an expanded diameter; and
    • the balloon has:
    • a maximally-inflated state in which (i) the balloon has a widest part that has an inflated diameter that is smaller than the expanded diameter of the implant, and (ii) the tapered portion tapers distally away from the nosepiece and from the widest part, and
    • a deflated state in which the widest part has a deflated diameter that is smaller than the inflated diameter.


In an application, the balloon is slidably coupled to the shaft at least in the deflated state of the balloon.


In an application:

    • the implant is shaped to define a lumen therethrough,
    • the nosepiece is arranged with respect to the implant such that the implant extends proximally over the shaft with the shaft within the lumen of the implant,
    • the implant has an expanded state, and assumes the expanded state upon implantation of the implant, and
    • the nosepiece is dimensioned to be withdrawable proximally through the lumen while the implant is in its expanded state.


In an application, the implant is self-expanding to the expanded state.


In an application, the implant has a compressed state for transluminal delivery, and the nosepiece is not dimensioned to be withdrawable proximally through the lumen while the implant is in its compressed state.


In an application, the tool further includes a sheath that is configured to house the implant during transluminal delivery, and has a diameter that is dimensioned for transluminal delivery.


In an application, the apparatus has a delivery state in which the implant, the sheath, and the balloon are transluminally advanceable into a subject, and in which:

    • the implant is in a compressed state, and is housed by the sheath, and
    • the balloon is in its maximally-inflated state.


In an application, the apparatus has a delivery state in which the implant, the sheath, and the balloon are transluminally advanceable into a subject, and in which:

    • the implant is in a compressed state, and is housed by the sheath, and
    • the balloon is in its deflated state.


There is further provided, in accordance with an application of the present invention, apparatus, including:

    • an implant; and
    • a tool, configured for transluminal delivery of the implant, the tool including:
      • a shaft that extends longitudinally from a proximal part of the tool to a distal end of the shaft, and has an opening at the distal end, the opening having an opening diameter, and the implant being reversibly coupled to the tool and disposed around the shaft; and
      • a nosecone:
        • coupled to the shaft such that the nosecone has (i) a widest part that is disposed outside the opening, and has a diameter that is greater than the opening diameter, and (ii) a tapered portion that tapers distally away from the opening and the implant, and
        • withdrawable through the opening into the shaft.


In an application, the nosecone is inflatable.


In an application, the tool further includes a sheath that is configured to house the implant during transluminal delivery, and has a diameter that is dimensioned for transluminal delivery.


There is further provided, in accordance with an application of the present invention, apparatus for use with an implant, the apparatus including a delivery tool, the delivery tool including:

    • a sheath that defines a cavity dimensioned to house at least a portion of the implant, and has a lip that defines a proximal opening via which the portion of the implant is removable from the cavity;
      • a shaft that:
        • extends longitudinally from a proximal part of the tool to the sheath, and
        • is coupled to the sheath such that shaft passes through the proximal opening, and the lip circumscribes a longitudinal site of the shaft; and
      • a balloon disposed over the shaft at at least the longitudinal site, and inflation of the balloon obstructs the opening.


In an application, the balloon is positioned and dimensioned such that inflation of the balloon brings the balloon in contact with the lip.


In an application, the sheath has a diameter, and the balloon has a maximally-inflated state in which the balloon has a widest part that has an inflated diameter that is less than the diameter of the sheath or at most 10 percent greater than the diameter of the sheath.


In an application, the balloon has a maximally-inflated state in which the balloon has a tapered portion that tapers proximally away from the opening.


In an application:

    • the implant (i) is constrainable, by a constraining force, in a compressed state in which the implant has a compressed diameter, and (ii) has an expanded state into which the implant automatically transitions upon removal of the constraining force, and in which the implant has an expanded diameter, and
    • the balloon has a maximally-inflated state in which the balloon is smaller than the expanded diameter of the implant.


In an application, the balloon has a deflated state for delivery of the implant, and a maximally-inflated state, and inflation of the balloon to the maximally-inflated state obstructs at least 80 percent of the opening.


In an application, when the balloon is in the deflated state, the opening is at least 50 percent unobstructed by either the balloon or the shaft.


In an application, the apparatus has a delivery state in which the implant, the sheath, and the balloon are transluminally advanceable into a subject, and in which:

    • the implant is in a compressed state, and is housed by the sheath, and
    • the balloon is in its deflated state.


In an application, in the delivery state the implant is compressed around the balloon.


There is further provided, in accordance with an application of the present invention, apparatus, including:

    • an implant; and
    • a tool, configured for transluminal delivery of the implant, the tool including:
      • a shaft that extends longitudinally from a proximal part of the tool, and has an open distal end, the implant being reversibly coupled to the tool and disposed around a distal portion of the shaft;
      • a sheath that houses the implant, and has a diameter that is dimensioned for transluminal delivery; and
      • a control element, disposed within the shaft, movement of the control element within the shaft being controllable by the proximal part of the tool, and the control element being coupled to the sheath such that movement of the control element proximally within the shaft draws the sheath (i) distally off of the implant, and (ii) into the open distal end of the shaft.


In an application, the sheath includes a flexible sheet.


In an application, the sheet is doubled-over itself to define an inner wall of the sheath, and an outer wall of the sheath.


In an application, the sheet defines a proximal opening of the sheath at a transition zone between the inner wall and the outer wall, and the movement of the control element proximally within the shaft peels the sheath distally off of the implant by drawing the outer wall progressively into the open distal end of the shaft such that progressively proximal regions of the inner wall transition through the transition zone to become part of the outer wall, and the proximal opening of the sheath moves distally along the implant.


In an application:

    • the control element includes a shank that extends through the shaft, and a coupling rotatably coupled to a distal end of the shank;
    • the control element is coupled to the sheath by the coupling being coupled to the sheath; and
    • the shank defines an outer screw thread;
    • the shaft defines an inner screw thread that is complementary to the outer screw thread; and
    • the control element and the shaft are configured such that rotation of the shank with respect to the sheath provides the movement of the control element proximally within the shaft by (i) screwing the shank through the shaft, but (ii) slides the coupling linearly through the shaft.


In an application, the shaft defines an inner linear groove that extends longitudinally along the shaft, and the coupling defines a fin that extends outward and into the inner groove, disposition of the fin within the groove inhibiting rotation of the coupling with respect to the shaft but allowing longitudinal sliding of the coupling through the shaft.


In an application, the inner screw thread and the inner linear groove are defined by the same longitudinal region of the shaft.


In an application, the inner screw thread and the inner linear groove transect each other.


There is further provided, in accordance with an application of the present invention, a method, for use with a subject, the method including:

    • transluminally advancing, into a subject, an implant housed within a cavity defined by a sheath of a tool, the tool including a balloon;
    • subsequently, intracorporeally removing the implant from the cavity via a proximal opening of the cavity;
    • subsequently, obstructing the proximal opening by inflating the balloon; and
    • subsequently, while the balloon is inflated, withdrawing the balloon and the sheath via a lumen of the implant.


The present invention will be more fully understood from the following detailed description of applications thereof, taken together with the drawings, in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-F are schematic illustrations of a system comprising an implant and a tool configured for transluminal delivery of the implant, in accordance with some applications of the invention;



FIGS. 2A-F and 3 are schematic illustrations of another system comprising the implant and a tool configured for transluminal delivery of the implant, in accordance with some applications of the invention; and



FIGS. 4A-D are schematic illustrations of another system comprising the implant and a tool configured for transluminal delivery of the implant, in accordance with some applications of the invention;



FIG. 5 is a schematic illustration of another system comprising the implant and a tool configured for transluminal delivery of the implant, in accordance with some applications of the invention;



FIGS. 6A-C and 7A-C are schematic illustrations of a tool for use with an implant, in accordance with some applications of the invention; and



FIG. 8 is a schematic illustration of an alternative tool, in accordance with some applications of the invention.





DETAILED DESCRIPTION OF EMBODIMENTS

Reference is made to FIGS. 1A-F and to FIGS. 2A-F and 3, which are schematic illustrations of a system 100 and a system 200, respectively, in accordance with some applications of the invention. Each of systems 100 and 200 comprises an implant 20 and a tool 110 (system 100) or 210 (system 200), the tool configured for transluminal delivery of the implant. For some applications, and as shown, implant 20 is a prosthetic heart valve (e.g., a prosthetic mitral valve). However, implant 20 may alternatively be a different type of implant. Typically, implant 20 comprises a tubular portion 22 that defines a lumen 24 through the implant (at least in an implanted and/or expanded state of the implant). Implant 20 may further comprise additional features such as anchoring elements (not shown). For applications in which implant 20 is a prosthetic valve, the implant further comprises a valve member, such as one or more prosthetic leaflets, disposed within lumen 24.


Each of tools 110 and 210 is configured for transluminal delivery of implant 20, and has a proximal part (e.g., a proximal part 112 of tool 110; the proximal part of tool 210 may be similar, mutatis mutandis) and a distal part 114 (tool 110) or 214 (tool 210). The proximal part is typically an extracorporeal part (e.g., comprising a handle, port(s) and/or controllers), and the distal part is transluminally advanceable into a subject (e.g., to the heart of the subject). Each of tools 110 and 210 further comprises:

    • (1) a shaft 116 (tool 110) or 216 (tool 210) that extends longitudinally from the proximal part of the tool to the distal part of the tool;
    • (2) a nosepiece 118 (tool 110) or 218 (tool 210), fixed to the shaft (e.g., to the distal end of the shaft), and arranged with respect to the implant such that the implant extends proximally away from the nosepiece and over the shaft (e.g., with the shaft disposed within a lumen defined by the implant); and
    • (3) a balloon 120 (tool 110) or 220 (tool 210) disposed at the distal part of the tool, and in fluid communication with the proximal part of the tool (e.g., inflatable from the proximal part of the tool).


Each of balloons 120 and 220 has (i) a maximally-inflated state in which the balloon has a widest part (122 or 222, respectively) that has an inflated diameter (d101 or d201, respectively), and a tapered portion (124 or 224, respectively) that tapers longitudinally away from the widest part and from the nosepiece, and (ii) a deflated state in which the widest part has a deflated diameter that is smaller than the inflated diameter. The maximally-inflated state of balloon 120 is shown, for example, in FIG. 1A, and the maximally-inflated state of balloon 220 is shown, for example, in FIGS. 2E-F.


Balloons 120 and 220 are not configured (e.g., dimensioned or arranged with respect to implant 20) for expanding implant 20 at the implant site. Rather, the tapered portion facilities smooth intracorporeal movement of the tool. For example, and as described hereinbelow, balloon 120 facilitates movement of tool 110 distally through the vasculature of the subject, and balloon 220 facilitates withdrawal of tool 210 from implant 20.


Typically, each of tools 110 and 210 further comprises a sheath (126 or 226, respectively), configured to house the implant (e.g., at least part of the implant) during transluminal delivery, and having a diameter (d102 or d202, respectively) that is dimensioned for transluminal delivery.


Typically, implant 20 is an expandable implant, having a compressed diameter d1 (FIG. 1A) for transluminal delivery, and an expanded diameter d2 (FIG. 1E) for functioning at the implant site. Typically, the compressed and expanded diameters refer to those of tubular portion 22 (rather than those of any additional features such as an anchoring element). For example, implant 20 (e.g., tubular portion 22) may be self-expanding (e.g., comprising a shape-memory material such as Nitinol), such that it (i) is constrainable in a compressed state by a constraining force, and (ii) has an expanded state into which it automatically transitions upon removal of the constraining force. For such applications, the constraining force is typically provided by a sheath, such as sheath 126 of tool 110 or housing 426 of tool 410, and removal of the constraining force occurs when the implant becomes deployed from the sheath.


For some applications, the maximally-inflated diameter of the balloon is smaller than expanded diameter d2 of implant 20 (e.g., the expanded diameter of tubular portion 22). For example, the inflated diameter of the balloon may be less than 90 percent (e.g., less than 80 percent, e.g., less than 70 percent, e.g., less than 60 percent, e.g., less than 50 percent, e.g., less than 40 percent, e.g., less than 30 percent, e.g., less than 20 percent, e.g., less than 10 percent) of the expanded diameter of the implant It is to be noted that balloons 120 and 220 thus differ from balloons used for expanding plastically-expandable implants, inter alia, in this regard because such implant-expanding balloons necessarily expand to a diameter that is significantly greater than that of the compressed diameter of the implant, in order to expand the implant from its delivery state to its expanded state at the implantation site.


For some applications, the inflated diameter of the balloon is less than the diameter of the sheath or is at most 10 percent greater than the diameter of the sheath. For example, the inflated diameter of the balloon may be 20-110 percent, (such as 20-100 percent, or 30-110 percent) the diameter of the sheath, e.g., 30-110 percent (such as 30-100 percent or 40-110 percent), e.g., 40-110 percent (such as 40-100 percent or 50-110 percent), e.g., 50-110 percent (such as 50-100 percent or 60-110 percent), e.g., 60-110 percent (such as 60-100 percent or 70-110 percent), e.g., 70-110 percent (such as 70-100 percent or 80-110 percent), e.g., 80-110 percent (such as 80-100 percent or 90-110 percent), e.g., 90-110 percent (such as 90-100 percent or 100-110 percent). The inflated diameter of the balloon may be less than 90 percent (e.g., less than 80 percent, e.g., less than 70 percent, e.g., less than 60 percent, e.g., less than 50 percent) the diameter of the sheath. It is to be noted that balloons 120 and 220 thus differ from balloons used for expanding plastically-expandable implants, inter alia, in this regard because such implant-expanding balloons necessarily expand to a diameter that is significantly greater than that of the sheath, in order to expand the implant from its delivery state within the sheath, to its expanded state at the implantation site.


Reference is now made to FIGS. 1A-F. System 100 comprises implant 20, and tool 110. Tool 110 is configured for transluminal delivery of the implant, and comprises shaft 116, nosepiece 118, and balloon 120. In its maximally-inflated state (FIG. 1A), tapered portion 124 of balloon 120 tapers distally away from nosepiece 118 (and typically from implant 20). Balloon 120 (or tapered portion 124 thereof) therefore defines a nosecone 128 of tool 110, the nosecone facilitating transluminal advancement of the tool, such as transfemoral advancement into the aorta and/or trans septal advancement into the left atrium 6.


It is to be noted that the term “maximally-inflated state” (including in the specification and the claims) means the state in which the balloon has the inherent maximum volume provided by the dimensions into which the material from which it is made is formed (e.g., the maximum inflation before plastic deformation and/or rupture occurs).



FIG. 1A thus shows system 100 in a delivery state thereof, in which the implant, the sheath, and the balloon are transluminally advanceable into a subject. In the delivery state of system 100, (i) implant 20 is in a compressed state, and is housed by the sheath 126, and (ii) balloon 120 is in its maximally-inflated state. For some applications, diameter 101 of balloon 120 in its maximally-inflated state is 1-9 mm (e.g., 3-6 mm).


Nosecones are known in the art for advancement of devices (e.g., tools, catheters, etc.) through the vasculature. However, the presence of such nosecones adds to the length of the device. For some applications, it is important to reduce the length of the device, or particular parts thereof. For example, a delivery tool for transseptal (e.g., transfemoral) implantation of a prosthetic mitral valve (e.g., tool 110) turns sharply downward after passing through the interatrial septum 7 (e.g., at the fossa ovalis) in order (i) to pass between the leaflets of the native mitral valve 10, and (ii) to be angled (or to angle the implant therewithin) appropriately for implantation (e.g., perpendicular to the native mitral valve). The required sharpness of this turn is at least partly dictated by (i) the height d4 of atrium 6 from mitral valve 10 (e.g., the mitral annulus) to the ceiling of the atrium, (ii) the height d5 between the mitral valve and the entry point 5 of tool 110 through septum 7 (e.g., the fossa ovalis), and/or (iii) the distance across atrium 6, perpendicular to heights d4 and d5, between septum 7 and the target site—typically the center of mitral valve 10.


Because nosecone 128 is defined by balloon 120, the length of tool 110 (e.g., distal part 114 thereof) is reducible by at least deflating balloon 120. Deflation is typically performed after passage through septum 7 and before the turning of distal part 114 toward native mitral valve 10, thereby facilitating this turning.


Typically, when in its deflated state, balloon 120 is withdrawable into an opening 130 at the distal end of shaft 116, whereas inflated diameter d101 is greater than the diameter of opening 130. Therefore, nosecone 128 defined by balloon 120 is:

    • (1) coupled to shaft 116 such that the nosecone has (i) a widest part 122 that is disposed outside opening 130, and has a diameter d101 that is greater than the opening diameter, and (ii) a tapered portion 124 that tapers distally away from the opening and implant 20, and
    • (2) withdrawable (e.g., slidable) through opening 130 into shaft 116.


Balloon 120 is typically fixed to a control rod 134 that is slidable within shaft 116. Control rod 134 is typically slidable over a guidewire 136 (e.g., the rod has a first lumen 138 within which the guidewire is disposed). Balloon 120 is typically also inflatable and deflatable via control rod 134, which may have a secondary lumen 140 (e.g., parallel with or coaxially surrounding the lumen 138) that has one or more openings 132 into balloon 120. Therefore, at least in its deflated state, balloon 120 is slidably coupled to shaft 116 (e.g., via rod 134).



FIG. 1B shows balloon 120 in its deflated state, and FIG. 1C shows the balloon having been subsequently withdrawn into shaft 116, thereby reducing the overall length of tool 110. Subsequently, distal part 114 of tool 110 is steered toward native mitral valve 10, and between the leaflets thereof (FIG. 1D). As described hereinabove, the prior reduction in the length of tool 110 reduces a likelihood of tissue of the heart interfering with this steering. Typically, this steering is achieved using a steerable mid-portion 113 (e.g., a steerable catheter) that extends from proximal part 112 to distal part 114, and through which shaft 116 extends.


Once distal part 114 of the tool 110 is positioned at the implantation site (e.g., at native mitral valve 10), implant 20 is deployed from sheath 126. FIG. 1E shows implant 20 having expanded, upon deployment, into its expanded state. Typically, implant 20 is a self-expanding implant, e.g., comprising Nitinol or another elastic material. Typically, despite this expansion, shaft 116 remains disposed through a lumen defined by the implant until it, and nosepiece 118, are withdrawn proximally through the lumen (FIG. 1F). For some applications, nosepiece 118 is not dimensioned to be withdrawable proximally through the lumen of implant 20 while the implant is in its compressed state. For example, implant 20 may be fixed to nosepiece 118 while in its compressed state, such that the nosepiece serves as an implant controller. For example, while nosepiece 118 is in one position with respect to sheath 126 it may maintain implant 20 within the sheath, and deployment of the implant may be executed by relative movement between the nosepiece and the sheath (e.g., controlled from the proximal part of tool 110).


Sheath 126 is not shown in FIGS. 1E-F, reflecting that, for some embodiments, sheath 126 is a flexible sheath that is drawn into shaft 116 during deployment of implant 20 (e.g., as described for sheath 326 with reference to FIGS. 4A-D, mutatis mutandis). However, it is to be noted that for some applications, sheath 126 is rigid (e.g., is a capsule) and is withdrawn while remaining disposed over part of shaft 116. (For such applications, sheath 126 would be visible in FIGS. 1E-F.)


There is therefore provided, a method, comprising: (1) transluminally advancing, into a subject, an implant housed within a cavity defined by a sheath of a tool, the tool including a balloon; (2) subsequently, intracorporeally removing the implant from the cavity via a proximal opening of the cavity; (3) subsequently, obstructing the proximal opening by inflating the balloon; and (4) subsequently, while the balloon is inflated, withdrawing the balloon and the sheath via a lumen of the implant.


Reference is now made to FIGS. 2A-F, and 3. System 200 comprises implant 20, and tool 210. Tool 210 is configured for transluminal delivery of the implant, and comprises shaft 216, nosepiece 218, and balloon 220. As described in more detail hereinbelow, in its maximally-inflated state (FIGS. 2E-F), tapered portion 224 of balloon 220 tapers proximally away from nosepiece 218.



FIG. 2A shows system 200 in a delivery state thereof, in which implant 20, sheath 226, and balloon 220 are transluminally advanceable into a subject, toward a delivery site (e.g., mitral valve 10). In the delivery state of system 200, (i) implant 20 is in a compressed state, and is housed by the sheath 226 (which typically constrains the implant in the compressed state), and (ii) balloon 220 is in its deflated state.


Sheath 226 defines a cavity 242 that is dimensioned to house at least a portion of implant 20, and has a lip 232 that defines a proximal opening 230 via which the housed portion of the implant is removable from the cavity. For some applications, sheath 226 comprises a distal piece 226d and a proximal piece 226p that face each other and house respective portions of implant 20, and the distal piece defines cavity 242 and proximal opening 230. (Sheath 226 may alternatively comprise only one piece, shaped generally like distal piece 226d.)


Shaft 216 extends longitudinally from the proximal part of the tool to distal part 214, at which sheath 226 and nosepiece 218 are disposed. Shaft 216 is coupled to the sheath such that shaft passes through proximal opening 230, and lip 232 circumscribes a longitudinal site 235 of the shaft. Typically, balloon 220 is disposed over the shaft at at least longitudinal site 235.


Shaft 216 extends through the lumen defined by implant 20, and is fixed to nosepiece 218, which is disposed distally to the implant. Typically, nosepiece 218 is fixed to sheath 226 (e.g., distal piece 226d thereof). For some applications, and as shown, sheath 226 (e.g., distal piece 226d thereof) is fixed to shaft 216 via nosepiece 218 (i.e., by being connected to the nosepiece, which itself is connected to the sheath). Typically, nosepiece 218 is fixed to the distal end of shaft 216. Nosepiece 218 serves as a nosecone 219; the advantages of a nosecone are described hereinabove. Typically, nosepiece 218 is not dimensioned to be withdrawable proximally through the lumen of implant 20 while the implant is in its compressed state.


Tool 210 is typically advanced to the implantation site over a guidewire 236. For example, shaft 216, sheath 226, and/or nosepiece 218 are shaped to define a lumen 244 through which guidewire 236 is slidable.


Once at the implantation site, the housed portion of implant 20 is removed from cavity 242 by moving distal piece 226d distally with respect to the implant (FIG. 2B). In addition, proximal piece 226p may be moved proximally with respect to the implant. Implant 20 is deployed by sufficiently (e.g., fully) exposing it from sheath 226. For applications in which implant 20 is self-expanding, the implant expands automatically after the constraining force provided by sheath 226 has been removed by sufficiently exposing the implant from the sheath.



FIG. 2C shows system 200 after implant 20 has been deployed from sheath 226. Nosepiece 218, distal piece 226d of sheath 226, and at least most (e.g., all) of balloon 220 are disposed distally to implant 20. For delivery tools that house an implant in a sheath that has a proximal opening (e.g., a two-piece sheath such as sheath 226, or a sheath that has only one piece shaped generally like distal piece 226d), withdrawal of the sheath after implantation of the implant is typically performed by withdrawing the sheath through the lumen of the implant. For example, in the case of a prosthetic valve, the sheath is typically withdrawn through the prosthetic valve, passing between its prosthetic leaflets. A risk exists that, should the distal part of the implantation tool be imperfectly aligned with the implanted implant, the lip (that defines the proximal opening through which the implant was previously withdrawn) may engage (e.g., catch onto) the implant, making withdrawal difficult and/or dislodging the implant. Balloon 220 reduces this risk.


Either before (as shown) or after implantation of implant 20, guidewire 236 is removed from lumen 244. For some applications, lumen 244 is in fluid communication with balloon 220, and the balloon is inflated via this lumen. For some such applications, this fluid communication is provided by a port 246 defined by shaft 216, and balloon 220 is inflated by delivering a fluid 238 (e.g., saline) via shaft 216, e.g., via the lumen 244 in which guidewire 236 was previously disposed. Because lumen 244 is open at a distal end, in order to provide fluid pressure for inflating balloon 220, a control rod 248 that is slidable within shaft 216 is slid into lumen 244 prior to inflation. Control rod 248 comprises a distal plug 250 that fits snugly within at least a distal region 244d of lumen 244 (distal to port 246), such that when the plug is introduced, it seals against the walls of lumen 244 (or at least distal region 244d thereof). For example, plug 250 may have an outer diameter that is at least 50 (e.g., at least 70, e.g., at least 90, such as at least 95) percent of the inner diameter of lumen 244. For some applications, and as shown, distal region 248d is defined by nosepiece 218 (e.g., nosecone 219). For some applications, and as shown, plug 250 defines an external screw thread 254, and is screwed into distal region 248d. For example, nosepiece 218 may comprise a flexible material such as silicone into which screw thread 254 may cut. (Alternatively, distal region 248d may be lined with such a material.) The flexible material may advantageously increase atraumatic properties of nosecone 219.


Control rod 248 further comprises a flexible proximal portion 252, which has a diameter that is less than 90 percent (e.g., 20-60 percent) of the inner diameter of lumen 244. Control rod 248 is dimensioned such that, while distal plug 250 is disposed at distal region 248d of lumen 244, proximal portion 252 extends distally through lumen 244 at least until port 246. Fluid introduced into lumen 244 at the proximal part of tool 210 flows along the lumen, alongside portion 252, and out of port 246, thereby inflating balloon 220 (FIG. 2E). Plug 250 inhibits the fluid from escaping at distal part 214 of tool 210.


It is to be noted that the scope of the invention includes other techniques for inflating balloon 220. For example, for some applications, shaft 216 may have a secondary lumen that opens into balloon 220, e.g., as described for lumen 140 of control rod 134 of system 100, mutatis mutandis.



FIG. 2E shows balloon 220 in its maximally-inflated state. Inflation of balloon 220 obstructs opening 230. For some applications, and as shown, inflation of balloon 220 obstructs at least 80 percent (e.g., at least 90 percent) of opening 230, e.g., obstructs opening 230 completely (e.g., sealing up the opening). For example, widest part 222 may have an inflated diameter that is equal to, or slightly (e.g., 1-10 percent) greater than the diameter of opening 230, and balloon 220 comes into contact with (e.g., seals against) lip 232 when inflated. For some applications, inflation of the balloon obstructs 80-90 percent or 90-99 percent of opening 230. In contrast, in the deflated state of balloon 220, opening 230 is typically at least 50 percent (e.g., 60-90 percent) unobstructed by the balloon and/or shaft 216. The obstruction of opening 230 caused by inflation of balloon 220 reduces the risk of lip 232 engaging implant 20 during withdrawal. Because this functionality is provided by a balloon, when the balloon is deflated, cavity 242 is available to house at least part of implant 20.



FIG. 2F shows distal part 214 of tool 210 being withdrawn via the lumen of implant 20, while balloon 220 (e.g., tapered portion 224 thereof) slides past parts of the implant that lip 232 may otherwise have engaged. FIG. 3 illustrates what may occur during withdrawal if balloon 220 is not inflated (or what may occur in a similar system that does not comprise balloon 220), and therefore demonstrates an advantage of system 200. In FIG. 3, lip 232 engages part of implant 20 (e.g., part of the implant enters cavity 242 via opening 230), impeding withdrawal of distal piece 226d and/or causing dislodgement of implant 20.


Reference is made to FIGS. 4A-D, which are schematic illustrations of a system 300, which comprises implant 20, and a tool 310 configured for transluminal delivery of the implant. Tool 310 comprises a shaft 316 that extends longitudinally from a proximal part 312 of the tool (which typically comprises a handle and/or controller), and has an open distal end 330. Implant 20 is reversibly coupled to the tool, and is disposed around a distal portion of shaft 316. Tool 310 comprises a sheath 326 that houses implant 20, and has a diameter that is dimensioned for transluminal delivery. Tool 310 further comprises a control element 334, disposed within shaft 316. Movement of control element 334 within shaft 316 is controllable by proximal part 312 of tool 310, and control element 334 is coupled to sheath 326 such that movement of the control element proximally within the shaft draws the sheath (i) distally off of implant 20, and (ii) into open distal end 330 of the shaft.


Typically, sheath 326 comprises a flexible sheet 328, such as a sheet or fabric of a polymer (e.g., nylon, polytetrafluoroethylene, polyester, or polyethylene terephthalate).


For some applications, sheet 328 defines sheath 326 as a single-walled sheath, and as it is drawn distally off of implant 20, it slides directly over implant 20 (e.g., is in contact with the implant).


For some applications, and as shown, sheet 328 is doubled-over itself to define an inner wall 329a of sheath 326 (i.e., defines the sheath as a double-walled sheath), and an outer wall 329b of the sheath (FIG. 4A). For such applications, a proximal opening 332 of sheath 326 is defined at a transition zone 336 between inner wall 329a and outer wall 329b (i.e., the zone at which sheet 328 transitions between defining the inner wall and defining the outer wall). That is, the transition zone defines a lip of the sheath, the lip defining proximal opening 332. The above-described movement of control element 334 proximally within shaft 316 draws (e.g., peels) sheath 326 distally off of implant 20 by drawing outer wall 329b progressively into open distal end 330 of the shaft such that progressively proximal regions of inner wall 329a transition through transition zone 336 to become part of the outer wall, and the transition zone (and thereby proximal opening 332 of the sheath) moves distally along the implant, exposing progressively distal regions of the implant (FIGS. 4B-C).


Inner wall 329a is typically in contact with implant 20 (e.g., constraining the implant to its compressed diameter), but outer wall 329b is not in contact with the implant. During the unsheathing of implant 20, neither inner wall 329a nor outer wall 329b slides directly over the implant while in contact with the implant. Rather, outer wall 329b slides over inner wall 329a (e.g., while in contact with the inner wall), and the sheath effectively peels off of the implant, thereby advantageously reducing friction that might be caused by direct sliding of the sheath over the implant while in contact with the implant.



FIG. 4D shows sheath 326 having been completely drawn off of implant 20, and the implant having responsively expanded.


Reference is now made to FIG. 5, which is a schematic illustration of a system 300a, which is an embodiment of system 300, in accordance with some applications of the invention. Elements in FIG. 5 that have a reference numeral suffixed “a” are equivalent, mutatis mutandis, to elements in FIGS. 4A-D that have the same reference numeral (without the suffix), except where noted. FIG. 5 shows the state of system 300a that is equivalent to the state of system 300 shown in FIG. 4B, mutatis mutandis.


As described for system 300, movement of control element 334a within shaft 316a is controllable by a proximal part of tool 310a, and control element 334a is coupled to sheath 326a such that movement of the control element proximally within the shaft draws the sheath (i) distally off of implant 20, and (ii) into open distal end 330a of the shaft. In system 300a, this movement of control element 334a is achieved by rotating the control element within shaft 316a. Shaft 316a and control element 334a define, respectively, complementary inner screw thread 342 and outer screw thread 344. FIG. 5 includes an enlarged inset view that shows shaft 316a as though it were opened up flat. Control element 334a comprises a shank 345, and a coupling 346, typically at a distal end of the control element, that is rotatably coupled to shank 345 (e.g., via a bearing 348). Coupling 346 is the portion of control element 334a that is coupled to sheath 326a. Due to mating of threads 342 and 344, rotation of shank 345 within shaft 316a causes control element 334a as a whole to move proximally within the shaft, while coupling 346 remains relatively rotationally stationary with respect to the shaft (e.g., coupling 346 slides longitudinally without rotating), thereby causing sheath 326a to be drawn (i) distally off of implant 20, and (ii) into open distal end 330a of the shaft, without the rotation of shank 345 twisting the sheath. That is, rotation of shank 345 within shaft 316a causes (i) screwing of the shank through the shaft, but (ii) sliding (e.g., linear sliding) of coupling 346 through the shaft.


For some applications, coupling 346 rotates slightly with respect to shaft 316a, but remains relatively rotationally stationary with respect to the shaft due to resistance provided by sheath 326a. For some applications, coupling 346 defines one or more fins 350 that each protrudes radially outward, and into a respective longitudinal groove 352 defined by shaft 316a. Fins 350 can slide only linearly along grooves 352, thereby inhibiting rotation of coupling 346 with respect to shaft 316a, but allowing the coupling to slide longitudinally along the shaft. For some applications, and as shown, grooves 352 and thread 342 may be defined on the same longitudinal region of shaft 316a, and may in fact transect each other.


Reference is made to FIGS. 6A-C and 7A-C, which are schematic illustrations of a tool 410, for use with an implant such as implant 20, in accordance with some applications of the invention. Typically, tool 410 is a delivery tool for transluminal delivery of implant 20. A system 400 may be provided, comprising implant 20 and tool 410.


Tool 410 comprises a housing (e.g., a sheath) 426 at a distal part 414 of the tool. Housing 426 comprises a tubular wall 428 that circumscribes a longitudinal axis ax1 of the distal part of tool 410. Housing 426 is dimensioned to house at least part of implant 20. Housing 426 (e.g., wall 428 thereof) defines a track 430 that follows a generally-helical path around longitudinal axis ax1. Tool 410 further comprises a controller 440 that comprises a rod 442 and an actuator 444. Rod 442 extends from a proximal part of the tool to housing 426. Actuator 444 is rotatable with respect to housing 426, and is typically fixedly coupled to rod 442. Actuator 444 comprises an engaging element 446 that engages track 430. Controller 440 and housing 426 mechanically cooperate such that rotation of actuator 444 with respect to the housing (e.g., by rotation of rod 442) slides the housing longitudinally with respect to the actuator.


Typically, this movement is bidirectional. That is, rotation of actuator 444 in a first direction with respect to housing 426 slides the housing proximally with respect to the actuator, and rotation of the actuator in a second, opposite direction with respect to the housing slides the housing distally with respect to the actuator.


Typically, and as shown, housing 426 is dimensioned to house implant 20 such that track 430 is disposed around at least the part of implant 420. That is, typically, at least part of implant 20 is coincident, along axis ax1, with at least part of track 430.


For some applications, housing 426 defines more than one track 430, rotationally-offset from each other e.g., in order to evenly distribute forces applied by actuator 444 (which for such applications typically comprises a corresponding more than one engaging element 446). For example, and as shown, housing 426 may define two tracks 430a and 430b, rotationally-offset by 180 degrees from each other, and actuator 444 may comprise a corresponding two engaging elements 446, also rotationally-offset by 180 degrees from each other. For the sake of clarity, reference numerals 430a and 430b are only used in FIG. 6A.


Typically, tool 410 further comprises a catheter 413 (e.g., a mid-portion of the tool), longitudinally disposed between the proximal part of the tool, such as a control handle, and distal part 414. Housing 426 is typically disposed distally to catheter 413. Rod 442 extends through catheter 413, and typically into housing 426. The mechanical cooperation between controller 440 and housing 426 is such that, to retract the housing from implant 20 (i.e., to deploy the part of the implant housed by the housing) rotation of actuator 444 with respect to the housing slides the housing proximally along and over part of the catheter. This is illustrated in FIGS. 7A-C, which show progressive steps in the retraction of housing 426 to deploy implant 20. Distances d6, d7, and d8 are each measured along catheter 413, between a given point on the catheter (e.g., a point of entry into atrium 6) and housing 426. Distance d7 is smaller than distance d6, and distance d8 is smaller than distance d7.


As described hereinabove, the dimensions of left atrium 6 limit maneuverability when implanting an implant at mitral valve 10 transseptally (e.g., transfemorally). For example, the height d4 of atrium 6, and/or the height d5 between the mitral valve and the entry point 5 of a delivery tool through septum 7 (e.g., the fossa ovalis), limit the distance to which the delivery tool can be raised away from the mitral valve in order to withdraw the housing or sheath of the tool from over the implant in order to deploy the implant. In particular, these heights limit the ability to raise the tool away from the mitral valve without moving and/or angling the tool toward entry point 5, and thereby tilting the implant with respect to the mitral valve. It is hypothesized by the inventors that tool 410 facilitates deployment of an implant at the mitral valve, and/or deployment without tilting the implant, because the retraction of housing 426 over catheter 413 replaces at least some of the otherwise required withdrawal of the delivery tool as a whole. For some applications, and as shown in FIGS. 7A-C, once catheter 413 and the implant within are in the correct position (FIG. 7A) deployment of the implant is possible without further movement of catheter 413 (FIGS. 7B-C).


Tool 410 typically further comprises a shaft 450 to which implant 20 is fixable, the shaft being slidably coupled housing 426, and extending proximally from the housing. Shaft 450 thereby serves as a mount for implant 20, and facilitates movement of other parts of tool 410 (e.g., housing 426) with respect to the implant.


Typically, tool 410 is configured in a manner that inhibits housing 426 from rotating in response to rotation of actuator 444, because the differential rotation causes the retraction of the housing. Therefore, tool 410 therefore typically comprises a housing-rotation inhibitor 460. For some applications, and as shown, housing-rotation inhibitor 460 comprises (i) a second track 462 that follows a generally-linear path parallel to longitudinal axis ax1, and (ii) a second engaging element 466. Engaging element 466 is fixedly coupled to shaft 450 (e.g., via a mount 464), and engages track 462, thereby rotationally fixing the shaft with respect to housing 426, while facilitating longitudinal sliding of the shaft with respect to the housing. Therefore, controller 440 and housing 426 mechanically cooperate such that rotation of actuator 444 with respect to the housing slides the track 462 longitudinally with respect to engaging element 466.


For some applications, housing 426 defines more than one second track 462, rotationally-offset from each other, e.g., in order to evenly distribute forces applied to it by, for example, a corresponding more than one engaging element 466. For example, and as shown, housing 426 may define two tracks 462, rotationally-offset by 180 degrees from each other, and tool 410 may comprise a corresponding two engaging elements 466, also rotationally-offset by 180 degrees from each other.


Typically, rod 442 is coaxial with shaft 450. Further typically, shaft 450 is disposed within rod 442 (which is typically disposed within catheter 413). Typically, actuator 444 defines a hole therethrough, through which shaft 450 extends. For example, at least part of shaft 450 may be disposed within housing 426, and the shaft extends distally out of catheter 413, through the hole in actuator 444, and into the housing.


The term “generally helical” is used with respect to the path of track 430 because the path may not be a true helix. For example, for some applications, and as shown, the pitch of the generally-helical path of the track differs along its length. For some such applications, a first portion 432p of the generally-helical path has a first pitch, and a second portion 432d of the generally-helical path, which is distal to the first portion, has a second pitch that is greater than the first pitch. For example, the pitch of the generally-helical path may gradually increase, such that it is progressively greater at progressively distal portions of the generally-helical path. It is hypothesized by the inventors that this facilitates (i) application of greater linear force during the initial stage of deployment from housing 426, while more of implant 20 is disposed in the housing and friction between the implant and housing is greater, and (ii) greater linear movement during later stages of deployment from housing 426, after some of the implant has already exited the housing, and friction between the implant and housing has been reduced. Alternatively or additionally, the distance of track 430 from longitudinal axis ax1 may differ along its length. For example, housing 426 may be wider toward its distal opening, and track 430, defined by the housing, may correspondingly become increasingly further from axis ax1 toward the distal opening of the housing.


Typically, and as shown, track 432 is a channel (e.g., cut into housing 426, such as into tubular wall 428 thereof), and engaging element 446 is a spur that engages the track by protruding into the channel. However, alternative tracks and engaging elements may be used. For example, and as shown in FIG. 8, to which reference is now additionally made, the track may be a rail, and the engaging element may be a notch that engages the track by receiving the rail. FIG. 8 is a schematic illustration of alternative tool 510, in accordance with some applications of the invention. Except where noted, tool 510 is identical to tool 410, and its components are identical to identically-named components of tool 410. FIG. 8 shows a transverse cross-section of tool 510 that substantially corresponds to the transverse cross-section of tool 410 that is shown in FIG. 6C. As shown, a track 530 (which substantially corresponds to track 430 of tool 410) is a rail that protrudes radially-inward from a tubular wall 528 of a housing 526, and an engaging element 546 is a notch defined by an actuator 544, the notch receiving the rail.


Second track 462 and second engaging element 466 are shown as a channel and spur, but may, alternatively or additionally, be similarly substituted with a rail and notch, mutatis mutandis. For example, tool 510 may comprise a shaft 550 to which is fixedly coupled an engaging element (not shown in FIG. 8), e.g., via a mount 564.


For some applications, the first track and the first engaging element are of the channel-and-spur type, and the second track and the second engaging element are of the rail-and-notch type. For some applications, the first track and the first engaging element are of the rail-and-notch type, and the second track and the second engaging element are of the channel-and-spur type. For some applications, both are of the channel-and-spur type (e.g., as shown for tool 410). For some applications, both are of the rail-and-notch type.


Reference is again made to FIGS. 1A-8. The components of the systems described herein may be combined in various ways. For example, balloon 120 may be used (in addition to or in place of the above-described components) in system 200 and/or in system 300, mutatis mutandis; balloon 220 may be used (in addition to or in place of the above-described components) in system 100 and/or in system 300, mutatis mutandis; and/or sheath 326 may be used (in addition to or in place of the above-described components) in system 100 or in system 200, mutandis mutandis.


Similarly, tool 410, or elements thereof, may be used in combination with other embodiments described herein. For example, housing 426 may serve as a proximal piece of a sheath (e.g., sheath 226) that also has a distal piece, housing 426 being moved proximally to deploy a proximal part of the housed implant, and the distal piece of the sheath being moved distally to deploy a distal part of the housed implant. That is, for some applications, housing 426 is a proximal housing that is dimensioned to house a first part of the implant, and has a distal opening for deployment of the first part of the implant therethrough; and the tool further comprises a distal housing that is dimensioned to house a second part of the implant, and has a proximal opening, facing the distal opening, for deployment of the second part of the implant therethrough. For such applications, both housings are typically independently slidable with respect to the implant, and also with respect to shaft 450.


The term “diameter,” which is used throughout this application (including the specification and the claims), refers to a dimension of the component that is transverse to the longitudinal axis of the component and/or of the system as a whole. The term “diameter” is used because such components typically have a circular transverse cross-section. However, it is to be understood that the descriptions may equally apply to equivalent components that have a non-circular cross-section, mutatis mutandis.


Each of the systems described hereinabove is described as comprising implant 20. However, it is to be noted that the scope of the invention includes systems that do not comprise an implant—i.e., systems that are otherwise the same as those described, but which are provided as delivery systems for an implant that is not included.


It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.

Claims
  • 1. Apparatus, comprising: an implant: comprising (i) a frame that defines a central longitudinal lumen, and (ii) prosthetic valve leaflets disposed within the lumen,constrainable, by a constraining force, in a compressed state in which the lumen has a compressed internal diameter, andhaving an expanded state into which the implant automatically transitions upon removal of the constraining force, and in which the lumen has an expanded internal diameter; anda delivery tool, configured for transluminal delivery of the implant, the tool comprising: a shaft that extends longitudinally from a proximal part of the tool;a nosepiece fixed to the shaft, and arranged with respect to the implant such that the implant extends proximally away from the nosepiece and over the shaft; andan expandable element, which is coupled to the shaft proximally to the nosepiece and which has: a maximally-expanded state in which the expandable element (i) has a widest part that has an expanded external diameter that is smaller than the expanded internal diameter of the lumen of the frame, (ii) has a tapered portion that tapers proximally away from the widest part and from the nosepiece, and (iii) is dimensioned such that, while the implant is in its expanded state, the expandable element is withdrawable by sliding of the expandable element proximally through the lumen of the frame, between the leaflets, and out of the lumen, anda non-expanded state in which the widest part has a non-expanded external diameter that is smaller than the expanded external diameter of the expandable element,
  • 2. The apparatus according to claim 1, wherein the nosepiece is fixed to a distal end of the shaft.
  • 3. The apparatus according to claim 1, wherein: the tool further comprises a sheath that has a diameter that is dimensioned for transluminal delivery, andin the delivery state, the sheath houses the implant.
  • 4. The apparatus according to claim 1, wherein the nosepiece is not dimensioned to be withdrawable proximally through the lumen while the implant is in its compressed state.
  • 5. The apparatus according to claim 1, wherein in the delivery state a proximal end of the nosepiece is distal to a distal end of the implant.
  • 6. The apparatus according to claim 1, wherein in the delivery state a proximal end of the nosepiece is distal to a distal end of the expandable element.
  • 7. The apparatus according to claim 1, wherein the delivery tool further comprises a distal sheath which is fixed to a proximal end of the nosepiece, and wherein in the delivery state the distal sheath houses a distal portion of the implant.
  • 8. The apparatus according to claim 7, wherein, in the delivery state, the distal sheath houses a distal portion of the expandable element.
  • 9. Apparatus, comprising: an implant: comprising (i) a frame that defines a central longitudinal lumen, and (ii) prosthetic valve leaflets disposed within the lumen,constrainable, by a constraining force, in a compressed state in which the lumen has a compressed internal diameter, andhaving an expanded state into which the implant automatically transitions upon removal of the constraining force, and in which the lumen has an expanded internal diameter; anda delivery tool, configured for transluminal delivery of the implant, the tool comprising: a shaft that extends longitudinally from a proximal part of the tool;a nosepiece fixed to the shaft, and arranged with respect to the implant such that the implant extends proximally away from the nosepiece and over the shaft; andan expandable element, which is coupled to the shaft proximally to the nosepiece and which has: a maximally-expanded state in which the expandable element (i) has a widest part that has an expanded external diameter that is less than 90 percent of the expanded internal diameter of the lumen of the frame, and (ii) has a tapered portion that tapers proximally away from the widest part and from the nosepiece, anda non-expanded state in which the widest part has a non-expanded external diameter that is smaller than the expanded external diameter of the expandable element,
  • 10. The apparatus according to claim 9, wherein the nosepiece is fixed to a distal end of the shaft.
  • 11. The apparatus according to claim 9, wherein: the tool further comprises a sheath that has a diameter that is dimensioned for transluminal delivery, andin the delivery state, the sheath houses the implant.
  • 12. The apparatus according to claim 9, wherein in the delivery state a proximal end of the nosepiece is distal to a distal end of the implant.
  • 13. The apparatus according to claim 9, wherein in the delivery state a proximal end of the nosepiece is distal to a distal end of the expandable element.
  • 14. The apparatus according to claim 9, wherein: the nosepiece is arranged with respect to the implant such that the implant extends proximally over the shaft with the shaft within the lumen of the frame,the implant assumes the expanded state upon implantation of the implant, andthe nosepiece is dimensioned to be withdrawable proximally through the lumen while the implant is in its expanded state.
  • 15. The apparatus according to claim 14, wherein the nosepiece is not dimensioned to be withdrawable proximally through the lumen while the implant is in its compressed state.
  • 16. The apparatus according to claim 9, wherein the delivery tool further comprises a distal sheath which is fixed to a proximal end of the nosepiece, and wherein in the delivery state the distal sheath houses a distal portion of the implant.
  • 17. The apparatus according to claim 16, wherein, in the delivery state, the distal sheath houses a distal portion of the expandable element.
Priority Claims (1)
Number Date Country Kind
1613219 Aug 2016 GB national
CROSS-REFERENCES TO RELATED APPLICATIONS

The present application is a Continuation application of U.S. patent application Ser. No. 16/318,025 to Hariton et al., filed Jan. 15, 2019, and entitled, “Minimally-invasive delivery systems” (now U.S. Pat. No. 10,952,850) which is the US National Phase of PCT application PCT/IL2017/050849 to Hariton et al., filed Aug. 1, 2017, and entitled, “Minimally-invasive delivery systems,” which published as WO 2018/025263, and which claims priority from UK patent application GB1613219.3, filed Aug. 1, 2016, and entitled “Minimally-invasive delivery systems.” All of the above applications are incorporated herein by reference.

US Referenced Citations (1882)
Number Name Date Kind
3604488 Wishart et al. Sep 1971 A
3656185 Carpentier Apr 1972 A
3840018 Heifetz Oct 1974 A
3874388 King et al. Apr 1975 A
3898701 La Russa Aug 1975 A
4042979 Angell Aug 1977 A
4118805 Reimels Oct 1978 A
4214349 Munch Jul 1980 A
4222126 Boretos et al. Sep 1980 A
4261342 Aranguren Apr 1981 A
4275469 Gabbay Jun 1981 A
4340091 Skelton et al. Jul 1982 A
4423525 Vallana et al. Jan 1984 A
4434828 Trincia Mar 1984 A
4473928 Johnson Oct 1984 A
4602911 Ahmadi et al. Jul 1986 A
4625727 Leiboff Dec 1986 A
4712549 Peters et al. Dec 1987 A
4778468 Hunt et al. Oct 1988 A
4853986 Allen Aug 1989 A
4892541 Alonso Jan 1990 A
4917698 Carpenter et al. Apr 1990 A
4961738 Mackin Oct 1990 A
4972494 White et al. Nov 1990 A
4994077 Dobben Feb 1991 A
5061277 Carpentier et al. Oct 1991 A
5078739 Martin Jan 1992 A
5104407 Lam et al. Apr 1992 A
5108420 Marks Apr 1992 A
5201757 Heyn et al. Apr 1993 A
5201880 Wright Apr 1993 A
5258008 Wilk Nov 1993 A
5300034 Behnke Apr 1994 A
5306296 Wright et al. Apr 1994 A
5314473 Godin May 1994 A
5325845 Adair Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5397351 Pavcnik et al. Mar 1995 A
5405378 Strecker Apr 1995 A
5443500 Sigwart Aug 1995 A
5450860 O'Connor Sep 1995 A
5473812 Morris et al. Dec 1995 A
5477856 Lundquist Dec 1995 A
5593424 Northrup, III Jan 1997 A
5601572 Middleman et al. Feb 1997 A
5607444 Lam Mar 1997 A
5607470 Milo Mar 1997 A
5626609 Zvenyatsky et al. May 1997 A
5647857 Anderson et al. Jul 1997 A
5669919 Sanders et al. Sep 1997 A
5674279 Wright et al. Oct 1997 A
5683402 Cosgrove et al. Nov 1997 A
5702397 Goble et al. Dec 1997 A
5702398 Tarabishy Dec 1997 A
5709695 Northrup, III Jan 1998 A
5713948 Uflacker Feb 1998 A
5716370 Williamson et al. Feb 1998 A
5716397 Myers Feb 1998 A
5716417 Girard et al. Feb 1998 A
5728116 Rosenman Mar 1998 A
5730150 Peppel et al. Mar 1998 A
5741297 Simon Apr 1998 A
5749371 Zadini et al. May 1998 A
5765682 Bley et al. Jun 1998 A
5776140 Cottone Jul 1998 A
5810882 Bolduc Sep 1998 A
5824066 Gross Oct 1998 A
5830221 Stein et al. Nov 1998 A
5843120 Israel et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5868777 Lam Feb 1999 A
5873906 Lau et al. Feb 1999 A
5876373 Giba et al. Mar 1999 A
5935098 Blaisdell et al. Aug 1999 A
5954766 Zadno-Azizi et al. Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5957953 DiPoto et al. Sep 1999 A
5961440 Schweich et al. Oct 1999 A
5961539 Northrup, III et al. Oct 1999 A
5980565 Jayaraman Nov 1999 A
5984959 Robertson Nov 1999 A
6010530 Goicoechea Jan 2000 A
6019787 Richard et al. Feb 2000 A
6042554 Rosenman Mar 2000 A
6042607 Williamson, IV Mar 2000 A
6045497 Schweich et al. Apr 2000 A
6050936 Schweich et al. Apr 2000 A
6059715 Schweich et al. May 2000 A
6059827 Fenton May 2000 A
6074401 Gardiner et al. Jun 2000 A
6074417 Peredo Jun 2000 A
6102945 Campbell Aug 2000 A
6106550 Magovern Aug 2000 A
6110200 Hinnenkamp Aug 2000 A
6113612 Swanson et al. Sep 2000 A
6120534 Ruiz Sep 2000 A
6126686 Badylak et al. Oct 2000 A
6143024 Campbell et al. Nov 2000 A
6152937 Peterson et al. Nov 2000 A
6159240 Sparer Dec 2000 A
6165119 Schweich et al. Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6165210 Lau et al. Dec 2000 A
6174332 Loch Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6187020 Zegdi et al. Feb 2001 B1
6187040 Wright Feb 2001 B1
6193686 Estrada et al. Feb 2001 B1
6193745 Fogarty et al. Feb 2001 B1
6315784 Djurovic Feb 2001 B1
6217610 Carpentier et al. Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6251092 Qin et al. Jun 2001 B1
6254609 Vrba et al. Jul 2001 B1
6264700 Kilcoyne et al. Jul 2001 B1
6287339 Vasquez et al. Sep 2001 B1
6296656 Bodluc et al. Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6319281 Patel Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6334873 Lane et al. Jan 2002 B1
6346074 Roth Feb 2002 B1
6350278 Lenker et al. Feb 2002 B1
6352561 Leopold et al. Mar 2002 B1
6391036 Berg et al. May 2002 B1
6402780 Williamson, IV Jun 2002 B2
6406420 McCarthy et al. Jun 2002 B1
6406493 Tu et al. Jun 2002 B1
6409755 Vrba Jun 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6428550 Vargas et al. Aug 2002 B1
6440164 Dimatteo et al. Aug 2002 B1
6451054 Stevens Sep 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461366 Seguin Oct 2002 B1
6470892 Forsell Oct 2002 B1
6478807 Foreman et al. Nov 2002 B1
6482228 Norred Nov 2002 B1
6491711 Durcan Dec 2002 B1
6503274 Howanec et al. Jan 2003 B1
6511491 Grudem et al. Jan 2003 B2
6524338 Gundry Feb 2003 B1
6530952 Vesely Mar 2003 B2
6533772 Sherts et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6540782 Snyders Apr 2003 B1
6547801 Dargent et al. Apr 2003 B1
6551350 Thornton et al. Apr 2003 B1
6554845 Fleenor et al. Apr 2003 B1
6558396 Inoue May 2003 B1
6558418 Carpentier et al. May 2003 B2
6564805 Garrison et al. May 2003 B2
6565603 Cox May 2003 B2
6569196 Vesely May 2003 B1
6569198 Wilson et al. May 2003 B1
6579297 Bicek et al. Jun 2003 B2
6582464 Gabbay Jun 2003 B2
6589160 Schweich et al. Jul 2003 B2
6602263 Swanson et al. Aug 2003 B1
6602288 Cosgrove et al. Aug 2003 B1
6602289 Colvin et al. Aug 2003 B1
6613078 Barone Sep 2003 B1
6613079 Wolinsky et al. Sep 2003 B1
6616675 Evard et al. Sep 2003 B1
6619291 Hlavka et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6626917 Craig Sep 2003 B1
6626930 Allen et al. Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich et al. Oct 2003 B1
6651671 Donlon et al. Nov 2003 B1
6652556 VanTessel et al. Nov 2003 B1
6669724 Park et al. Dec 2003 B2
6682558 Tu et al. Jan 2004 B2
6689125 Keith et al. Feb 2004 B1
6689164 Seguin Feb 2004 B1
6695866 Kuehn et al. Feb 2004 B1
6699256 Logan et al. Mar 2004 B1
6702826 Liddicoat et al. Mar 2004 B2
6702846 Mikus et al. Mar 2004 B2
6706065 Langberg et al. Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6711444 Koblish Mar 2004 B2
6716244 Klaco Apr 2004 B2
6718985 Hlavka et al. Apr 2004 B2
6719781 Kim Apr 2004 B1
6719786 Ryan et al. Apr 2004 B2
6719788 Cox Apr 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726716 Marquez Apr 2004 B2
6726717 Alfieri et al. Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6730121 Ortiz et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6749630 McCarthy et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764310 Ichihashi et al. Jul 2004 B1
6764510 Vidlund et al. Jul 2004 B2
6764514 Li et al. Jul 2004 B1
6764518 Godin Jul 2004 B2
6767362 Schreck Jul 2004 B2
6770083 Seguin Aug 2004 B2
6786924 Ryan et al. Sep 2004 B2
6786925 Schoon et al. Sep 2004 B1
6790231 Liddicoat et al. Sep 2004 B2
6797001 Mathis et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6802319 Stevens et al. Oct 2004 B2
6805710 Bolling et al. Oct 2004 B2
6805711 Quijano et al. Oct 2004 B2
6821297 Snyders Nov 2004 B2
6830585 Artof et al. Dec 2004 B1
6830638 Boylan et al. Dec 2004 B2
6855126 Flinchbaugh Feb 2005 B2
6858039 McCarthy Feb 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6884257 Cox Apr 2005 B1
6893459 Macoviak May 2005 B1
6893460 Spenser et al. May 2005 B2
6908482 McCarthy et al. Jun 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6926715 Hauck et al. Aug 2005 B1
6926730 Nguyen et al. Aug 2005 B1
6951571 Srivastava Oct 2005 B1
6960217 Bolduc Nov 2005 B2
6964684 Ortiz et al. Nov 2005 B2
6964686 Gordon Nov 2005 B2
6974476 McGuckin et al. Dec 2005 B2
6976995 Mathis et al. Dec 2005 B2
6986775 Morales et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6997951 Solem et al. Feb 2006 B2
7004176 Lau Feb 2006 B2
7011669 Kimblad Mar 2006 B2
7011681 Vesely Mar 2006 B2
7011682 Lashinski et al. Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7037334 Hlavka et al. May 2006 B1
7041132 Quijano et al. May 2006 B2
7074236 Rabkin et al. Jul 2006 B2
7077850 Kortenbach Jul 2006 B2
7077861 Spence Jul 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7087064 Hyde Aug 2006 B1
7101336 Miller Sep 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7101396 Artof et al. Sep 2006 B2
7112207 Allen et al. Sep 2006 B2
7118595 Ryan et al. Oct 2006 B2
7125421 Tremulis et al. Oct 2006 B2
7137184 Schreck Nov 2006 B2
7150737 Purdy et al. Dec 2006 B2
7159593 McCarthy et al. Jan 2007 B2
7166127 Spence et al. Jan 2007 B2
7169187 Datta et al. Jan 2007 B2
7172625 Shu et al. Feb 2007 B2
7175656 Khairkhahan Feb 2007 B2
7175660 Cartledge et al. Feb 2007 B2
7186262 Saadat Mar 2007 B2
7186264 Liddicoat et al. Mar 2007 B2
7189199 McCarthy et al. Mar 2007 B2
7192443 Solem et al. Mar 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal Apr 2007 B2
7220277 Arru et al. May 2007 B2
7226467 Lucatero et al. Jun 2007 B2
7226477 Cox Jun 2007 B2
7226647 Kasperchik et al. Jun 2007 B2
7229452 Kayan Jun 2007 B2
7238191 Bachmann Jul 2007 B2
7261686 Couvillon, Jr. Aug 2007 B2
7288097 Seguin Oct 2007 B2
7288111 Holloway et al. Oct 2007 B1
7294148 McCarthy Nov 2007 B2
7297150 Cartledge et al. Nov 2007 B2
7311728 Solem et al. Dec 2007 B2
7311729 Mathis et al. Dec 2007 B2
7314485 Mathis Jan 2008 B2
7316710 Cheng et al. Jan 2008 B1
7316716 Egan Jan 2008 B2
7329279 Haug et al. Feb 2008 B2
7329280 Bolling et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7351256 Hojeibane et al. Apr 2008 B2
7361190 Shoulian et al. Apr 2008 B2
7364588 Mathis et al. Apr 2008 B2
7374571 Pease et al. May 2008 B2
7374573 Gabbay May 2008 B2
7377938 Sarac et al. May 2008 B2
7377941 Rhee et al. May 2008 B2
7381218 Schreck Jun 2008 B2
7381219 Salahieh et al. Jun 2008 B2
7390329 Westra et al. Jun 2008 B2
7404824 Webler et al. Jul 2008 B1
7422603 Lane Sep 2008 B2
7429269 Schwammenthal Sep 2008 B2
7431692 Zollinger et al. Oct 2008 B2
7442204 Schwammenthal Oct 2008 B2
7442207 Rafiee Oct 2008 B2
7445630 Lashinski et al. Nov 2008 B2
7452376 Lim et al. Nov 2008 B2
7455677 Vargas et al. Nov 2008 B2
7455688 Furst et al. Nov 2008 B2
7455690 Cartledge et al. Nov 2008 B2
7462162 Phan et al. Dec 2008 B2
7481838 Carpentier et al. Jan 2009 B2
7485142 Milo Feb 2009 B2
7500989 Solem et al. Mar 2009 B2
7507252 Lashinski et al. Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7510577 Moaddeb et al. Mar 2009 B2
7513909 Lane et al. Apr 2009 B2
7524331 Birdsall Apr 2009 B2
7527646 Rahdert et al. May 2009 B2
7527647 Spence May 2009 B2
7530995 Quijano et al. May 2009 B2
7549983 Roue et al. Jun 2009 B2
7556632 Zadno Jul 2009 B2
7556646 Yang et al. Jul 2009 B2
7559936 Levine Jul 2009 B2
7562660 Saadat Jul 2009 B2
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7569062 Kuehn et al. Aug 2009 B1
7582111 Krolik et al. Sep 2009 B2
7585321 Cribier Sep 2009 B2
7588582 Starksen et al. Sep 2009 B2
7591826 Alferness et al. Sep 2009 B2
7597711 Drews et al. Oct 2009 B2
7604646 Goldfarb et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
7608103 McCarthy Oct 2009 B2
7611534 Kapadia et al. Nov 2009 B2
7618449 Tremulis et al. Nov 2009 B2
7621948 Hermann et al. Nov 2009 B2
7625403 Krivoruchko Dec 2009 B2
7632302 Vreeman et al. Dec 2009 B2
7632303 Stalker et al. Dec 2009 B1
7635329 Goldfarb et al. Dec 2009 B2
7635386 Gammie Dec 2009 B1
7648528 Styrc Jan 2010 B2
7655015 Goldfarb et al. Feb 2010 B2
7666204 Thornton et al. Feb 2010 B2
7682319 Martin Mar 2010 B2
7682369 Seguin Mar 2010 B2
7682380 Thornton et al. Mar 2010 B2
7686822 Shayani Mar 2010 B2
7699892 Rafiee et al. Apr 2010 B2
7704269 St. Goar et al. Apr 2010 B2
7704277 Zakay et al. Apr 2010 B2
7708775 Rowe et al. May 2010 B2
7717952 Case et al. May 2010 B2
7717955 Lane et al. May 2010 B2
7722666 Lafontaine May 2010 B2
7731741 Eidenschink Jun 2010 B2
7731742 Schlick et al. Jun 2010 B2
7736388 Goldfarb et al. Jun 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753922 Starksen Jul 2010 B2
7753924 Starksen et al. Jul 2010 B2
7753949 Lamphere et al. Jul 2010 B2
7758595 Allen et al. Jul 2010 B2
7758632 Hojeibane et al. Jul 2010 B2
7758640 Vesely Jul 2010 B2
7771467 Svensson Aug 2010 B2
7771469 Liddicoat Aug 2010 B2
7776080 Bei et al. Aug 2010 B2
7776083 Vesely Aug 2010 B2
7780726 Seguin Aug 2010 B2
7785341 Forster et al. Aug 2010 B2
7799069 Bailey et al. Sep 2010 B2
7803181 Furst et al. Sep 2010 B2
7811296 Goldfarb et al. Oct 2010 B2
7811316 Kalmann et al. Oct 2010 B2
7824442 Salahieh et al. Nov 2010 B2
7837645 Bessler et al. Nov 2010 B2
7837727 Goetz et al. Nov 2010 B2
7842081 Yadin Nov 2010 B2
7850725 Vardi et al. Dec 2010 B2
7871368 Zollinger et al. Jan 2011 B2
7871432 Bergin Jan 2011 B2
7871433 Lattouf Jan 2011 B2
7871436 Ryan et al. Jan 2011 B2
7887583 Macoviak Feb 2011 B2
7892281 Seguin et al. Feb 2011 B2
7896915 Guyenot et al. Mar 2011 B2
7914544 Nguyen et al. Mar 2011 B2
7914569 Nguyen et al. Mar 2011 B2
7927370 Webler et al. Apr 2011 B2
7927371 Navia et al. Apr 2011 B2
7942927 Kaye et al. May 2011 B2
7947072 Yang et al. May 2011 B2
7947075 Goetz et al. May 2011 B2
7951195 Antonsson et al. May 2011 B2
7955375 Agnew Jun 2011 B2
7955377 Melsheimer Jun 2011 B2
7955384 Rafiee et al. Jun 2011 B2
7959666 Salahieh et al. Jun 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7967833 Sterman et al. Jun 2011 B2
7967857 Lane Jun 2011 B2
7981151 Rowe Jul 2011 B2
7981153 Fogarty et al. Jul 2011 B2
7988725 Gross et al. Aug 2011 B2
7992567 Hirotsuka et al. Aug 2011 B2
7993368 Gambale et al. Aug 2011 B2
7993393 Carpentier et al. Aug 2011 B2
7993397 Lashinski Aug 2011 B2
8002825 Letac et al. Aug 2011 B2
8002826 Seguin Aug 2011 B2
8012201 Lashinski et al. Sep 2011 B2
8016877 Seguin et al. Sep 2011 B2
8016882 Macoviak Sep 2011 B2
8021420 Dolan Sep 2011 B2
8021421 Fogarty et al. Sep 2011 B2
8025695 Fogarty et al. Sep 2011 B2
8029518 Goldfarb et al. Oct 2011 B2
8029557 Sobrino-Serrano et al. Oct 2011 B2
8029564 Johnson et al. Oct 2011 B2
8034103 Burriesci Oct 2011 B2
8034104 Carpentier et al. Oct 2011 B2
8038720 Wallace et al. Oct 2011 B2
8043360 McNamara et al. Oct 2011 B2
8048138 Sulivan et al. Nov 2011 B2
8048140 Purdy Nov 2011 B2
8048153 Salahieh et al. Nov 2011 B2
8052592 Goldfarb et al. Nov 2011 B2
8052741 Bruszewski et al. Nov 2011 B2
8052749 Salahieh et al. Nov 2011 B2
8057493 Goldfarb et al. Nov 2011 B2
8057532 Hoffman Nov 2011 B2
8057540 Letac et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8062359 Marquez et al. Nov 2011 B2
8070708 Rottenberg et al. Dec 2011 B2
8070800 Lock et al. Dec 2011 B2
8070802 Lamphere et al. Dec 2011 B2
8070804 Hyde Dec 2011 B2
8070805 Vidlund Dec 2011 B2
8075611 Milwee et al. Dec 2011 B2
8075616 Solem Dec 2011 B2
8080054 Rowe Dec 2011 B2
8083793 Lane et al. Dec 2011 B2
D652927 Braido et al. Jan 2012 S
D653341 Braido et al. Jan 2012 S
8092518 Schreck Jan 2012 B2
8092520 Quadri Jan 2012 B2
8092521 Figulla et al. Jan 2012 B2
8100964 Spence Jan 2012 B2
8105377 Liddicoat Jan 2012 B2
8109996 Stacchino et al. Feb 2012 B2
8118866 Herrmann et al. Feb 2012 B2
8123800 McCarthy Feb 2012 B2
8123801 Milo Feb 2012 B2
8323334 Deem et al. Feb 2012 B2
8133270 Kheradvar et al. Mar 2012 B2
8136218 Millwee et al. Mar 2012 B2
8137398 Tuval et al. Mar 2012 B2
8142492 Forster et al. Mar 2012 B2
8142493 Spence et al. Mar 2012 B2
8142494 Rahdert et al. Mar 2012 B2
8142495 Hasenkam et al. Mar 2012 B2
8142496 Berreklouw Mar 2012 B2
8142497 Friedman Mar 2012 B2
8147504 Ino et al. Apr 2012 B2
8147542 Maisano et al. Apr 2012 B2
8152844 Rao Apr 2012 B2
8157852 Bloom et al. Apr 2012 B2
8157853 Laske et al. Apr 2012 B2
8157860 McNamara et al. Apr 2012 B2
8163008 Wilson et al. Apr 2012 B2
8163013 Machold et al. Apr 2012 B2
8163014 Lane et al. Apr 2012 B2
D660433 Braido et al. May 2012 S
D660967 Braido et al. May 2012 S
8167894 Miles et al. May 2012 B2
8167932 Bourang et al. May 2012 B2
8167935 McGuckin, Jr. et al. May 2012 B2
8172896 McNamara et al. May 2012 B2
8172898 Alferness et al. May 2012 B2
8177836 Lee et al. May 2012 B2
8182528 Salahieh et al. May 2012 B2
8187299 Goldfarb et al. May 2012 B2
8187324 Webler et al. May 2012 B2
8202315 Hlavka et al. Jun 2012 B2
8206439 Gomez-Duran Jun 2012 B2
8211169 Lane et al. Jul 2012 B2
8216256 Raschdorf, Jr. et al. Jul 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8221492 Case et al. Jul 2012 B2
8221493 Boyle et al. Jul 2012 B2
8226710 Nguyen et al. Jul 2012 B2
8226711 Mortier et al. Jul 2012 B2
8231670 Salahieh et al. Jul 2012 B2
8231671 Kim Jul 2012 B2
8236045 Benichou et al. Aug 2012 B2
8236049 Rowe et al. Aug 2012 B2
8241351 Cabiri Aug 2012 B2
8252042 McNamara et al. Aug 2012 B2
8252050 Maisano et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8252052 Salahieh et al. Aug 2012 B2
8257390 Carley et al. Sep 2012 B2
8262725 Subramanian Sep 2012 B2
8267988 Hamer et al. Sep 2012 B2
8277501 Chalekian et al. Oct 2012 B2
8277502 Miller et al. Oct 2012 B2
8287584 Salahieh et al. Oct 2012 B2
8287591 Keidar et al. Oct 2012 B2
8298280 Yadin et al. Oct 2012 B2
8303608 Goldfarb et al. Nov 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8308798 Pintor et al. Nov 2012 B2
8317853 Agnew Nov 2012 B2
8317855 Gregorich et al. Nov 2012 B2
8323335 Rowe et al. Dec 2012 B2
8328868 Paul et al. Dec 2012 B2
8333777 Schaller et al. Dec 2012 B2
8337541 Quadri et al. Dec 2012 B2
8343173 Starksen et al. Jan 2013 B2
8343174 Goldfarb et al. Jan 2013 B2
8343213 Salahieh et al. Jan 2013 B2
8348999 Kheradvar et al. Jan 2013 B2
8349002 Milo Jan 2013 B2
8353956 Miller et al. Jan 2013 B2
8357195 Kuehn Jan 2013 B2
8361144 Fish et al. Jan 2013 B2
8366767 Zhang Feb 2013 B2
8372140 Hoffman et al. Feb 2013 B2
8377119 Drews et al. Feb 2013 B2
8382829 Call et al. Feb 2013 B1
8388680 Starksen et al. Mar 2013 B2
8393517 Milo Mar 2013 B2
8398708 Meiri et al. Mar 2013 B2
8403981 Forster et al. Mar 2013 B2
8403983 Quadri et al. Mar 2013 B2
8408214 Spenser Apr 2013 B2
8414644 Quadri et al. Apr 2013 B2
8425593 Braido et al. Apr 2013 B2
8430926 Kirson Apr 2013 B2
8430934 Das Apr 2013 B2
8444689 Zhang May 2013 B2
8449599 Chau et al. May 2013 B2
8449625 Campbell et al. May 2013 B2
8454686 Alkhatib Jun 2013 B2
8460365 Haverkost et al. Jun 2013 B2
8460370 Zakay et al. Jun 2013 B2
8460371 Hlavka et al. Jun 2013 B2
8474460 Barrett et al. Jul 2013 B2
8475491 Milo Jul 2013 B2
8480732 Subramanian Jul 2013 B2
8500800 Maisano et al. Aug 2013 B2
8500821 Sobrino-Serrano et al. Aug 2013 B2
8512400 Tran et al. Aug 2013 B2
8518107 Tsukashima et al. Aug 2013 B2
8523881 Cabiri et al. Sep 2013 B2
8523940 Richardson et al. Sep 2013 B2
8529431 Baker et al. Sep 2013 B2
8539662 Stacchino et al. Sep 2013 B2
8540767 Zhang Sep 2013 B2
8545544 Spenser et al. Oct 2013 B2
8545553 Zipory et al. Oct 2013 B2
8551160 Figulla et al. Oct 2013 B2
8551161 Dolan Oct 2013 B2
8562672 Bonhoeffer et al. Oct 2013 B2
8568475 Nguyen et al. Oct 2013 B2
8579964 Lane et al. Nov 2013 B2
8579965 Bonhoeffer et al. Nov 2013 B2
8585755 Chau et al. Nov 2013 B2
8585756 Bonhoeffer et al. Nov 2013 B2
8591460 Wilson et al. Nov 2013 B2
8591570 Revuelta et al. Nov 2013 B2
8591576 Hasenkam et al. Nov 2013 B2
8608797 Gross et al. Dec 2013 B2
8623075 Murray et al. Jan 2014 B2
8623080 Fogarty et al. Jan 2014 B2
8628569 Benichou et al. Jan 2014 B2
8628570 Seguin Jan 2014 B2
8628571 Hacohen et al. Jan 2014 B1
8641727 Starksen et al. Feb 2014 B2
8652202 Alon et al. Feb 2014 B2
8652203 Quadri et al. Feb 2014 B2
8652204 Quill et al. Feb 2014 B2
8657872 Seguin Feb 2014 B2
8663322 Keranen Mar 2014 B2
8673020 Sobrino-Serrano et al. Mar 2014 B2
8679174 Ottma et al. Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8690939 Miller et al. Apr 2014 B2
8696742 Pintor et al. Apr 2014 B2
8715342 Zipory et al. May 2014 B2
8728097 Sugimoto et al. May 2014 B1
8728155 Montorfano et al. May 2014 B2
8734467 Miller et al. May 2014 B2
8734507 Keranen May 2014 B2
8740920 Goldfarb et al. Jun 2014 B2
8747460 Tuval et al. Jun 2014 B2
8771345 Tuval et al. Jul 2014 B2
8778021 Cartledge Jul 2014 B2
8784472 Eidenschink Jul 2014 B2
8784479 Antonsson et al. Jul 2014 B2
8784481 Alkhatib et al. Jul 2014 B2
8790367 Nguyen et al. Jul 2014 B2
8790394 Miller et al. Jul 2014 B2
8795298 Hernlund et al. Aug 2014 B2
8795355 Alkhatib Aug 2014 B2
8795356 Quadri et al. Aug 2014 B2
8795357 Yohanan et al. Aug 2014 B2
8801776 House et al. Aug 2014 B2
8808366 Braido et al. Aug 2014 B2
8808368 Maisano et al. Aug 2014 B2
8808371 Cartledge Aug 2014 B2
8840663 Salahieh et al. Sep 2014 B2
8840664 Karapetian et al. Sep 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8845722 Gabbay Sep 2014 B2
8845723 Spence et al. Sep 2014 B2
8852261 White Oct 2014 B2
8852272 Gross et al. Oct 2014 B2
8858623 Miller et al. Oct 2014 B2
8864822 Spence et al. Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8870949 Rowe Oct 2014 B2
8870950 Hacohen Oct 2014 B2
8876800 Behan Nov 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8894702 Quadri et al. Nov 2014 B2
8900294 Paniagua et al. Dec 2014 B2
8900295 Migliazza et al. Dec 2014 B2
8906083 Obermiller et al. Dec 2014 B2
8911455 Quadri et al. Dec 2014 B2
8911461 Traynor et al. Dec 2014 B2
8911489 Ben-Muvhar Dec 2014 B2
8911493 Rowe et al. Dec 2014 B2
8911494 Hammer et al. Dec 2014 B2
8926695 Gross et al. Jan 2015 B2
8926696 Cabiri et al. Jan 2015 B2
8926697 Gross et al. Jan 2015 B2
8932343 Alkhatib et al. Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8940042 Miller et al. Jan 2015 B2
8940044 Hammer et al. Jan 2015 B2
8945177 Dell et al. Feb 2015 B2
8945211 Sugimoto Feb 2015 B2
8951285 Sugimoto et al. Feb 2015 B2
8951286 Sugimoto et al. Feb 2015 B2
8961595 Alkhatib Feb 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8986370 Annest Mar 2015 B2
8986373 Chau et al. Mar 2015 B2
8986375 Garde et al. Mar 2015 B2
8992599 Thubrikar et al. Mar 2015 B2
8992604 Gross et al. Mar 2015 B2
8992608 Haug et al. Mar 2015 B2
8998982 Richter et al. Apr 2015 B2
9005273 Salahieh et al. Apr 2015 B2
9011468 Ketai et al. Apr 2015 B2
9011520 Miller et al. Apr 2015 B2
9011527 Li et al. Apr 2015 B2
9011530 Reich et al. Apr 2015 B2
9017399 Gross et al. Apr 2015 B2
D730520 Braido et al. May 2015 S
D730521 Braido et al. May 2015 S
9023100 Quadri et al. May 2015 B2
9034032 McLean et al. May 2015 B2
9034033 McLean et al. May 2015 B2
9039757 McLean et al. May 2015 B2
D732666 Nguyen et al. Jun 2015 S
9050188 Schweich et al. Jun 2015 B2
9060858 Thornton et al. Jun 2015 B2
9072603 Tuval et al. Jul 2015 B2
9084676 Chau et al. Jul 2015 B2
9095434 Rowe Aug 2015 B2
9119719 Zipory et al. Sep 2015 B2
9125632 Loulmet et al. Sep 2015 B2
9125738 Figulla et al. Sep 2015 B2
9125740 Morriss et al. Sep 2015 B2
9132006 Spenser et al. Sep 2015 B2
9132009 Hacohen et al. Sep 2015 B2
9138312 Tuval et al. Sep 2015 B2
9155619 Liu et al. Oct 2015 B2
9173646 Fabro Nov 2015 B2
9173659 Bodewadt et al. Nov 2015 B2
9173738 Murray et al. Nov 2015 B2
9180005 Lashinski et al. Nov 2015 B1
9192472 Gross et al. Nov 2015 B2
9220594 Braido et al. Dec 2015 B2
9226820 Braido et al. Jan 2016 B2
9226825 Starksen et al. Jan 2016 B2
9226839 Kariniemi et al. Jan 2016 B1
9232995 Kovalsky et al. Jan 2016 B2
9241790 Lane et al. Jan 2016 B2
9241791 Braido et al. Jan 2016 B2
9241792 Benichou et al. Jan 2016 B2
9241794 Braido et al. Jan 2016 B2
9248014 Lane et al. Feb 2016 B2
9265608 Miller et al. Feb 2016 B2
9277994 Miller et al. Mar 2016 B2
9289290 Alkhatib et al. Mar 2016 B2
9289291 Gorman et al. Mar 2016 B2
9295550 Nguyen et al. Mar 2016 B2
9295551 Straubinger et al. Mar 2016 B2
9295552 McLean et al. Mar 2016 B2
9301836 Buchbinder et al. Apr 2016 B2
9308087 Lane et al. Apr 2016 B2
9320591 Bolduc Apr 2016 B2
D755384 Pesce et al. May 2016 S
9326852 Spenser May 2016 B2
9326876 Acosta et al. May 2016 B2
9345573 Nyuli et al. May 2016 B2
9351830 Gross et al. May 2016 B2
9387078 Gross et al. Jul 2016 B2
9393110 Levi et al. Jul 2016 B2
9421098 Gifford et al. Aug 2016 B2
9427303 Liddy et al. Aug 2016 B2
9427316 Schweich, Jr. et al. Aug 2016 B2
9439757 Wallace et al. Sep 2016 B2
9463102 Kelly Oct 2016 B2
9474599 Keränen Oct 2016 B2
9474638 Robinson et al. Oct 2016 B2
9480559 Vidlund et al. Nov 2016 B2
9492273 Wallace et al. Nov 2016 B2
9498314 Behan Nov 2016 B2
9498332 Hacohen et al. Nov 2016 B2
9510947 Straubinger et al. Dec 2016 B2
9532870 Cooper et al. Jan 2017 B2
9554897 Lane et al. Jan 2017 B2
9554899 Granada et al. Jan 2017 B2
9561103 Granada et al. Feb 2017 B2
9566152 Schweich et al. Feb 2017 B2
9597182 Straubinger et al. Mar 2017 B2
9629716 Seguin Apr 2017 B2
9662203 Sheahan et al. May 2017 B2
9681952 Hacohen et al. Jun 2017 B2
9717591 Chau et al. Aug 2017 B2
9743932 Amplatz et al. Aug 2017 B2
9763657 Hacohen et al. Sep 2017 B2
9763817 Roeder Sep 2017 B2
9770256 Cohen et al. Sep 2017 B2
D800908 Hariton et al. Oct 2017 S
9788941 Hacohen Oct 2017 B2
9895226 Harari et al. Feb 2018 B1
9974651 Hariton et al. May 2018 B2
9987132 Hariton et al. Jun 2018 B1
9993360 Shalev et al. Jun 2018 B2
10010414 Cooper et al. Jul 2018 B2
10045845 Hacohen et al. Aug 2018 B2
10076415 Metchik et al. Sep 2018 B1
10098732 Hariton et al. Oct 2018 B1
10105222 Metchik et al. Oct 2018 B1
10111751 Metchik et al. Oct 2018 B1
10123873 Metchik et al. Nov 2018 B1
10130475 Metchik et al. Nov 2018 B1
10136993 Metchik et al. Nov 2018 B1
10143552 Wallace et al. Dec 2018 B2
10149761 Granada et al. Dec 2018 B2
10154903 Albitov et al. Dec 2018 B2
10154906 Granada et al. Dec 2018 B2
10159570 Metchik et al. Dec 2018 B1
10182908 Tubishevitz et al. Jan 2019 B2
10206668 Mcgoldrick et al. Feb 2019 B2
10226341 Gross et al. Mar 2019 B2
10231831 Hacohen Mar 2019 B2
10231837 Metchik et al. Mar 2019 B1
10238493 Metchik et al. Mar 2019 B1
10245143 Gross et al. Apr 2019 B2
10245144 Metchik et al. Apr 2019 B1
10258471 Lutter et al. Apr 2019 B2
10292816 Raanani et al. May 2019 B2
10299927 McLean et al. May 2019 B2
10321995 Christianson et al. Jun 2019 B1
10322020 Lam et al. Jun 2019 B2
10327895 Lozonschi et al. Jun 2019 B2
10335278 McLean et al. Jul 2019 B2
10376361 Gross et al. Aug 2019 B2
10390952 Hariton et al. Aug 2019 B2
10426614 Hariton et al. Oct 2019 B2
10449047 Hariton et al. Oct 2019 B2
10456256 Braido et al. Oct 2019 B2
10492908 Hammer et al. Dec 2019 B2
10507108 Delgado et al. Dec 2019 B2
10507109 Metchik et al. Dec 2019 B2
10512456 Hacohen et al. Dec 2019 B2
10517719 Miller et al. Dec 2019 B2
10524792 Hernandez et al. Jan 2020 B2
10524910 Hammer et al. Jan 2020 B2
10531866 Hariton et al. Jan 2020 B2
10531872 Hacohen et al. Jan 2020 B2
10537426 Iamberger et al. Jan 2020 B2
10548726 Hacohen et al. Feb 2020 B2
10548731 Lashinski et al. Feb 2020 B2
10575948 Iamberger et al. Mar 2020 B2
10595992 Chambers Mar 2020 B2
10595997 Metchik et al. Mar 2020 B2
10610358 Vidlund et al. Apr 2020 B2
10610359 Hacohen Apr 2020 B2
10631871 Goldfarb et al. Apr 2020 B2
10631982 Hammer et al. Apr 2020 B2
10646342 Marr et al. May 2020 B1
10660751 Hacohen May 2020 B2
10667908 Hariton et al. Jun 2020 B2
10667912 Dixon et al. Jun 2020 B2
10682227 Hariton et al. Jun 2020 B2
10695173 Gross et al. Jun 2020 B2
10695177 Hariton et al. Jun 2020 B2
10702385 Hacohen Jul 2020 B2
10736742 Hariton et al. Aug 2020 B2
10758342 Chau et al. Sep 2020 B2
10779939 Hariton et al. Sep 2020 B2
10813760 Metchik et al. Oct 2020 B2
10820998 Marr et al. Nov 2020 B2
10835377 Hacohen et al. Nov 2020 B2
10842627 Delgado et al. Nov 2020 B2
10856972 Hariton et al. Dec 2020 B2
10856975 Hariton et al. Dec 2020 B2
10856978 Straubinger et al. Dec 2020 B2
10874514 Dixon et al. Dec 2020 B2
10888422 Hariton et al. Jan 2021 B2
10888425 Delgado et al. Jan 2021 B2
10888644 Ratz et al. Jan 2021 B2
10905552 Dixon et al. Feb 2021 B2
10905554 Cao Feb 2021 B2
10918481 Hariton et al. Feb 2021 B2
10918483 Metchik et al. Feb 2021 B2
10925732 Delgado et al. Feb 2021 B2
10945843 Delgado et al. Mar 2021 B2
10945844 McCann et al. Mar 2021 B2
10952850 Hariton et al. Mar 2021 B2
10959846 Marr et al. Mar 2021 B2
10993809 McCann et al. May 2021 B2
11065114 Raanani et al. Jul 2021 B2
11083582 McCann et al. Aug 2021 B2
11147672 McCann et al. Oct 2021 B2
11179240 Delgado et al. Nov 2021 B2
11291545 Hacohen Apr 2022 B2
11291546 Gross et al. Apr 2022 B2
11291547 Gross et al. Apr 2022 B2
11304806 Hariton et al. Apr 2022 B2
11389297 Franklin et al. Jul 2022 B2
20010002445 Vesely May 2001 A1
20010005787 Oz et al. Jun 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010021874 Carpentier et al. Sep 2001 A1
20010044656 Williamson et al. Nov 2001 A1
20010056295 Solem Dec 2001 A1
20020013571 Goldfarb et al. Jan 2002 A1
20020022862 Grafton et al. Feb 2002 A1
20020029080 Mortier et al. Mar 2002 A1
20020032481 Gabbay Mar 2002 A1
20020042621 Liddicoat et al. Apr 2002 A1
20020082525 Oslund et al. Jun 2002 A1
20020087048 Brock et al. Jul 2002 A1
20020099436 Thornton et al. Jul 2002 A1
20020103532 Langberg et al. Aug 2002 A1
20020151916 Muramatsu et al. Oct 2002 A1
20020151961 Lashinski et al. Oct 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020169358 Mortier et al. Nov 2002 A1
20020173841 Ortiz et al. Nov 2002 A1
20020177894 Acosta et al. Nov 2002 A1
20020177904 Huxel et al. Nov 2002 A1
20020198586 Inoue Dec 2002 A1
20030009236 Godin Jan 2003 A1
20030018358 Saadat Jan 2003 A1
20030036791 Philipp et al. Feb 2003 A1
20030050693 Quijano et al. Mar 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030060846 Egnelov et al. Mar 2003 A1
20030060875 Wittens Mar 2003 A1
20030069635 Cartledge Apr 2003 A1
20030074052 Besselink Apr 2003 A1
20030078465 Pai et al. Apr 2003 A1
20030078653 Vesely et al. Apr 2003 A1
20030083742 Spence et al. May 2003 A1
20030100943 Bolduc May 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030114901 Loeb et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030130731 Vidlund et al. Jul 2003 A1
20030158578 Pantages et al. Aug 2003 A1
20030167062 Gambale et al. Sep 2003 A1
20030171760 Gambale Sep 2003 A1
20030191528 Quijano et al. Oct 2003 A1
20030199974 Lee et al. Oct 2003 A1
20030204195 Keane et al. Oct 2003 A1
20030229350 Kay Dec 2003 A1
20030229395 Cox Dec 2003 A1
20030233142 Morales et al. Dec 2003 A1
20040010272 Manetakis et al. Jan 2004 A1
20040019377 Taylor et al. Jan 2004 A1
20040024451 Johnson et al. Feb 2004 A1
20040030382 St. Goar et al. Feb 2004 A1
20040039414 Carley et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040049207 Goldfarb et al. Mar 2004 A1
20040059413 Argento Mar 2004 A1
20040092962 Thornton et al. May 2004 A1
20040093060 Seguin et al. May 2004 A1
20040122448 Levine Jun 2004 A1
20040122503 Campbell et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133220 Lashinski et al. Jul 2004 A1
20040133267 Lane Jul 2004 A1
20040133274 Webler et al. Jul 2004 A1
20040133374 Kattan Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040138745 Macoviak et al. Jul 2004 A1
20040143315 Bruun et al. Jul 2004 A1
20040148019 Vidlund et al. Jul 2004 A1
20040148020 Vidlund et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040153146 Lashinski et al. Aug 2004 A1
20040172046 Hlavka et al. Sep 2004 A1
20040176788 Opolski Sep 2004 A1
20040176839 Huynh et al. Sep 2004 A1
20040181287 Gellman Sep 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040210244 Vargas et al. Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040220593 Greenhalgh Nov 2004 A1
20040225354 Allen et al. Nov 2004 A1
20040236354 Seguin Nov 2004 A1
20040236419 Milo Nov 2004 A1
20040249433 Freitag Dec 2004 A1
20040249453 Cartledge et al. Dec 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20040260393 Rahdert et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20040267358 Reitan Dec 2004 A1
20050004668 Aklog et al. Jan 2005 A1
20050010287 Macoviak et al. Jan 2005 A1
20050010787 Tarbouriech Jan 2005 A1
20050016560 Voughlohn Jan 2005 A1
20050021056 St. Goar et al. Jan 2005 A1
20050027305 Shiu et al. Feb 2005 A1
20050027348 Case et al. Feb 2005 A1
20050038494 Eidenschink Feb 2005 A1
20050055038 Kelleher et al. Mar 2005 A1
20050055086 Stobie Mar 2005 A1
20050055087 Starksen Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050065601 Lee et al. Mar 2005 A1
20050070999 Spence Mar 2005 A1
20050075726 Svanidze et al. Apr 2005 A1
20050075727 Wheatley Apr 2005 A1
20050075731 Artof et al. Apr 2005 A1
20050080430 Wright et al. Apr 2005 A1
20050080474 Andreas et al. Apr 2005 A1
20050085900 Case et al. Apr 2005 A1
20050085903 Lau Apr 2005 A1
20050090827 Gedebou Apr 2005 A1
20050096740 Langberg et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050119734 Spence et al. Jun 2005 A1
20050125002 Baran et al. Jun 2005 A1
20050125011 Spence et al. Jun 2005 A1
20050131533 Alfieri et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137693 Haug et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137699 Salahieh et al. Jun 2005 A1
20050143809 Salahieh et al. Jun 2005 A1
20050149160 McFerran Jul 2005 A1
20050154443 Linder et al. Jul 2005 A1
20050159728 Armour et al. Jul 2005 A1
20050171601 Cosgrove et al. Aug 2005 A1
20050177180 Kaganov et al. Aug 2005 A1
20050177228 Solem et al. Aug 2005 A1
20050182483 Osborne et al. Aug 2005 A1
20050182486 Gabbay Aug 2005 A1
20050187613 Bolduc et al. Aug 2005 A1
20050192596 Jugenheimer et al. Sep 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050197696 Gomez Duran Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203606 VanCamp Sep 2005 A1
20050203618 Sharkawy et al. Sep 2005 A1
20050216039 Lederman Sep 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050222665 Aranyi Oct 2005 A1
20050222678 Lashinski et al. Oct 2005 A1
20050234508 Cummins et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050251251 Cribier Nov 2005 A1
20050256532 Nayak et al. Nov 2005 A1
20050256566 Gabbay Nov 2005 A1
20050267478 Corradi et al. Dec 2005 A1
20050267573 Macoviak et al. Dec 2005 A9
20050273138 To et al. Dec 2005 A1
20050288776 Shaoulian et al. Dec 2005 A1
20050288778 Shaoulian et al. Dec 2005 A1
20050288781 Moaddeb et al. Dec 2005 A1
20060004439 Spenser et al. Jan 2006 A1
20060004442 Spenser et al. Jan 2006 A1
20060004443 Liddicoat et al. Jan 2006 A1
20060004469 Sokel Jan 2006 A1
20060015171 Armstrong Jan 2006 A1
20060020275 Goldfarb et al. Jan 2006 A1
20060020326 Bolduc et al. Jan 2006 A9
20060020327 Lashinski et al. Jan 2006 A1
20060020333 Lashinski et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025787 Morales et al. Feb 2006 A1
20060025855 Lashinski et al. Feb 2006 A1
20060025858 Alameddine Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060041189 Vancaillie Feb 2006 A1
20060041319 Taylor et al. Feb 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060052868 Mortier Mar 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060069429 Spence et al. Mar 2006 A1
20060074486 Liddicoat et al. Apr 2006 A1
20060085012 Dolan Apr 2006 A1
20060089627 Burnett et al. Apr 2006 A1
20060095009 Lampropoulos et al. May 2006 A1
20060106423 Weisel et al. May 2006 A1
20060111773 Rittgers et al. May 2006 A1
20060116750 Herbert et al. Jun 2006 A1
20060116757 Lashinski et al. Jun 2006 A1
20060122692 Gilad et al. Jun 2006 A1
20060129166 Lavelle Jun 2006 A1
20060135964 Vesley Jun 2006 A1
20060149280 Harvine et al. Jul 2006 A1
20060149368 Spence Jul 2006 A1
20060155357 Melsheimer Jul 2006 A1
20060161250 Shaw Jul 2006 A1
20060161265 Levine et al. Jul 2006 A1
20060047297 Case Aug 2006 A1
20060178700 Quinn Aug 2006 A1
20060178740 Stacchino et al. Aug 2006 A1
20060184203 Martin et al. Aug 2006 A1
20060184240 Jimenez et al. Aug 2006 A1
20060184242 Lichtenstein Aug 2006 A1
20060190036 Wendel et al. Aug 2006 A1
20060190038 Carley et al. Aug 2006 A1
20060195134 Crittenden Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060195184 Lane et al. Aug 2006 A1
20060201519 Frazier et al. Sep 2006 A1
20060212111 Case et al. Sep 2006 A1
20060216404 Seyler et al. Sep 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060241622 Zergiebel Oct 2006 A1
20060241656 Starksen et al. Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060241748 Lee et al. Oct 2006 A1
20060247680 Amplatz et al. Nov 2006 A1
20060247763 Slater Nov 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060271166 Thill et al. Nov 2006 A1
20060271171 McQuinn et al. Nov 2006 A1
20060271175 Woolfson Nov 2006 A1
20060282150 Olson et al. Dec 2006 A1
20060282161 Huyn et al. Dec 2006 A1
20060287661 Bolduc et al. Dec 2006 A1
20060287716 Banbury et al. Dec 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20070001627 Lin et al. Jan 2007 A1
20070008018 Nagashima et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070016287 Cartledge et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070021781 Jervis et al. Jan 2007 A1
20070027528 Agnew Feb 2007 A1
20070027533 Douk Feb 2007 A1
20070027536 Mihaljevic et al. Feb 2007 A1
20070027549 Godin Feb 2007 A1
20070038221 Fine et al. Feb 2007 A1
20070038293 St. Goar et al. Feb 2007 A1
20070038295 Case et al. Feb 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070049942 Hindrichs et al. Mar 2007 A1
20070049970 Belef et al. Mar 2007 A1
20070051377 Douk et al. Mar 2007 A1
20070055206 To et al. Mar 2007 A1
20070055340 Pryor Mar 2007 A1
20070056346 Spenser et al. Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070078297 Rafiee et al. Apr 2007 A1
20070078510 Ryan Apr 2007 A1
20070080188 Spence et al. Apr 2007 A1
20070083168 Whiting et al. Apr 2007 A1
20070106328 Wardle et al. May 2007 A1
20070112359 Kimura et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118213 Loulmet May 2007 A1
20070118215 Moaddeb May 2007 A1
20070142907 Moaddeb et al. Jun 2007 A1
20070162103 Case et al. Jul 2007 A1
20070162107 Haug et al. Jul 2007 A1
20070162111 Fukamachi et al. Jul 2007 A1
20070173932 Cali et al. Jul 2007 A1
20070197858 Goldfarb et al. Aug 2007 A1
20070198077 Cully et al. Aug 2007 A1
20070198082 Kapadia et al. Aug 2007 A1
20070198097 Zegdi Aug 2007 A1
20070208550 Cao et al. Sep 2007 A1
20070213582 Zollinger et al. Sep 2007 A1
20070213810 Newhauser et al. Sep 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070219558 Deutsch Sep 2007 A1
20070219630 Chu Sep 2007 A1
20070225759 Thommen et al. Sep 2007 A1
20070225760 Moszner et al. Sep 2007 A1
20070233186 Meng Oct 2007 A1
20070233237 Krivoruchko Oct 2007 A1
20070233239 Navia et al. Oct 2007 A1
20070239208 Crawford Oct 2007 A1
20070239272 Navia et al. Oct 2007 A1
20070239273 Allen Oct 2007 A1
20070244546 Francis Oct 2007 A1
20070244555 Rafiee et al. Oct 2007 A1
20070244556 Rafiee et al. Oct 2007 A1
20070244557 Rafiee et al. Oct 2007 A1
20070250160 Rafiee Oct 2007 A1
20070255397 Ryan et al. Nov 2007 A1
20070255400 Parravicini et al. Nov 2007 A1
20070270755 Von Oepen et al. Nov 2007 A1
20070270943 Solem et al. Nov 2007 A1
20070276437 Call et al. Nov 2007 A1
20070282375 Hindrichs et al. Dec 2007 A1
20070282429 Hauser et al. Dec 2007 A1
20070295172 Swartz Dec 2007 A1
20070299424 Cummings et al. Dec 2007 A1
20080004688 Spenser et al. Jan 2008 A1
20080004697 Lichtenstein et al. Jan 2008 A1
20080027483 Cartledge et al. Jan 2008 A1
20080027555 Hawkins Jan 2008 A1
20080035160 Woodson et al. Feb 2008 A1
20080039935 Buch Feb 2008 A1
20080051703 Thornton et al. Feb 2008 A1
20080058595 Snoke et al. Mar 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080065204 Mackoviak et al. Mar 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080077235 Kirson Mar 2008 A1
20080082083 Forde et al. Apr 2008 A1
20080082159 Tseng et al. Apr 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080086138 Stone et al. Apr 2008 A1
20080086164 Rowe et al. Apr 2008 A1
20080086203 Roberts Apr 2008 A1
20080086204 Rankin Apr 2008 A1
20080091257 Andreas et al. Apr 2008 A1
20080091261 Long et al. Apr 2008 A1
20080097523 Bolduc et al. Apr 2008 A1
20080097595 Gabbay Apr 2008 A1
20080132989 Snow et al. Jun 2008 A1
20080140003 Bei et al. Jun 2008 A1
20080140116 Bonutti Jun 2008 A1
20080147182 Righini et al. Jun 2008 A1
20080161910 Revuelta et al. Jul 2008 A1
20080167705 Agnew Jul 2008 A1
20080167714 St. Goar et al. Jul 2008 A1
20080188929 Schreck Aug 2008 A1
20080195126 Solem Aug 2008 A1
20080195200 Vidlund et al. Aug 2008 A1
20080200980 Robin et al. Aug 2008 A1
20080208265 Frazier et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208330 Keranen Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080234814 Salahieh et al. Sep 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255580 Hoffman et al. Oct 2008 A1
20080262609 Gross et al. Oct 2008 A1
20080269879 Sathe et al. Oct 2008 A1
20080275300 Rothe et al. Nov 2008 A1
20080275469 Fanton et al. Nov 2008 A1
20080275551 Alfieri Nov 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080288044 Osborne Nov 2008 A1
20080288062 Andrieu et al. Nov 2008 A1
20080294234 Hartley et al. Nov 2008 A1
20080300629 Surti Dec 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090036966 O'Connor et al. Feb 2009 A1
20090043153 Zollinger et al. Feb 2009 A1
20090043381 Macoviak et al. Feb 2009 A1
20090054969 Salahieh et al. Feb 2009 A1
20090062866 Jackson Mar 2009 A1
20090076586 Hauser et al. Mar 2009 A1
20090076600 Quinn Mar 2009 A1
20090082844 Zacharias et al. Mar 2009 A1
20090088836 Bishop et al. Apr 2009 A1
20090088837 Gillinov et al. Apr 2009 A1
20090099554 Forster et al. Apr 2009 A1
20090099650 Bolduc et al. Apr 2009 A1
20090105794 Ziarno et al. Apr 2009 A1
20090105816 Olsen et al. Apr 2009 A1
20090112159 Slattery et al. Apr 2009 A1
20090125098 Chuter May 2009 A1
20090125102 Cartledge May 2009 A1
20090149872 Gross et al. Jun 2009 A1
20090157175 Benichou Jun 2009 A1
20090163934 Raschdorf, Jr. et al. Jun 2009 A1
20090177274 Scorsin et al. Jun 2009 A1
20090171363 Chocron Jul 2009 A1
20090171439 Nissl Jul 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090177277 Milo Jul 2009 A1
20090177278 Spence Jul 2009 A1
20090210052 Forster et al. Aug 2009 A1
20090222081 Linder et al. Sep 2009 A1
20090240320 Tuval et al. Sep 2009 A1
20090241656 Jacquemin Oct 2009 A1
20090248143 Laham Oct 2009 A1
20090248148 Shaolian et al. Oct 2009 A1
20090254103 Deustch Oct 2009 A1
20090259306 Rowe Oct 2009 A1
20090259307 Gross et al. Oct 2009 A1
20090264859 Mas Oct 2009 A1
20090264994 Saadat Oct 2009 A1
20090264995 Subramanian Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090287304 Dahlgren et al. Nov 2009 A1
20090299409 Coe et al. Dec 2009 A1
20090299449 Styrc Dec 2009 A1
20090306768 Quardi Dec 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20090326648 Machold et al. Dec 2009 A1
20100001038 Levin et al. Jan 2010 A1
20100010538 Juravic et al. Jan 2010 A1
20100022823 Goldfarb et al. Jan 2010 A1
20100023117 Yoganathan et al. Jan 2010 A1
20100023118 Medlock et al. Jan 2010 A1
20100023120 Holecek et al. Jan 2010 A1
20100030014 Ferrazzi Feb 2010 A1
20100036479 Hill et al. Feb 2010 A1
20100036484 Hariton et al. Feb 2010 A1
20100042147 Janovsky et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100063542 Van der Burg et al. Mar 2010 A1
20100063550 Felix et al. Mar 2010 A1
20100063586 Hasenkam et al. Mar 2010 A1
20100069852 Kelley Mar 2010 A1
20100076499 McNamara et al. Mar 2010 A1
20100076548 Konno Mar 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100094248 Nguyen et al. Apr 2010 A1
20100100167 Bortlein et al. Apr 2010 A1
20100114180 Rock May 2010 A1
20100114299 Ben-Muvhar et al. May 2010 A1
20100121349 Meier May 2010 A1
20100130992 Machold et al. May 2010 A1
20100131054 Tuval et al. May 2010 A1
20100137979 Tuval et al. Jun 2010 A1
20100152845 Bloom et al. Jun 2010 A1
20100160958 Clark Jun 2010 A1
20100161036 Pintor et al. Jun 2010 A1
20100161041 Maisano et al. Jun 2010 A1
20100161042 Maisano et al. Jun 2010 A1
20100161043 Maisano et al. Jun 2010 A1
20100161047 Cabiri Jun 2010 A1
20100168845 Wright Jul 2010 A1
20100174358 Rabkin et al. Jul 2010 A1
20100174363 Castro Jul 2010 A1
20100179574 Longoria et al. Jul 2010 A1
20100179643 Shalev Jul 2010 A1
20100179648 Richter et al. Jul 2010 A1
20100179649 Richter et al. Jul 2010 A1
20100185277 Braido et al. Jul 2010 A1
20100198347 Zakay et al. Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100222810 DeBeer et al. Sep 2010 A1
20100228285 Miles et al. Sep 2010 A1
20100234935 Bashiri et al. Sep 2010 A1
20100234940 Dolan Sep 2010 A1
20100249908 Chau et al. Sep 2010 A1
20100249915 Zhang Sep 2010 A1
20100249917 Zhang Sep 2010 A1
20100249920 Bolling et al. Sep 2010 A1
20100256737 Pollock et al. Oct 2010 A1
20100262232 Annest Oct 2010 A1
20100262233 He Oct 2010 A1
20100280603 Maisano et al. Nov 2010 A1
20100280604 Zipory et al. Nov 2010 A1
20100280605 Hammer et al. Nov 2010 A1
20100280606 Naor Nov 2010 A1
20100286628 Gross Nov 2010 A1
20100286767 Zipory et al. Nov 2010 A1
20100305475 Hinchliffe et al. Dec 2010 A1
20100312333 Navia et al. Dec 2010 A1
20100324595 Linder et al. Dec 2010 A1
20100331971 Keränen et al. Dec 2010 A1
20110004210 Johnson et al. Jan 2011 A1
20110004227 Goldfarb et al. Jan 2011 A1
20110004296 Lutter et al. Jan 2011 A1
20110004298 Lee et al. Jan 2011 A1
20110004299 Navia et al. Jan 2011 A1
20110011917 Loulmet Jan 2011 A1
20110015729 Jimenez et al. Jan 2011 A1
20110015731 Carpentier et al. Jan 2011 A1
20110015739 Cheung et al. Jan 2011 A1
20110021985 Spargias Jan 2011 A1
20110022165 Oba et al. Jan 2011 A1
20110178597 Navia et al. Jan 2011 A9
20110026208 Otsuro et al. Feb 2011 A1
20110029066 Gilad et al. Feb 2011 A1
20110029067 Mcguckin, Jr. et al. Feb 2011 A1
20110029072 Gabbay Feb 2011 A1
20110035000 Nieminen et al. Feb 2011 A1
20110040374 Goetz et al. Feb 2011 A1
20110040375 Letac et al. Feb 2011 A1
20110046662 Moszner et al. Feb 2011 A1
20110054466 Rothstein et al. Mar 2011 A1
20110054596 Taylor Mar 2011 A1
20110054598 Johnson Mar 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110066233 Thornton et al. Mar 2011 A1
20110067770 Pederson et al. Mar 2011 A1
20110071626 Wright et al. Mar 2011 A1
20110077730 Fentster Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110087146 Ryan et al. Apr 2011 A1
20110087322 Letac et al. Apr 2011 A1
20110093002 Rucker et al. Apr 2011 A1
20110093063 Schreck Apr 2011 A1
20110098525 Kermode et al. Apr 2011 A1
20110106245 Miller et al. May 2011 A1
20110106247 Miller et al. May 2011 A1
20110112625 Ben-Muvhar et al. May 2011 A1
20110112632 Chau et al. May 2011 A1
20110113768 Bauer et al. May 2011 A1
20110118830 Liddicoat et al. May 2011 A1
20110118832 Punjabi May 2011 A1
20110125257 Seguin et al. May 2011 A1
20110125258 Centola May 2011 A1
20110137326 Bachman Jun 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110137409 Yang et al. Jun 2011 A1
20110137410 Hacohen Jun 2011 A1
20110144703 Krause et al. Jun 2011 A1
20110144742 Madrid et al. Jun 2011 A1
20110166636 Rowe Jul 2011 A1
20110166649 Gross et al. Jul 2011 A1
20110172784 Richter Jul 2011 A1
20110184510 Maisano et al. Jul 2011 A1
20110190877 Lane et al. Aug 2011 A1
20110190879 Bobo et al. Aug 2011 A1
20110202076 Richter Aug 2011 A1
20110202130 Cartledge et al. Aug 2011 A1
20110208283 Rust Aug 2011 A1
20110208293 Tabor Aug 2011 A1
20110208298 Tuval et al. Aug 2011 A1
20110213459 Garrison et al. Sep 2011 A1
20110213461 Seguin et al. Sep 2011 A1
20110218619 Benichou et al. Sep 2011 A1
20110218620 Meiri et al. Sep 2011 A1
20110224785 Hacohen Sep 2011 A1
20110230941 Markus Sep 2011 A1
20110230961 Langer et al. Sep 2011 A1
20110238088 Bodluc et al. Sep 2011 A1
20110238094 Thomas et al. Sep 2011 A1
20110238159 Guyenot et al. Sep 2011 A1
20110245911 Quill et al. Oct 2011 A1
20110245917 Savage et al. Oct 2011 A1
20110251675 Dwork Oct 2011 A1
20110251676 Sweeney et al. Oct 2011 A1
20110251678 Eidenschink et al. Oct 2011 A1
20110251679 Weimeyer et al. Oct 2011 A1
20110251680 Tran et al. Oct 2011 A1
20110251682 Murray, III et al. Oct 2011 A1
20110251683 Tabor Oct 2011 A1
20110257433 Walker Oct 2011 A1
20110257633 Cartledge et al. Oct 2011 A1
20110257721 Tabor Oct 2011 A1
20110257728 Kuehn Oct 2011 A1
20110257729 Spenser et al. Oct 2011 A1
20110257736 Marquez et al. Oct 2011 A1
20110257737 Fogarty et al. Oct 2011 A1
20110264191 Rothstein Oct 2011 A1
20110264196 Savage et al. Oct 2011 A1
20110264198 Murray, III et al. Oct 2011 A1
20110264199 Tran et al. Oct 2011 A1
20110264200 Tran et al. Oct 2011 A1
20110264201 Yeung Oct 2011 A1
20110264202 Murray, III et al. Oct 2011 A1
20110264203 Dwork et al. Oct 2011 A1
20110264206 Tabor Oct 2011 A1
20110264208 Duffy Oct 2011 A1
20110270276 Rothstein et al. Nov 2011 A1
20110271967 Mortier et al. Nov 2011 A1
20110276062 Bolduc Nov 2011 A1
20110282361 Miller et al. Nov 2011 A1
20110282438 Drews et al. Nov 2011 A1
20110282439 Thill et al. Nov 2011 A1
20110282440 Cao Nov 2011 A1
20110283514 Fogarty et al. Nov 2011 A1
20110288435 Christy et al. Nov 2011 A1
20110288632 White Nov 2011 A1
20110288634 Tuval et al. Nov 2011 A1
20110288635 Miller et al. Nov 2011 A1
20110295354 Bueche et al. Dec 2011 A1
20110295363 Girard et al. Dec 2011 A1
20110301498 Maenhout et al. Dec 2011 A1
20110301688 Dolan Dec 2011 A1
20110301698 Miller et al. Dec 2011 A1
20110301701 Padala et al. Dec 2011 A1
20110301702 Rust et al. Dec 2011 A1
20110306916 Nitzan et al. Dec 2011 A1
20110307049 Kao Dec 2011 A1
20110313452 Carley et al. Dec 2011 A1
20110313515 Quadri et al. Dec 2011 A1
20110319989 Lane et al. Dec 2011 A1
20110319991 Hariton et al. Dec 2011 A1
20120010694 Lutter et al. Jan 2012 A1
20120016468 Robin et al. Jan 2012 A1
20120022557 Cabiri et al. Jan 2012 A1
20120022629 Perera et al. Jan 2012 A1
20120022633 Olson et al. Jan 2012 A1
20120022637 Ben-Movhar et al. Jan 2012 A1
20120022639 Hacohen et al. Jan 2012 A1
20120022640 Gross et al. Jan 2012 A1
20120022644 Reich et al. Jan 2012 A1
20120035703 Lutter et al. Feb 2012 A1
20120035712 Maisano et al. Feb 2012 A1
20120035713 Lutter et al. Feb 2012 A1
20120035722 Tuval et al. Feb 2012 A1
20120041547 Duffy et al. Feb 2012 A1
20120041551 Spenser et al. Feb 2012 A1
20120046738 Lau et al. Feb 2012 A1
20120046742 Tuval et al. Feb 2012 A1
20120053676 Ku et al. Mar 2012 A1
20120053680 Bolling et al. Mar 2012 A1
20120053682 Kovalsky et al. Mar 2012 A1
20120053688 Fogarty et al. Mar 2012 A1
20120059337 Eilat Mar 2012 A1
20120059454 Millwee et al. Mar 2012 A1
20120059458 Buchbinder et al. Mar 2012 A1
20120065464 Ellis et al. Mar 2012 A1
20120078237 Wang et al. Mar 2012 A1
20120078353 Quadri et al. Mar 2012 A1
20120078355 Zipory et al. Mar 2012 A1
20120078357 Conklin Mar 2012 A1
20120078359 Li et al. Mar 2012 A1
20120083832 Delaloye et al. Apr 2012 A1
20120083839 Letac et al. Apr 2012 A1
20120083879 Eberhardt et al. Apr 2012 A1
20120089022 House et al. Apr 2012 A1
20120089223 Nguyen et al. Apr 2012 A1
20120095552 Spence et al. Apr 2012 A1
20120101570 Tuval et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120109155 Robinson et al. May 2012 A1
20120123511 Brown May 2012 A1
20120123529 Levi et al. May 2012 A1
20120123530 Carpentier et al. May 2012 A1
20120130473 Norris et al. May 2012 A1
20120130474 Buckley May 2012 A1
20120130475 Shaw May 2012 A1
20120136434 Carpentier et al. May 2012 A1
20120136436 Cabiri et al. May 2012 A1
20120143323 Hasenkam et al. Jun 2012 A1
20120150218 Sandgren et al. Jun 2012 A1
20120150290 Gabbay Jun 2012 A1
20120158021 Morrill Jun 2012 A1
20120165915 Melsheimer et al. Jun 2012 A1
20120165930 Gifford, III et al. Jun 2012 A1
20120179086 Shank et al. Jul 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120191182 Hauser et al. Jul 2012 A1
20120197292 Chin-Chen et al. Aug 2012 A1
20120197388 Khairkhahan et al. Aug 2012 A1
20120215303 Quadri et al. Aug 2012 A1
20120239142 Liu et al. Sep 2012 A1
20120245604 Tegzes Sep 2012 A1
20120271198 Whittaker et al. Oct 2012 A1
20120277845 Bowe Nov 2012 A1
20120283757 Miller et al. Nov 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20120290062 McNamara et al. Nov 2012 A1
20120296349 Smith et al. Nov 2012 A1
20120296360 Norris et al. Nov 2012 A1
20120296417 Hill et al. Nov 2012 A1
20120296418 Bonyuet et al. Nov 2012 A1
20120296419 Richardson Nov 2012 A1
20120300063 Majkrzak et al. Nov 2012 A1
20120123531 Tsukashima et al. Dec 2012 A1
20120310328 Olson Dec 2012 A1
20120310330 Buchbinder et al. Dec 2012 A1
20120323313 Seguin Dec 2012 A1
20120323316 Chau et al. Dec 2012 A1
20120330408 Hillukka et al. Dec 2012 A1
20120330410 Hammer et al. Dec 2012 A1
20120330411 Gross et al. Dec 2012 A1
20130006347 McHugo Jan 2013 A1
20130018450 Hunt Jan 2013 A1
20130018458 Yohanan et al. Jan 2013 A1
20130023758 Fabro Jan 2013 A1
20130030519 Tran et al. Jan 2013 A1
20130030522 Rowe et al. Jan 2013 A1
20130035759 Gross et al. Feb 2013 A1
20130041204 Heilman et al. Feb 2013 A1
20130041451 Patterson et al. Feb 2013 A1
20130046373 Cartledge et al. Feb 2013 A1
20130066341 Ketai et al. Mar 2013 A1
20130066342 Dell et al. Mar 2013 A1
20130079872 Gallagher Mar 2013 A1
20130079873 Migliazza et al. Mar 2013 A1
20130085529 Housman Apr 2013 A1
20130090724 Subramanian et al. Apr 2013 A1
20130096673 Hill et al. Apr 2013 A1
20130116776 Gross et al. May 2013 A1
20130116779 Weber May 2013 A1
20130116780 Miller et al. May 2013 A1
20130123896 Bloss et al. May 2013 A1
20130123900 Eblacas et al. May 2013 A1
20130123910 Cartledge et al. May 2013 A1
20130131791 Hlavka et al. May 2013 A1
20130131792 Miller et al. May 2013 A1
20130150945 Crawford et al. Jun 2013 A1
20130150956 Yohanan et al. Jun 2013 A1
20130158647 Norris et al. Jun 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130166022 Conklin Jun 2013 A1
20130172978 Vidlund et al. Jul 2013 A1
20130172992 Gross et al. Jul 2013 A1
20130178930 Straubinger et al. Jul 2013 A1
20130190857 Mitra et al. Jul 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130190863 Call et al. Jul 2013 A1
20130190866 Zipory et al. Jul 2013 A1
20130197632 Kovach et al. Aug 2013 A1
20130204361 Adams et al. Aug 2013 A1
20130211501 Buckley et al. Aug 2013 A1
20130211508 Lane et al. Aug 2013 A1
20130226289 Shaolian et al. Aug 2013 A1
20130226290 Yellin et al. Aug 2013 A1
20130231735 Deem et al. Sep 2013 A1
20130245742 Norris Sep 2013 A1
20130253643 Rolando et al. Sep 2013 A1
20130261737 Costello Oct 2013 A1
20130261738 Clague et al. Oct 2013 A1
20130268069 Zakai et al. Oct 2013 A1
20130274870 Lombardi Oct 2013 A1
20130282059 Ketai et al. Oct 2013 A1
20130289711 Liddy et al. Oct 2013 A1
20130289718 Tsukashima et al. Oct 2013 A1
20130289740 Liddy et al. Oct 2013 A1
20130297013 Klima et al. Nov 2013 A1
20130304093 Serina et al. Nov 2013 A1
20130304197 Buchbinder et al. Nov 2013 A1
20130304200 McLean et al. Nov 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130325114 McLean et al. Dec 2013 A1
20130325118 Cartledge Dec 2013 A1
20130331929 Mitra et al. Dec 2013 A1
20140000112 Braido et al. Jan 2014 A1
20140005767 Glazier Jan 2014 A1
20140005778 Buchbinder et al. Jan 2014 A1
20140018911 Zhou et al. Jan 2014 A1
20140018914 Zipory et al. Jan 2014 A1
20140018915 Biadillah et al. Jan 2014 A1
20140031928 Murphy et al. Jan 2014 A1
20140046430 Shaw Feb 2014 A1
20140052237 Lane et al. Feb 2014 A1
20140067050 Costello et al. Mar 2014 A1
20140067054 Chau et al. Mar 2014 A1
20140081376 Burkart et al. Mar 2014 A1
20140088368 Park Mar 2014 A1
20140094826 Sutherland et al. Apr 2014 A1
20140094903 Miller et al. Apr 2014 A1
20140094906 Spence et al. Apr 2014 A1
20140099726 Heller Apr 2014 A1
20140106951 Brandon Apr 2014 A1
20140120287 Jacoby et al. May 2014 A1
20140121749 Roeder May 2014 A1
20140121763 Duffy et al. May 2014 A1
20140135799 Henderson May 2014 A1
20140135894 Norris et al. May 2014 A1
20140135895 Andress et al. May 2014 A1
20140142619 Serina et al. May 2014 A1
20140142681 Norris May 2014 A1
20140142688 Duffy et al. May 2014 A1
20140142695 Gross et al. May 2014 A1
20140148849 Serina et al. May 2014 A1
20140148891 Johnson May 2014 A1
20140148898 Gross et al. May 2014 A1
20140155783 Starksen et al. Jun 2014 A1
20140163670 Alon et al. Jun 2014 A1
20140163690 White Jun 2014 A1
20140172069 Roeder et al. Jun 2014 A1
20140172077 Bruchman et al. Jun 2014 A1
20140172082 Bruchman et al. Jun 2014 A1
20140188108 Goodine et al. Jul 2014 A1
20140188140 Meier et al. Jul 2014 A1
20140188210 Beard et al. Jul 2014 A1
20140188215 Hlavka et al. Jul 2014 A1
20140188221 Chung et al. Jul 2014 A1
20140194970 Chobotov Jul 2014 A1
20140194976 Starksen et al. Jul 2014 A1
20140194981 Menk et al. Jul 2014 A1
20140194983 Kovalsky et al. Jul 2014 A1
20140207231 Hacohen et al. Jul 2014 A1
20140214157 Börtlein et al. Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140222136 Geist et al. Aug 2014 A1
20140222137 Miller et al. Aug 2014 A1
20140222142 Kovalsky et al. Aug 2014 A1
20140236287 Clague et al. Aug 2014 A1
20140236289 Alkhatib Aug 2014 A1
20140243859 Robinson Aug 2014 A1
20140243894 Groothuis et al. Aug 2014 A1
20140243963 Sheps et al. Aug 2014 A1
20140249622 Carmi et al. Sep 2014 A1
20140257461 Robinson et al. Sep 2014 A1
20140257467 Lane et al. Sep 2014 A1
20140257475 Gross et al. Sep 2014 A1
20140257476 Montorfano et al. Sep 2014 A1
20140275757 Goodwin et al. Sep 2014 A1
20140276648 Hammer et al. Sep 2014 A1
20140277358 Slazas Sep 2014 A1
20140277409 Börtlein et al. Sep 2014 A1
20140277411 Börtlein et al. Sep 2014 A1
20140277412 Bortlein et al. Sep 2014 A1
20140277418 Miller Sep 2014 A1
20140277422 Ratz et al. Sep 2014 A1
20140277427 Ratz et al. Sep 2014 A1
20140296962 Cartledge et al. Oct 2014 A1
20140296969 Tegels et al. Oct 2014 A1
20140303649 Nguyen et al. Oct 2014 A1
20140303720 Sugimoto et al. Oct 2014 A1
20140309661 Sheps et al. Oct 2014 A1
20140309730 Alon et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140329225 Morin Nov 2014 A1
20140331475 Duffy et al. Nov 2014 A1
20140336744 Tani et al. Nov 2014 A1
20140343668 Zipory et al. Nov 2014 A1
20140343670 Bakis et al. Nov 2014 A1
20140350662 Vaturi Nov 2014 A1
20140350670 Keränen Nov 2014 A1
20140358222 Gorman, III et al. Dec 2014 A1
20140358224 Tegels et al. Dec 2014 A1
20140378331 Morin Dec 2014 A1
20140379006 Sutherland et al. Dec 2014 A1
20140379065 Johnson et al. Dec 2014 A1
20140379074 Spence et al. Dec 2014 A1
20140379076 Vidlund et al. Dec 2014 A1
20150012087 Miller et al. Jan 2015 A1
20150018940 Quill et al. Jan 2015 A1
20150018944 O'Connor et al. Jan 2015 A1
20150032205 Matheny Jan 2015 A1
20150045880 Hacohen Feb 2015 A1
20150045881 Lim Feb 2015 A1
20150051697 Spence et al. Feb 2015 A1
20150081014 Gross et al. Mar 2015 A1
20150094802 Buchbinder et al. Apr 2015 A1
20150105855 Cabiri et al. Apr 2015 A1
20150119970 Nakayama et al. Apr 2015 A1
20150127097 Neumann et al. May 2015 A1
20150142100 Morriss et al. May 2015 A1
20150142103 Vidlund May 2015 A1
20150148894 Damm et al. May 2015 A1
20150157457 Hacohen Jun 2015 A1
20150157458 Thambar et al. Jun 2015 A1
20150164640 McLean et al. Jun 2015 A1
20150173896 Richter et al. Jun 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150182336 Zipory et al. Jul 2015 A1
20150196390 Ma et al. Jul 2015 A1
20150196393 Vidlund et al. Jul 2015 A1
20150216661 Hacohen et al. Aug 2015 A1
20150230924 Miller et al. Aug 2015 A1
20150238313 Spence et al. Aug 2015 A1
20150245934 Lombardi et al. Sep 2015 A1
20150250588 Yang et al. Sep 2015 A1
20150272730 Melnick et al. Oct 2015 A1
20150272731 Racchini et al. Oct 2015 A1
20150272734 Sheps et al. Oct 2015 A1
20150282964 Beard et al. Oct 2015 A1
20150305903 Kitaoka Oct 2015 A1
20150320556 Levi et al. Nov 2015 A1
20150327994 Morriss et al. Nov 2015 A1
20150328000 Ratz et al. Nov 2015 A1
20150335429 Morriss et al. Nov 2015 A1
20150342736 Rabito et al. Dec 2015 A1
20150351903 Morriss et al. Dec 2015 A1
20150351904 Cooper et al. Dec 2015 A1
20150351906 Hammer et al. Dec 2015 A1
20150359629 Ganesan et al. Dec 2015 A1
20160030169 Shahriari Feb 2016 A1
20160030171 Quijano et al. Feb 2016 A1
20160089482 Siegenthaler Mar 2016 A1
20160095700 Righini Apr 2016 A1
20160100939 Armstrong et al. Apr 2016 A1
20160106539 Buchbinder et al. Apr 2016 A1
20160113766 Ganesan et al. Apr 2016 A1
20160113768 Ganesan et al. Apr 2016 A1
20160125160 Heneghan et al. May 2016 A1
20160157862 Hernandez et al. Jun 2016 A1
20160175095 Dienno et al. Jun 2016 A1
20160200773 Morin Jul 2016 A1
20160213473 Hacohen et al. Jul 2016 A1
20160220367 Barrett Aug 2016 A1
20160228247 Maimon et al. Aug 2016 A1
20160242902 Morriss et al. Aug 2016 A1
20160245802 Morin et al. Aug 2016 A1
20160258939 Morin et al. Sep 2016 A1
20160266089 Morin et al. Sep 2016 A1
20160270911 Ganesan et al. Sep 2016 A1
20160296330 Hacohen Oct 2016 A1
20160310268 Oba et al. Oct 2016 A1
20160310274 Gross et al. Oct 2016 A1
20160317301 Quadri et al. Nov 2016 A1
20160317305 Pelled et al. Nov 2016 A1
20160324633 Gross et al. Nov 2016 A1
20160324635 Vidlund et al. Nov 2016 A1
20160324640 Gifford et al. Nov 2016 A1
20160331526 Schweich et al. Nov 2016 A1
20160331527 Vidlund et al. Nov 2016 A1
20160338706 Rowe Nov 2016 A1
20160367360 Cartledge et al. Dec 2016 A1
20160367368 Vidlund et al. Dec 2016 A1
20160374801 Jimenez et al. Dec 2016 A1
20160374802 Levi et al. Dec 2016 A1
20170042678 Ganesan et al. Feb 2017 A1
20170049435 Sauer et al. Feb 2017 A1
20170056166 Ratz et al. Mar 2017 A1
20170056171 Cooper et al. Mar 2017 A1
20170065407 Hacohen et al. Mar 2017 A1
20170065411 Grundeman et al. Mar 2017 A1
20170074855 Morin et al. Mar 2017 A1
20170100236 Robertson et al. Apr 2017 A1
20170128205 Tamir et al. May 2017 A1
20170135816 Lashinski et al. May 2017 A1
20170189174 Braido et al. Jul 2017 A1
20170196688 Christianson et al. Jul 2017 A1
20170196692 Kirk et al. Jul 2017 A1
20170209264 Chau et al. Jul 2017 A1
20170216026 Quill et al. Aug 2017 A1
20170224323 Rowe et al. Aug 2017 A1
20170231757 Gassler Aug 2017 A1
20170231759 Geist et al. Aug 2017 A1
20170231760 Lane et al. Aug 2017 A1
20170231766 Hariton et al. Aug 2017 A1
20170234850 Morin Aug 2017 A1
20170239048 Goldfarb et al. Aug 2017 A1
20170252159 Hacohen et al. Sep 2017 A1
20170266003 Hammer et al. Sep 2017 A1
20170333183 Backus Nov 2017 A1
20170333187 Hariton et al. Nov 2017 A1
20170349940 Morin et al. Dec 2017 A1
20170360426 Hacohen et al. Dec 2017 A1
20170367823 Hariton et al. Dec 2017 A1
20180000580 Wallace et al. Jan 2018 A1
20180014930 Hariton et al. Jan 2018 A1
20180014932 Hammer et al. Jan 2018 A1
20180021129 Peterson et al. Jan 2018 A1
20180023114 Morin et al. Jan 2018 A1
20180023115 Morin et al. Jan 2018 A1
20180028215 Cohen Feb 2018 A1
20180028311 Hacohen Feb 2018 A1
20180049873 Manash et al. Feb 2018 A1
20180055628 Patel et al. Mar 2018 A1
20180055630 Patel et al. Mar 2018 A1
20180098850 Rafiee et al. Apr 2018 A1
20180116790 Ratz et al. May 2018 A1
20180116843 Schreck et al. May 2018 A1
20180125644 Conklin May 2018 A1
20180132999 Perouse May 2018 A1
20180147059 Hammer et al. May 2018 A1
20180153687 Hariton et al. Jun 2018 A1
20180153689 Maimon et al. Jun 2018 A1
20180153696 Albitov et al. Jun 2018 A1
20180161159 Lee et al. Jun 2018 A1
20180177593 Hariton et al. Jun 2018 A1
20180177594 Patel et al. Jun 2018 A1
20180185148 Hariton et al. Jul 2018 A1
20180206983 Noe et al. Jul 2018 A1
20180214263 Rolando et al. Aug 2018 A1
20180243086 Barbarino et al. Aug 2018 A1
20180250126 O'connor et al. Sep 2018 A1
20180250147 Syed Sep 2018 A1
20180271654 Hariton et al. Sep 2018 A1
20180280136 Hariton et al. Oct 2018 A1
20180296333 Dixon et al. Oct 2018 A1
20180296336 Cooper et al. Oct 2018 A1
20180296341 Noe et al. Oct 2018 A1
20180325671 Abunassar et al. Nov 2018 A1
20180344457 Gross et al. Dec 2018 A1
20180344490 Fox et al. Dec 2018 A1
20180353294 Calomeni et al. Dec 2018 A1
20180360457 Ellis et al. Dec 2018 A1
20190000613 Delgado et al. Jan 2019 A1
20190015200 Delgado et al. Jan 2019 A1
20190021852 Delgado et al. Jan 2019 A1
20190021857 Hacohen et al. Jan 2019 A1
20190038404 Iamberger et al. Feb 2019 A1
20190053896 Adamek-bowers et al. Feb 2019 A1
20190060060 Chau et al. Feb 2019 A1
20190060068 Cope et al. Feb 2019 A1
20190060070 Groothuis et al. Feb 2019 A1
20190069997 Ratz et al. Mar 2019 A1
20190069998 Hacohen Mar 2019 A1
20190083248 Hariton et al. Mar 2019 A1
20190083249 Hariton et al. Mar 2019 A1
20190083261 Perszyk et al. Mar 2019 A1
20190105153 Barash et al. Apr 2019 A1
20190117391 Humair Apr 2019 A1
20190167423 Hariton et al. Jun 2019 A1
20190175339 Vidlund Jun 2019 A1
20190175342 Hariton et al. Jun 2019 A1
20190183639 Moore Jun 2019 A1
20190183644 Hacohen Jun 2019 A1
20190192295 Spence et al. Jun 2019 A1
20190216602 Lozonschi Jul 2019 A1
20190231525 Hariton et al. Aug 2019 A1
20190240010 Hacohen Aug 2019 A1
20190321172 Gross et al. Oct 2019 A1
20190336280 Naor Nov 2019 A1
20190350701 Adamek-bowers et al. Nov 2019 A1
20190365530 Hoang et al. Dec 2019 A1
20190388218 Vidlund et al. Dec 2019 A1
20190388220 Vidlund et al. Dec 2019 A1
20200000449 Goldfarb et al. Jan 2020 A1
20200000579 Manash et al. Jan 2020 A1
20200000580 Hacohen Jan 2020 A1
20200015964 Noe et al. Jan 2020 A1
20200030098 Delgado et al. Jan 2020 A1
20200038181 Hariton et al. Feb 2020 A1
20200046496 Hammer et al. Feb 2020 A1
20200054335 Hernandez et al. Feb 2020 A1
20200060818 Geist et al. Feb 2020 A1
20200078002 Hacohen et al. Mar 2020 A1
20200113677 McCann et al. Apr 2020 A1
20200113689 McCann et al. Apr 2020 A1
20200113692 McCann et al. Apr 2020 A1
20200138567 Marr et al. May 2020 A1
20200146824 Hammer et al. May 2020 A1
20200163760 Hariton et al. May 2020 A1
20200163761 Hariton et al. May 2020 A1
20200205969 Hacohen Jul 2020 A1
20200214832 Metchik et al. Jul 2020 A1
20200237512 McCann et al. Jul 2020 A1
20200246136 Marr et al. Aug 2020 A1
20200246140 Hariton et al. Aug 2020 A1
20200253600 Darabian Aug 2020 A1
20200261094 Goldfarb et al. Aug 2020 A1
20200306037 Siegel et al. Oct 2020 A1
20200315786 Metchik et al. Oct 2020 A1
20200330221 Hacohen Oct 2020 A1
20200330227 Hacohen Oct 2020 A1
20200337842 Metchik et al. Oct 2020 A1
20200360139 Hammer et al. Nov 2020 A1
20200390548 Hariton et al. Dec 2020 A1
20210093449 Hariton et al. Apr 2021 A1
20210106419 Abunassar Apr 2021 A1
20210113331 Quadri et al. Apr 2021 A1
20210137680 Kizuka et al. May 2021 A1
20210145578 Hariton et al. May 2021 A1
20210259835 Tyler, II et al. Aug 2021 A1
20220000612 Hacohen Jan 2022 A1
Foreign Referenced Citations (194)
Number Date Country
2822801 Aug 2006 CA
2671966 Jun 2008 CA
101653365 Feb 2010 CN
103974674 Aug 2014 CN
103997990 Aug 2014 CN
105324091 Feb 2016 CN
0170262 Feb 1986 EP
0614342 Sep 1994 EP
1006905 Jun 2000 EP
0954257 Aug 2000 EP
1258437 Nov 2002 EP
1264582 Dec 2002 EP
0871417 Oct 2003 EP
1266641 Oct 2004 EP
1034753 Feb 2005 EP
1258232 Jan 2006 EP
1637092 Mar 2006 EP
1990014 Nov 2008 EP
1562522 Dec 2008 EP
1420723 Jan 2009 EP
1903991 Sep 2009 EP
1418865 Oct 2009 EP
2119399 Nov 2009 EP
1531762 Apr 2010 EP
1450733 Feb 2011 EP
2446915 May 2012 EP
2088965 Nov 2012 EP
1768630 Jan 2015 EP
1861045 Mar 2015 EP
1465555 May 2015 EP
2349124 Oct 2018 EP
2739214 Oct 2018 EP
3417813 Dec 2018 EP
3583922 Dec 2019 EP
3270825 Apr 2020 EP
2485795 Sep 2020 EP
223448 Dec 2012 IL
S53152790 Dec 1978 JP
20010046894 Jun 2001 KR
9205093 Apr 1992 WO
9310714 Jun 1993 WO
9639963 Dec 1996 WO
9640344 Dec 1996 WO
9701369 Jan 1997 WO
9846149 Oct 1998 WO
1998043557 Oct 1998 WO
1999030647 Jun 1999 WO
0022981 Apr 2000 WO
2000-047139 Aug 2000 WO
0126586 Apr 2001 WO
0156457 Aug 2001 WO
2001-062189 Aug 2001 WO
0182832 Nov 2001 WO
02085250 Oct 2002 WO
02085251 Oct 2002 WO
02085252 Oct 2002 WO
2003020179 Mar 2003 WO
2003028558 Apr 2003 WO
03047467 Jun 2003 WO
2003049647 Jun 2003 WO
2003105667 Dec 2003 WO
2004028399 Apr 2004 WO
04103434 Dec 2004 WO
2004108191 Dec 2004 WO
05021063 Mar 2005 WO
05046488 May 2005 WO
2005062931 Jul 2005 WO
2005107650 Nov 2005 WO
2006007389 Jan 2006 WO
2006007401 Jan 2006 WO
06012013 Feb 2006 WO
06012038 Feb 2006 WO
06054930 May 2006 WO
2006065212 Jun 2006 WO
2006070372 Jul 2006 WO
06086434 Aug 2006 WO
2006089236 Aug 2006 WO
2006091163 Aug 2006 WO
06097931 Sep 2006 WO
06105084 Oct 2006 WO
06116558 Nov 2006 WO
2006128193 Nov 2006 WO
07011799 Jan 2007 WO
2007030063 Mar 2007 WO
2007047488 Apr 2007 WO
2007059252 May 2007 WO
07121314 Oct 2007 WO
07136783 Nov 2007 WO
07136981 Nov 2007 WO
08013915 Jan 2008 WO
2008014144 Jan 2008 WO
2008029296 Mar 2008 WO
2008031103 Mar 2008 WO
2008058940 May 2008 WO
08068756 Jun 2008 WO
2008070797 Jun 2008 WO
2008103722 Aug 2008 WO
2009026563 Feb 2009 WO
09033469 Mar 2009 WO
09053497 Apr 2009 WO
2009080801 Jul 2009 WO
2009091509 Jul 2009 WO
2009160631 Oct 2009 WO
10004546 Jan 2010 WO
2010000454 Jan 2010 WO
2010005827 Jan 2010 WO
2010006627 Jan 2010 WO
2010006905 Jan 2010 WO
2010027485 Mar 2010 WO
2010037141 Apr 2010 WO
2010044851 Apr 2010 WO
2010045297 Apr 2010 WO
2010057262 May 2010 WO
2010073246 Jul 2010 WO
2010081033 Jul 2010 WO
2010085649 Jul 2010 WO
2010121076 Oct 2010 WO
2010128502 Nov 2010 WO
2010128503 Nov 2010 WO
2010150178 Dec 2010 WO
2011025972 Mar 2011 WO
2011051942 May 2011 WO
2011067770 Jun 2011 WO
2011069048 Jun 2011 WO
2011089401 Jul 2011 WO
2011089601 Jul 2011 WO
2011106137 Sep 2011 WO
2011111047 Sep 2011 WO
0187190 Nov 2011 WO
2011137531 Nov 2011 WO
2011-143263 Nov 2011 WO
2011144351 Nov 2011 WO
2011148374 Dec 2011 WO
2011154942 Dec 2011 WO
2012011108 Jan 2012 WO
2012014201 Feb 2012 WO
2012024428 Feb 2012 WO
2012036740 Mar 2012 WO
2012048035 Apr 2012 WO
2012068541 May 2012 WO
2012127309 Sep 2012 WO
2012176195 Dec 2012 WO
2012177942 Dec 2012 WO
2013021374 Feb 2013 WO
2013021375 Feb 2013 WO
2013021384 Feb 2013 WO
2013059747 Apr 2013 WO
2013069019 May 2013 WO
2013072496 May 2013 WO
2013078497 Jun 2013 WO
2013088327 Jun 2013 WO
2013114214 Aug 2013 WO
2013128436 Sep 2013 WO
2013175468 Nov 2013 WO
2014022124 Feb 2014 WO
2014064694 May 2014 WO
2014064695 May 2014 WO
2014076696 May 2014 WO
2014087402 Jun 2014 WO
2014115149 Jul 2014 WO
2014121280 Aug 2014 WO
2014144937 Sep 2014 WO
2014145338 Sep 2014 WO
2014164364 Oct 2014 WO
2014194178 Dec 2014 WO
2014195786 Dec 2014 WO
2015059699 Apr 2015 WO
2015173794 Nov 2015 WO
2015191923 Dec 2015 WO
2016016899 Feb 2016 WO
2016093877 Jun 2016 WO
2016125160 Aug 2016 WO
2017223486 Dec 2017 WO
2018025260 Feb 2018 WO
2018025263 Feb 2018 WO
2018029680 Feb 2018 WO
2018039631 Mar 2018 WO
2018106837 Jun 2018 WO
2018112429 Jun 2018 WO
2018118717 Jun 2018 WO
2018131042 Jul 2018 WO
2018131043 Jul 2018 WO
2019026059 Feb 2019 WO
2019027507 Feb 2019 WO
2019030753 Feb 2019 WO
2019077595 Apr 2019 WO
2019116369 Jun 2019 WO
2019138400 Jul 2019 WO
2019195860 Oct 2019 WO
2019202579 Oct 2019 WO
2020058972 Mar 2020 WO
2020167677 Aug 2020 WO
2021156866 Aug 2021 WO
2021186424 Sep 2021 WO
Non-Patent Literature Citations (594)
Entry
An Office Action dated Sep. 9, 2021, which issued during the prosecution of U.S. Appl. No. 16/768,909.
An Office Action dated Sep. 15, 2021, which issued during the prosecution of U.S. Appl. No. 16/135,599.
Notice of Allowance dated Oct. 14, 2021, which issued during the prosecution of U.S. Appl. No. 16/680,739.
An Office Action dated Oct. 21, 2021, which issued during the prosecution of U.S. Appl. No. 17/335,845.
European Search Report dated Oct. 11, 2021 which issued during the prosecution of Applicant's European App No. 21176010.3.
Fann, James I., et al. “Beating heart catheter-based edge-to-edge mitral valve procedure in a porcine model: efficacy and healing response.” Circulation 110.8 (2004): 988-993.
Feldman, Ted, et al. “Percutaneous mitral repair with the MitraClip system: safety and midterm durability in the initial EVEREST (Endovascular Valve Edge-to-Edge REpair Study) cohort.” Journal of the American College of Cardiology 54.8 (2009): 686-694.
IPR2021-00383 Patent Owner's Contingent Motion to Amend Under 37 C.F.R. §42.121 dated Oct. 13, 2021.
IPR2021-00383 Patent Owner's Response Pursuant to 37 C.F.R. § 42.120 dated Oct. 13, 2021.
IPR2021-00383 Second Declaration of Dr. Michael Sacks dated Oct. 13, 2021.
An Office Action dated Oct. 21, 2021, which issued during the prosecution of U.S. Appl. No. 17/306,231.
Maisano, Francesco, et al. “The evolution from surgery to percutaneous mitral valve interventions: the role of the edge-to-edge technique.” Journal of the American College of Cardiology 58.21 (2011): 2174-2182.
IPR2021-00383 Deposition of Dr. Ivan Vesely, dated Sep. 22, 2021.
Cardiovalve Exhibit 2009—Percutaneous Mitral Leaflet Repair: MitraClip® Therapy for Mitral Regurgitation (2012).
Feldman, Ted, et al. “Percutaneous mitral valve repair using the edge-to-edge technique: six-month results of the EVEREST Phase I Clinical Trial.” Journal of the American College of Cardiology 46.11 (2005): 2134-2140.
An Office Action summarized English translation and Search Report dated Oct. 8, 2021, which issued during the prosecution of Chinese Patent Application No. 201780061210.3.
An Office Action dated Nov. 4, 2021, which issued during the prosecution of U.S. Appl. No. 17/366,711.
An Office Action summarized English translation and Search Report dated Aug. 12, 2021, which issued during the prosecution of Chinese Patent Application No. 201880058940.2.
An Office Action dated Jul. 27, 2022, which issued during the prosecution of U.S. Appl. No. 16/881,350.
An Office Action dated Sep. 21, 2022, which issued during the prosecution of U.S. Appl. No. 16/776,581.
An Office Action dated Jul. 20, 2022, which issued during the prosecution of U.S. Appl. No. 17/101,787.
An Office Action dated Sep. 16, 2022, which issued during the prosecution of U.S. Appl. No. 16/135,466.
An Office Action dated Aug. 1, 2022, which issued during the prosecution of European Patent Application No. 18826823.9.
European Search Report dated Sep. 6, 2022 which issued during the prosecution of Applicant's European App No. 22161862.2.
IPR2021-01051 Petitioners' Reply to Preliminary Guidance dated Aug. 2, 2022.
IPR2021-01051 Patent Owner's Sur-Reply to Petitioners' Reply to Preliminary Guidance dated Aug. 23, 2022.
An Office Action dated Aug. 5, 2022, which issued during the prosecution of U.S. Appl. No. 16/760,147.
An Office Action dated Sep. 8, 2022, which issued during the prosecution of U.S. Appl. No. 16/896,858.
An Office Action dated Jan. 26, 2022, which issued during the prosecution of U.S. Appl. No. 16/888,210.
Notice of Allowance dated Jan. 31, 2022, which issued during the prosecution of U.S. Appl. No. 17/479,418.
An Office Action dated Mar. 18, 2022, which issued during the prosecution of U.S. Appl. No. 16/746,489.
Notice of Allowance dated Mar. 22, 2022, which issued during the prosecution of U.S. Appl. No. 17/366,711.
Notice of Allowance dated Mar. 4, 2022, which issued during the prosecution of U.S. Appl. No. 16/768,909.
An Office Action dated Dec. 9, 2021, which issued during the prosecution of U.S. Appl. No. 16/135,969.
An Office Action dated Jan. 24, 2022, which issued during the prosecution of U.S. Appl. No. 16/135,466.
An Office Action dated Apr. 11, 2022, which issued during the prosecution of U.S. Appl. No. 17/473,472.
IPR2021-00383 Preliminary Guidance dated Jan. 31, 2022.
An Office Action dated Nov. 23, 2012, which issued during the prosecution of U.S. Appl. No. 13/033,852.
An Office Action dated Dec. 31, 2012, which issued during the prosecution of U.S. Appl. No. 13/044,694.
An Office Action dated Feb. 6, 2013, which issued during the prosecution of U.S. Appl. No. 13/412,814.
Langer F et al., “Ring plus String: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation,” J Thorac Cardiovasc Surg 133:247-9, Jan. 2007.
Langer F et al., “Ring+String: Successful repair technique for ischemic mitral regurgitation with severe leaflet tethering,” Circulation 120[suppl 1]: S85-S91, Sep. 2009.
“Transcatheter Valve-in-Valve Implantation for Failed Bioprosthetic Heart Valves”, J Webb et al., Circulation. Apr. 2010; 121: 1848-1857.
Jansen, J., Willeke, S., Reul, H. and Rum, G. (1992), Detachable Shape-Memory Sewing Ring for Heart Valves. Artificial Organs, 16:294-297. 1992 (an abstract).
Alexander S. Geha, et al., Replacement of degenerated mitral and aortic bioprostheses without explanation Ann Thorac Surg. Jun. 2001; 72:1509-1514.
An International Search Report and a Written Opinion both dated Oct. 13, 2011 which issued during the prosecution of Applicant's PCT/IL11/00231.
An Office Action dated Jul. 1, 2016, which issued during the prosecution of U.S. Appl. No. 14/161,921.
An International Search Report and a Written Opinion both dated Dec. 5, 2011, which issued during the prosecution of Applicant's PCT/IL11/00582.
An Office Action dated May 29, 2012, which issued during the prosecution of U.S. Appl. No. 12/840,463.
U.S. Appl. No. 61/555,160, filed Nov. 3, 2011.
U.S. Appl. No. 61/525,281, filed Aug. 19, 2011.
U.S. Appl. No. 61/537,276, filed Sep. 21, 2011.
U.S. Appl. No. 61/515,372, filed Aug. 5, 2011.
U.S. Appl. No. 61/492,449, filed Jun. 2, 2011.
U.S. Appl. No. 61/588,892, filed Jan. 20, 2012.
An International Search Report and a Written Opinion both dated Feb. 6, 2013, which issued during the prosecution of Applicant's PCT/IL12/00292.
An International Search Report and a Written Opinion both dated Feb. 6, 2013, which issued during the prosecution of Applicant's PCT/IL12/00293.
An Office Action dated Nov. 28, 2012, which issued during the prosecution of U.S. Appl. No. 12/961,721.
An Office Action dated Feb. 15, 2013, which issued during the prosecution of U.S. Appl. No. 12/840,463.
An Office Action dated Feb. 10, 2014, which issued during the prosecution of U.S. Appl. No. 13/033,852.
An Office Action dated Sep. 19, 2014, which issued during the prosecution of U.S. Appl. No. 13/044,694.
An International Search Report and a Written Opinion both dated Sep. 4, 2014 which issued during the prosecution of Applicant's PCT/IL2014/050087.
Invitation to Pay Additional Fees dated Jun. 12, 2014 PCT/IL2014/050087.
An Office Action dated Jun. 17, 2014, which issued during the prosecution of U.S. Appl. No. 12/961,721.
An Office Action dated Jul. 3, 2014, which issued during the prosecution of U.S. Appl. No. 13/033,852.
An Office Action dated May 23, 2014, which issued during the prosecution of U.S. Appl. No. 13/412,814.
Dominique Himbert; Mitral Regurgitation and Stenosis from Bioprosthesis and Annuloplasty Failure: Transcatheter approaches and outcomes, 24 pages Oct. 28, 2013.
An International Search Report and a Written Opinion both dated Mar. 17, 2014 which issued during the prosecution of Applicant's PCT/IL2013/050937.
An International Preliminary Report on patentabilty dated Dec. 2, 2013, which issued during the prosecution of Applicant's PCT/IL11/00582.
An Office Action dated Sep. 12, 2013, which issued during the prosecution of U.S. Appl. No. 13/412,814.
An Office Action dated Aug. 2, 2013, which issued during the prosecution of U.S. Appl. No. 13/033,852.
An International Preliminary Report on patentabilty dated Sep. 11, 2012, which issued during the prosecution of Applicant's PCT/IL2011/000231.
An Office Action dated Jul. 2, 2014, which issued during the prosecution of U.S. Appl. No. 13/811,308.
An Office Action dated Jan. 20, 2016, which issued during the prosecution of U.S. Appl. No. 14/161,921.
An Office Action dated Jul. 23, 2013, which issued during the prosecution of U.S. Appl. No. 12/961,721.
An Office Action dated Jul. 18, 2013, which issued during the prosecution of U.S. Appl. No. 13/044,694.
An Office Action dated Nov. 8, 2013, which issued during the prosecution of U.S. Appl. No. 12/840,463.
An Office Action dated Jun. 4, 2014, which issued during the prosecution of U.S. Appl. No. 12/840,463.
An Office Action dated Aug. 13, 2012, which issued during the prosecution of U.S. Appl. No. 13/044,694.
An Office Action dated Jul. 2, 2012, which issued during the prosecution of U.S. Appl. No. 13/033,852.
An Office Action dated Feb. 3, 2014, which issued during the prosecution of U.S. Appl. No. 13/811,308.
An International Preliminary Report on patentabilty dated Feb. 11, 2014, which issued during the prosecution of Applicant's PCT/IL12/00292.
An International Preliminary Report on patentabilty dated Feb. 11, 2014, which issued during the prosecution of Applicant's PCT/IL12/00293.
A Notice of Allowance dated Aug. 15, 2014, which issued during the prosecution of U.S. Appl. No. 13/412,814.
An Office Action dated Aug. 14. 2012, which issued during the prosecution of U.S. Appl. No. 12/961,721.
U.S. Appl. No. 61/283,819, filed Dec. 8, 2009.
Notice of Allowance dated Apr. 8, 2016, which issued during the prosecution of U.S. Appl. No. 14/237,258.
U.S. Appl. No. 61/756,034, filed Jan. 24, 2013.
U.S. Appl. No. 61/756,049, filed Jan. 24, 2013.
An International Preliminary Report on Patentability dated Jan. 31, 2017, which issued during the prosecution of Applicant's PCT/IL2015/050792.
U.S. Appl. No. 62/372,861, filed Aug. 10, 2016.
Notice of Allowance dated Aug. 13, 2018, which issued during the prosecution of U.S. Appl. No. 15/995,597.
Notice of Allowance dated Apr. 20, 2018, which issued during the prosecution of U.S. Appl. No. 15/878,206.
An Office Action dated Dec. 10, 2015, which issued during the prosecution of U.S. Appl. No. 14/237,258.
An International Preliminary Report on Patentability dated Jul. 28, 2015, which issued during the prosecution of Applicant's PCT/IL2014/050087.
An Office Action dated Nov. 27, 2015, which issued during the prosecution of U.S. Appl. No. 14/626,267.
An Office Action dated Jan. 21, 2016, which issued during the prosecution of U.S. Appl. No. 14/237,264.
An Office Action dated Jan. 30, 2015, which issued during the prosecution of UK Patent Application No. 1413474.6.
An International Search Report and a Written Opinion both dated May 30, 2016, which issued during the prosecution of Applicant's PCT/IL2016/050125.
An Office Action dated Sep. 26, 2016, which issued during the prosecution of U.S. Appl. No. 14/763,004.
An Office Action dated Jan. 18, 2017, which issued during the prosecution of U.S. Appl. No. 14/626,267.
An Office Action dated Feb. 7, 2017, which issued during the prosecution of U.S. Appl. No. 14/689,608.
An Office Action dated Feb. 8, 2017, which issued during the prosecution of UK Patent Application No. 1613219.3.
An Office Action together dated Feb. 10, 2017, which issued during the prosecution of European Patent Application No. 12821522.5.
An International Search Report and a Written Opinion both dated Oct. 27, 2015, which issued during the prosecution of Applicant's PCT/IL2015/050792.
European Search Report dated Feb. 18, 2015, which issued during the prosecution of Applicant's European App No. 12821522.5.
Saturn Project—a novel solution for transcatheter heart valve replacement specifically designed to address clinical therapeutic needs on mitral valve: Dec. 2016.
Righini presentation EuroPCR May 2015 (Saturn)—(downloaded from: https://www.pcronline.com/Cases-resourcesimages/Resources/Course-videos-slides/2015/Cardiovascularinnovation-pipeline-Mitral-and-tricuspid-valve-interventions).
An Advisory Action dated Apr. 2, 2018, which issued during the prosecution of U.S. Appl. No. 14/763,004.
An Office Action dated Jul. 26, 2018, which issued during the prosecution of U.S. Appl. No. 15/872,501.
An Office Action dated May 4, 2018, which issued during the prosecution of U.S. Appl. No. 15/872,501.
An Office Action dated Apr. 20, 2018, which issued during the prosecution of U.S. Appl. No. 15/886,517.
An Office Action dated Aug. 9, 2018, which issued during the prosecution of U.S. Appl. No. 15/899,858.
An Office Action dated Aug. 9, 2018, which issued during the prosecution of U.S. Appl. No. 15/902,403.
An Office Action dated Jun. 28, 2018, which issued during the prosecution of Design U.S. Appl. No. 29/635,658.
An Office Action dated Jun. 28, 2018, which issued during the prosecution of Design U.S. Appl. No. 29/635,661.
Georg Lutter, MD, et al; “Percutaneous Valve Replacement: Current State and Future Prospects”, The Annals of Thoracic Surgery ; vol. 78, pp. 2l99-2206; Dec. 2004.
An Office Action dated Jun. 6, 2018, which issued during the prosecution of UK Patent Application No. 1720803.4.
An International Search Report and a Written Opinion both dated Jun. 20, 2018, which issued during the prosecution of Applicant's PCT/IL2018/050024.
An Office Action dated Jun. 18, 2018, which issued during the prosecution of UK Patent Application No. 1800399.6.
An Office Action dated Oct. 23, 2017, which issued during the prosecution of U.S. Appl. No. 14/763,004.
An Office Action dated Dec. 7, 2017, which issued during the prosecution of U.S. Appl. No. 15/213,791.
Interview Summary dated Feb. 8, 2018, which issued during the prosecution of U.S. Appl. No. 15/213,791.
An Office Action dated Feb. 7, 2018, which issued during the prosecution of U.S. Appl. No. 15/197,069.
An International Search Report and a Written Opinion both dated Nov. 24, 2017, which issued during the prosecution of Applicant's PCT/IL2017/050873.
An Office Action dated Jan. 5, 2018, which issued during the prosecution of U.S. Appl. No. 15/541,783.
An Office Action dated Feb. 2, 2018, which issued during the prosecution of U.S. Appl. No. 15/329,920.
An Invitation to pay additional fees dated Jan. 2, 2018, which issued during the prosecution of Applicant's PCT/IL2017/050849.
An Invitation to pay additional fees dated Sep. 29, 2017, which issued during the prosecution of Applicant's PCT/IL2017/050873.
European Search Report dated Jun. 29, 2017, which issued during the prosecution of Applicant's European App No. 11809374.9.
An Invitation to pay additional fees dated Oct. 11, 2018, which issued during the prosecution of Applicant's PCT/IL2018/050725.
An Office Action dated Dec. 4, 2018, which issued during the prosecution of U.S. Appl. No. 16/045,059.
An Office Action together with the English translation dated Nov. 5, 2018 which issued during the prosecution of Chinese Patent Application No. 201680008328.5.
Notice of Allowance dated Sep. 25, 2018, which issued during the prosecution of U.S. Appl. No. 15/188,507.
European Search Report dated Sep. 26, 2018 which issued during the prosecution of Applicant's European App No. 18186784.7.
An Office Action dated Jun. 30, 2015, which issued during the prosecution of U.S. Appl. No. 14/522,987.
Notice of Allowance dated Dec. 13, 2013, which issued during the prosecution of U.S. Appl. No. 13/675,119.
An International Preliminary Report on Patentability dated Aug. 8, 2017, which issued during the prosecution of Applicant's PCT/IL2016/050125.
An Office Action dated Jan. 17, 2018, which issued during the prosecution of U.S. Appl. No. 14/763,004.
An Office Action dated Mar. 25, 2015, which issued during the prosecution of U.S. Appl. No. 12/840,463.
An Office Action dated Feb. 25, 2016, which issued during the prosecution of U.S. Appl. No. 14/522,987.
An Office Action dated Apr. 13, 2016, which issued during the prosecution of U.S. Appl. No. 14/626,267.
An Office Action dated Aug. 28, 2015, which issued during the prosecution of U.S. Appl. No. 14/237,264.
Maisano (2015) TCR presentation re Cardiovalve.
Notice of Allowance dated Sep. 29, 2016, which issued during the prosecution of U.S. Appl. No. 14/442,541.
Notice of Allowance dated May 10, 2016, which issued during the prosecution of U.S. Appl. No. 14/237,258.
Notice of Allowance dated May 20, 2016, which issued during the prosecution of U.S. Appl. No. 14/237,258.
An International Preliminary Report on Patentability dated May 19, 2015, which issued during the prosecution of Applicant's PCT/IL2013/050937.
Dusan Pavcnik, MD, PhD2, et al; “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement”, Cardiovascular Radiology. Radiology Apr. 1992, vol. 183, pp. 151-154.
Notice of Allowance dated Oct. 16, 2013, which issued during the prosecution of U.S. Appl. No. 13/675,119.
Notice of Allowance dated Feb. 11, 2015, which issued during the prosecution of U.S. Appl. No. 13/033,852.
Notice of Allowance dated May 5, 2015, which issued during the prosecution of U.S. Appl. No. 12/840,463.
Notice of Allowance dated Mar. 10, 2015, which issued during the prosecution of U.S. Appl. No. 13/811,308.
Notice of Allowance dated Jul. 1, 2016, which issued during the prosecution of U.S. Appl. No. 14/442,541.
An Office Action dated Mar. 25, 2019, which issued during the prosecution of European Patent Application No. 14710060.6.
An International Search Report and a Written Opinion both dated Nov. 9, 2018, which issued during the prosecution of Applicant's PCT/IL2018/050869.
An International Search Report and a Written Opinion both dated Dec. 5, 2018, which issued during the prosecution of Applicant's PCT/IL2018/050725.
An International Search Report and a Written Opinion both dated Apr. 25, 2019, which issued during the prosecution of Applicant's PCT/IL2019/050142.
An International Preliminary Report on Patentability dated Feb. 12, 2019, which issued during the prosecution of Applicant's PCT/IL2017/050873.
An Office Action dated Sep. 13, 2019, which issued during the prosecution of U.S. Appl. No. 16/460,313.
An Office Action dated Nov. 26, 2019, which issued during the prosecution of U.S. Appl. No. 16/532,945.
An Office Action dated Aug. 16, 2019, which issued during the prosecution of U.S. Appl. No. 15/668,659.
An Office Action dated Nov. 1, 2019, which issued during the prosecution of U.S. Appl. No. 15/872,501.
An Office Action dated Jun. 14, 2019, which issued during the prosecution of U.S. Appl. No. 15/703,385.
An Office Action dated Oct. 4, 2019, which issued during the prosecution of U.S. Appl. No. 16/183,140.
An Office Action dated Jun. 13, 2019, which issued during the prosecution of U.S. Appl. No. 16/388,038.
An International Preliminary Report on Patentability dated Feb. 4, 2020, which issued during the prosecution of Applicant's PCT/IL2018/050725.
An International Search Report and a Written Opinion both dated Jan. 25, 2019, which issued during the prosecution of Applicant's PCT/IL2018/051122.
An International Search Report and a Written Opinion both dated May 13, 2019, which issued during the prosecution of Applicant's PCT/IL2018/051350.
An International Preliminary Report on Patentability dated Feb. 5, 2019, which issued during the prosecution of Applicant's PCT/IL2017/050849.
An Office Action dated Oct. 25, 2018, which issued during the prosecution of U.S. Appl. No. 14/763,004.
An Office Action dated Mar. 4, 2019, which issued during the prosecution of U.S. Appl. No. 14/763,004.
An Office Action dated Jan. 9, 2019, which issued during the prosecution of U.S. Appl. No. 15/329,920.
An Office Action dated Jan. 30, 2019, which issued during the prosecution of U.S. Appl. No. 15/872,501.
An Office Action dated Feb. 5, 2019, which issued during the prosecution of U.S. Appl. No. 15/899,858.
An Office Action dated May 23, 2019, which issued during the prosecution of U.S. Appl. No. 15/668,659.
An Office Action dated May 1, 2019, which issued during the prosecution of U.S. Appl. No. 15/691,032.
An Office Action dated Aug. 1, 2019, which issued during the prosecution of U.S. Appl. No. 15/668,559.
An Office Action dated Jun. 19, 2019, which issued during the prosecution of U.S. Appl. No. 15/682,789.
Notice of Allowance dated Jan. 13, 2020, which issued during the prosecution of U.S. Appl. No. 15/956,956.
An Office Action dated Jun. 25, 2019, which issued during the prosecution of U.S. Appl. No. 15/329,920.
An Office Action dated May 16, 2019, which issued during the prosecution of U.S. Appl. No. 15/433,547.
U.S. Appl. No. 62/560,384, filed Sep. 19, 2017.
U.S. Appl. No. 62/112,343, filed Feb. 5, 2015.
An International Preliminary Report on Patentability dated Feb. 11, 2020, which issued during the prosecution of Applicant's PCT/IL2018/050869.
An International Preliminary Report on Patentability dated Oct. 20, 2020, which issued during the prosecution of Applicant's PCT/IL2019/050142.
An Office Action dated Jan. 6, 2020, which issued during the prosecution of U.S. Appl. No. 16/660,231.
An Office Action dated Dec. 31, 2019, which issued during the prosecution of U.S. Appl. No. 16/183,140.
Notice of Allowance dated Apr. 24, 2019, which issued during the prosecution of U.S. Appl. No. 16/045,059.
An Office Action dated Jan. 14, 2020, which issued during the prosecution of U.S. Appl. No. 16/284,331.
European Search Report dated Mar. 5, 2020 which issued during the prosecution of Applicant's European App No. 17752184.6.
European Search Report dated Mar. 4, 2020 which issued during the prosecution of Applicant's European App No. 16706913.7.
Notice of Allowance dated Mar. 12, 2020, which issued during the prosecution of U.S. Appl. No. 16/460,313.
An Office Action dated Jan. 9, 2020, which issued during the prosecution of U.S. Appl. No. 15/600,190.
An Office Action dated Jan. 3, 2020, which issued during the prosecution of U.S. Appl. No. 16/678,355.
An Office Action dated Feb. 6, 2020, which issued during the prosecution of U.S. Appl. No. 15/668,659.
Notice of Allowance dated Jan. 16, 2020, which issued during the prosecution of U.S. Appl. No. 16/532,945.
Notice of Allowance dated Aug. 19, 2020, which issued during the prosecution of U.S. Appl. No. 16,637,166.
Notice of Allowance dated Jul. 27, 2020, which issued during the prosecution of U.S. Appl. No. 16/637,166.
Notice of Allowance dated Jun. 23, 2020, which issued during the prosecution of U.S. Appl. No. 16/637,166.
Notice of Allowance dated May 7, 2020, which issued during the prosecution of U.S. Appl. No. 16/637,166.
Sündermann, Simon H., et al. “Feasibility of the Engager™ aortic transcatheter valve system using a flexible over-the-wire design.” European Journal of Cardio-Thoracic Surgery 42.4 (2012): e48-e52.
An Office Action summarized English translation and Search Report dated Jul. 3, 2020, which issued during the prosecution of Chinese Patent Application No. 201780061210.3.
Serruys, P. W., Piazza, N., Cribier, A., Webb, J., Laborde, J. C., & de Jaegere, P. (Eds.). (2009). Transcatheter aortic valve implantation: tips and tricks to avoid failure. CRC Press.—Screenshots from Google Books downloaded from: https://books.google.co.il/books?id=FLzLBQAAQBAJ&lpg=PA198&ots=soqWrDH-v_&dq=%20%22Edwards%20SAPIEN%22&lr&pg=PA20#v=onepage&q=%22Edwards%20SAPIEN%22&f=false ; Downloaded on Jun. 18, 2020.
An International Search Report and a Written Opinion both dated Jun. 24, 2020, which issued during the prosecution of Applicant's PCT/IL2019/051398.
An Office Action dated Jul. 14, 2020, which issued during the prosecution of U.S. Appl. No. 16/324,339.
Notice of Allowance dated Aug. 28, 2020, which issued during the prosecution of U.S. Appl. No. 16/324,339.
Notice of Allowance dated Jul. 29, 2020, which issued during the prosecution of U.S. Appl. No. 16/132,937.
An Office Action dated Jul. 29, 2020, which issued during the prosecution of U.S. Appl. No. 16/269,328.
Notice of Allowance dated Aug. 26, 2020, which issued during the prosecution of U.S. Appl. No. 16/269,328.
An Office Action dated Aug. 7, 2020, which issued during the prosecution of U.S. Appl. No. 15/668,659.
Tchetche, D. and Nicolas M. Van Mieghem: “New-generation TAVI devices: description and specifications” EuroIntervention, 2014, No. 10:U90-U100.
An Office Action dated Aug. 23, 2019, which issued during the prosecution of U.S. Appl. No. 15/600,190.
Symetis S.A.: “ACURATE neo™ Aortic Bioprosthesis for Implantation using the ACURATE neo™ TA Transapical Delivery System in Patients with Severe Aortic Stenosis,” Clinical Investigation Plan, Protocol No. 2015-01, Vs. No. 2, 2015:1-76.
Notice of Allowance dated Sep. 10, 2020, which issued during the prosecution of U.S. Appl. No. 15/600,190.
Notice of Allowance dated Sep. 10, 2020, which issued during the prosecution of U.S. Appl. No. 16/324,339.
Notice of Allowance dated Oct. 19, 2020, which issued during the prosecution of U.S. Appl. No. 16/324,339.
Notice of Allowance dated Sep. 21, 2020, which issued during the prosecution of U.S. Appl. No. 16/269,328.
Notice of Allowance dated Oct. 28, 2020, which issued during the prosecution of U.S. Appl. No. 16/269,328.
Notice of Allowance dated Jan. 16, 2020, which issued during the prosecution of U.S. Appl. No. 15/872,501.
An Office Action dated May 11, 2020, which issued during the prosecution of U.S. Appl. No. 16/811,732.
An Office Action dated Sep. 24, 2020, which issued during the prosecution of U.S. Appl. No. 16/811,732.
Notice of Allowance dated Mar. 29, 2017, which issued during the prosecution of U.S. Appl. No. 14/161,921.
Agarwal et al. International Cardiology Perspective Functional Tricuspid Regurgitation, Circ Cardiovasc Interv 2009;2;2;565-573 (2009).
Alfieri et al., “An effective technique to correct anterior mitral leaflet prolapse,” J Card 14(6):468-470 (1999).
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic Cardiovascular Surgery 122:674-681 (2001).
Alfieri, “The edge-to-edge repair of the mitral valve,” [Abstract] 6th Annual NewEra Cardiac Care: Innovation & Technology, Heart Surgery Forum pp. 103. (2000).
Alfieri et al.“Novel Suture Device for Beating-Heart Mitral Leaflet Approximation”, Ann Thorac Surg. 2002, 74:1488-1493.
Alfieri et al., “The edge to edge technique,” The European Association for Cardio-Thoracic Surgery 14th Annual Meeting Oct. 7-11, Book of Procees. (2000).
Amplatzer Cardiac Plug brochure (English pages), AGA Medical Corporation (Plymouth, MN) (copyright 2008-2010, downloaded Jan. 11, 2011).
Amplatzer® Cribriform Occluder. A patient guide to Percutaneous, Transcatheter, Atrial Septal Defect Closuer, AGA Medical Corporation, Apr. 2008.
Amplatzer® Septal Occluder. A patient guide to the Non-Surgical Closuer of the Atrial Septal Defect Using the Amplatzer Septal Occluder System, AGA Medical Corporation, Apr. 2008.
Brennan, Jennifer, 510(k) Summary of safety and effectiveness, Jan. 2008.
Dictionary.com definition of “lock”, Jul. 29, 2013.
Dang NC et al. “Simplified Placement of Multiple Artificial Mitral Valve Chords,” The Heart Surgery Forum #2005-1005, 8 (3) (2005).
Maisano, The double-orifice technique as a standardized approach to treat mitral . . . , European Journal of Cardio-thoracic Surgery 17 (2000) 201-205.
“Two dimensional real-time ultrasonic imaging of the heart and great vessels”, Mayo Clin Proc. vol. 53:271-303, 1978.
Odell JA et al., “Early Results 04yf a Simplified Method of Mitral Valve Annuloplasty,” Circulation 92:150-154 (1995).
O'Reilly S et al., “Heart valve surgery pushes the envelope,” Medtech Insight 8(3): 73, 99-108 (2006).
Swain CP et al., “An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract,” Gastrointestinal Endoscopy 40(6): 730-734 (1994).
An Invitation to pay additional fees dated Jan. 31, 2014, which issued during the prosecution of Applicant's PCT/IL2013/050860.
U.S. Appl. No. 62/030,715, filed Jul. 30, 2014.
U.S. Appl. No. 62/139,854, filed Mar. 30, 2015.
U.S. Appl. No. 61/312,412, filed Mar. 10, 2010.
An Invitation to pay additional fees dated Jan. 31, 2014, which issued during the prosecution of Applicant's PCT/IL2013/050861.
An International Preliminary Report on Patentability dated Dec. 23, 2013, which issued during the prosecution of Applicant's PCT/IL2012/000250.
An International Preliminary Report on Patentability dated Sep. 18, 2007, which issued during the prosecution of Applicant's PCT/IL2006/000342.
An International Preliminary Report on Patentability dated Jun. 5, 2012, which issued during the prosecution of Applicant's PCT/IL2010/001024.
An International Preliminary Report on Patentability dated Apr. 28, 2015, which issued during the prosecution of Applicant's PCT/IL2013/050861.
An International Preliminary Report on Patentability dated Apr. 26, 2016, which issued during the prosecution of Applicant's PCT/IL2014/050914.
An International Preliminary Report on Patentability dated Jun. 10, 2009, which issued during the prosecution of Applicant's PCT/IL07/01503.
An International Preliminary Report on Patentability dated Dec. 18, 2010, which issued during the prosecution of Applicant's PCT/IL09/00593.
An International Preliminary Report on Patentability dated Jun. 29, 2011, which issued during the prosecution of Applicant's PCT/IL2009/001209.
Notice of Allowance dated Aug. 18, 2017, which issued during the prosecution of U.S. Appl. No. 14/689,608.
Notice of Allowance dated Jul. 6, 2017, which issued during the prosecution of U.S. Appl. No. 14/689,608.
Notice of Allowance dated May 22, 2017, which issued during the prosecution of U.S. Appl. No. 14/689,608.
An Office Action dated Apr. 21, 2017, which issued during the prosecution of U.S. Appl. No. 15/213,791.
An Office Action dated Sep. 29, 2017, which issued during the prosecution of U.S. Appl. No. 15/197,069.
An International Preliminary Report on Patentability dated Nov. 9, 2011, which issued during the prosecution of Applicant's PCT/IL2010/000357.
An International Preliminary Report on Patentability dated Nov. 9, 2011 which issued during the prosecution of Applicant's PCT/IL2010/000358.
An International Preliminary Report on Patentability dated Nov. 27, 2012, which issued during the prosecution of Applicant's PCT/IL2011/000404.
An International Preliminary Report on Patentability dated Feb. 4, 2014, which issued during the prosecution of Applicant's PCT/IL2011/000446.
An International Preliminary Report on Patentability dated Jan. 29, 2013, which issued during the prosecution of Applicant's PCT/IL2011/000600.
An International Preliminary Report on Patentability dated Dec. 23, 2014, which issued during the prosecution of Applicant's PCT/IL2012/050451.
A Notice of Allowance dated Jul. 30, 2015, which issued during the prosecution of U.S. Appl. No. 13/319,007.
An Office Action dated Sep. 29, 2014, which issued during the prosecution of U.S. Appl. No. 13/504,870.
An Office Action dated Jan. 13, 2015, which issued during the prosecution of U.S. Appl. No. 13/707,013.
An Office Action dated Mar. 23, 2015, which issued during the prosecution of U.S. Appl. No. 13/707,013.
Notice of Allowance dated Mar. 25, 2015, which issued during the prosecution of U.S. Appl. No. 13/749,153.
An Office Action dated Oct. 3, 2014, which issued during the prosecution of U.S. Appl. No. 13/749,153.
Notice of Allowance dated May 22, 2015, which issued during the prosecution of U.S. Appl. No. 13/749,153.
Notice of Allowance dated Aug. 3, 2015, which issued during the prosecution of U.S. Appl. No. 13/749,153.
An Office Action dated Dec. 19, 2013, which issued during the prosecution of U.S. Appl. No. 14/027,934.
An Office Action dated Jun. 11, 2014, which issued during the prosecution of U.S. Appl. No. 14/027,934.
An Office Action dated Aug. 22, 2014, which issued during the prosecution of U.S. Appl. No. 14/027,934.
An Office Action dated Apr. 2, 2015, which issued during the prosecution of U.S. Appl. No. 14/027,934.
An Office Action dated Jan. 5, 2016, which issued during the prosecution of U.S. Appl. No. 14/027,934.
An Office Action dated Jan. 5, 2016, which issued during the prosecution of U.S. Appl. No. 14/084,426.
An Office Action dated Mar. 16, 2015, which issued during the prosecution of U.S. Appl. No. 14/084,426.
An Office Action dated Jan. 6, 2016, which issued during the prosecution of U.S. Appl. No. 14/128,756.
An Office Action dated May 11, 2016, which issued during the prosecution of U.S. Appl. No. 14/128,756.
Notice of Allowance dated Oct. 20, 2015, which issued during the prosecution of U.S. Appl. No. 12/996,954.
Notice of Allowance dated Feb. 19, 2014, which issued during the prosecution of U.S. Appl. No. 12/795,192.
An Office Action dated Jul. 20, 2012, which issued during the prosecution of U.S. Appl. No. 12/843,412.
An Office Action dated Mar. 27, 2013, which issued during the prosecution of U.S. Appl. No. 12/843,412.
A Restriction Requirement dated May 1, 2012, which issued during the prosecution of U.S. Appl. No. 12/843,412.
A Notice of Allowance dated May 2, 2013, which issued during the prosecution of U.S. Appl. No. 12/843,412.
A Restriction Requirement dated Nov. 19, 2012, which issued during the prosecution of U.S. Appl. No. 12/926,673.
An Office Action dated Feb. 12, 2013, which issued during the prosecution of U.S. Appl. No. 12/926,673.
An Office Action dated Oct. 22, 2013, which issued during the prosecution of U.S. Appl. No. 12/926,673.
A Notice of Allowance dated Jan. 7, 2014, which issued during the prosecution of U.S. Appl. No. 12/926,673.
An Office Action dated Oct. 9, 2013, which issued during the prosecution of U.S. Appl. No. 12/996,954.
An Office Action dated Mar. 24, 2015, which issued during the prosecution of U.S. Appl. No. 12/996,954.
An Office Action dated Oct. 5, 2012, which issued during the prosecution of U.S. Appl. No. 12/996,954.
Notice of Allowance dated Jul. 7, 2015, which issued during the prosecution of U.S. Appl. No. 12/996,954.
An Office Action dated Nov. 16, 2018, which issued during the prosecution of U.S. Appl. No. 16/042,028.
An International Search Report with Written Opinion both dated Feb. 2, 2012, which issued during the prosecution of Applicant's PCT/IL2011/000600.
An International Search Report together with Written Opinion both dated Mar. 30, 2011, which issued during the prosecution of Applicant's PCT/IL2010/001024.
An International Search Report and a Written Opinion both dated Feb. 10, 2011, which issued during the prosecution of Applicant's PCT/IL10/00890.
An Office Action dated May 28, 2015, which issued during the prosecution of U.S. Appl. No. 14/128,756.
An Office Action dated Sep. 6, 2018, which issued during the prosecution of U.S. Appl. No. 15/994,022.
An Office Action dated Sep. 7, 2018, which issued during the prosecution of U.S. Appl. No. 15/995,725.
An Office Action dated Nov. 26, 2018, which issued during the prosecution of U.S. Appl. No. 16/040,831.
An Office Action dated Jul. 11, 2018, which issued during the prosecution of U.S. Appl. No. 15/978,494.
An Office Action dated Nov. 23, 2018, which issued during the prosecution of U.S. Appl. No. 16/041,208.
An Office Action dated Jun. 15, 2018, which issued during the prosecution of U.S. Appl. No. 15/970,314.
An Office Action dated Oct. 12, 2018, which issued during the prosecution of U.S. Appl. No. 15/970,314.
An Office Action dated Jul. 26, 2018, which issued during the prosecution of U.S. Appl. No. 15/979,686.
An Office Action dated Sep. 10, 2018, which issued during the prosecution of U.S. Appl. No. 16/008,618.
An International Preliminary Report on Patentability dated Apr. 28, 2015, which issued during the prosecution of Applicant's PCT/IL2013/050860.
An Office Action dated Apr. 22, 2019, which issued during the prosecution of U.S. Appl. No. 15/668,559.
Notice of Allowance dated Aug. 30, 2019, which issued during the prosecution of U.S. Appl. No. 15/682,789.
Notice of Allowance dated Mar. 29, 2019, which issued during the prosecution of U.S. Appl. No. 15/541,783.
Dieter RS, “Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve,” Applications in Imaging, Cardiac Interventions, Supported by an educational grant from Amersham Health pp. 11-14 (2003).
An Advisory Action dated Dec. 13, 2013, which issued during the prosecution of U.S. Appl. No. 12/961,721.
An Office Action dated Aug. 7, 2015, which issued during the prosecution of U.S. Appl. No. 14/128,756.
An Office Action dated May 19, 2011, which issued during the prosecution of U.S. Appl. No. 12/706,868.
An Office Action dated Sep. 1, 2011, which issued during the prosecution of U.S. Appl. No. 12/706,868.
An Office Action dated May 30, 2012, which issued during the prosecution of U.S. Appl. No. 12/706,868.
A Notice of Allowance dated Sep. 18, 2012, which issued during the prosecution of U.S. Appl. No. 12/706,868.
Restriction Requirement dated May 5, 2011, which issued during the prosecution of U.S. Appl. No. 12/706,868.
A Restriction Requirement dated Mar. 30, 2012, which issued during the prosecution of U.S. Appl. No. 12/785,717.
An Office Action dated Oct. 5, 2020, which issued during the prosecution of Canadian Patent Application No. 2,973,940.
An Office Action dated Nov. 30, 2020, which issued during the prosecution of U.S. Appl. No. 16/138,129.
An Office Action summarized English translation and Search Report dated Nov. 25, 2020, which issued during the prosecution of Chinese Patent Application No. 201910449820.1.
Notice of Allowance dated Nov. 19, 2020, which issued during the prosecution of U.S. Appl. No. 16/318,025.
An Office Action dated Aug. 2, 2011, which issued during the prosecution of U.S. Appl. No. 12/435,291.
Notice of Allowance dated Dec. 7, 2011, which issued during the prosecution of U.S. Appl. No. 12/435,291.
An Office Action dated Apr. 6, 2010, which issued during the prosecution of Applicant's U.S. Appl. No. 12/484,512.
An Office Action dated Oct. 6, 2010, which issued during the prosecution of Applicant's U.S. Appl. No. 12/484,512.
Notice of Allowance dated Apr. 20, 2011, which issued during the prosecution of U.S. Appl. No. 12/484,512.
Notice of Allowance dated Mar. 23, 2011, which issued during the prosecution of U.S. Appl. No. 12/484,512.
An Office Action dated Jan. 27, 2012, which issued during the prosecution of U.S. Appl. No. 12/548,991.
An Office Action dated Aug. 6, 2012, which issued during the prosecution of U.S. Appl. No. 12/548,991.
An Advisory Action dated Sep. 6, 2012 which issued during the prosecution of U.S. Appl. No. 12/548,991.
Notice of Allowance dated Jun. 23, 2014, which issued during the prosecution of U.S. Appl. No. 12/548,991.
A Restriction Requirement dated Nov. 14, 2011 which issued during the prosecution of U.S. Appl. No. 12/548,991.
Amendment, Terminal Disclaimer and Extension dated Jun. 27, 2012, which issued during the prosecution of U.S. Appl. No. 12/548,991.
A Restriction Requirement dated Jul. 5, 2012, which issued during the prosecution of U.S. Appl. No. 12/563,930.
An Office Action dated Apr. 2, 2013, which issued during the prosecution of U.S. Appl. No. 12/785,717.
An Office Action dated Dec. 27, 2013, which issued during the prosecution of U.S. Appl. No. 12/785,717.
An Office Action dated Nov. 5, 2012, which issued during the prosecution of U.S. Appl. No. 12/795,026.
An Office Action dated May 10, 2012, which issued during the prosecution of U.S. Appl. No. 12/795,026.
Notice of Allowance dated Nov. 13, 2014, which issued during the prosecution of U.S. Appl. No. 12/795,026.
Notice of Allowance dated Dec. 24, 2014, which issued during the prosecution of U.S. Appl. No. 12/795,026.
A Restriction Requirement dated Jan. 6, 2012, which issued during the prosecution of U.S. Appl. No. 12/795,026.
A Restriction Requirement dated Sep. 14, 2012, which issued during the prosecution of U.S. Appl. No. 12/795,192.
An Office Action dated Aug. 15, 2013, which issued during the prosecution of U.S. Appl. No. 12/795,192.
An Office Action dated Jan. 17, 2013, which issued during the prosecution of U.S. Appl. No. 12/795,192.
Notice of Allowance dated Nov. 19, 2013, which issued during the prosecution of U.S. Appl. No. 12/795,192.
A Notice of Allowance dated Jun. 26, 2012, which issued during the prosecution of U.S. Appl. No. 12/608,316.
An Office Action dated Nov. 14, 2011, which issued during the prosecution of U.S. Appl. No. 12/608,316.
A Restriction Requirement dated Apr. 1, 2011, which issued during the prosecution of U.S. Appl. No. 12/608,316.
An Office Action dated Jul. 6, 2012, which issued during the prosecution of U.S. Appl. No. 12/692,061.
An Office Action dated Jan. 23, 2012, which issued during the prosecution of U.S. Appl. No. 12/692,061.
An Office Action dated Mar. 9, 2012, which issued during the prosecution of U.S. Appl. No. 12/689,635.
An Office Action dated Nov. 30, 2012, which issued during the prosecution of U.S. Appl. No. 12/689,635.
A Notice of Allowance dated May 22, 2013, which issued during the prosecution of U.S. Appl. No. 12/689,635.
Restriction Requirement dated Nov. 14, 2011, which issued during the prosecution of U.S. Appl. No. 12/689,635.
An Office Action dated May 6, 2013, which issued during the prosecution of U.S. Appl. No. 12/689,693.
An Office Action dated Feb. 3, 2014, which issued during the prosecution of U.S. Appl. No. 12/689,693.
Notice of Allowance dated Jun. 11, 2014, which issued during the prosecution of U.S. Appl. No. 12/689,693.
A Restriction Requirement dated Sep. 17, 2012, which issued during the prosecution of U.S. Appl. No. 12/689,693.
A Notice of Allowance dated Sep. 3, 2014, which issued during the prosecution of U.S. Appl. No. 12/689,693.
European Search Report dated Jul. 8, 2016, which issued during the prosecution of Applicant's European App No. 13849843.1.
A Supplementary European Search Report dated Dec. 4, 2012, which issued during the prosecution of European Patent Application No. EP 09834225.6.
A Supplementary European Search Report dated Mar. 28, 2013, which issued during the prosecution of European Patent Application No. EP 1077 2091.4.
Search Report in European Patent Application 10772090.6 dated Jan. 17, 2014.
Supplementary European Search Report dated Oct. 23, 2014 which issued during the prosecution of Applicant's European App No. 10826224.7.
Notice of Allowance dated May 6, 2016, which issued during the prosecution of U.S. Appl. No. 14/667,090.
Notice of Allowance dated Apr. 12, 2016, which issued during the prosecution of U.S. Appl. No. 14/667,090.
An Office Action dated Jun. 7, 2013 which issued during the prosecution of U.S. Appl. No. 13/141,606.
An Office Action dated Jun. 13, 2014, which issued during the prosecution of U.S. Appl. No. 13/141,606.
Notice of Allowance dated Sep. 29, 2014, which issued during the prosecution of U.S. Appl. No. 13/141,606.
An Office Action dated Feb. 4, 2013 which issued during the prosecution of U.S. Appl. No. 13/141,606.
An English translation of an Office Action dated Apr. 23, 2014 which issued during the prosecution of Chinese Patent Application No. 201080059948.4.
Communication dated Jul. 25, 2014, issued by the State Intellectual Property Office of the P.R. of China in counterpart Application No. 200980157331.3.
An International Search Report and a Written Opinion both dated Jan. 25, 2016, which issued during the prosecution of Applicant's PCT/IL2015/051027.
An International Search Report dated May 19, 2011, which issued during the prosecution of Applicant's PCT/IL2011/00064.
An International Search Report and a Written Opinion both dated Feb. 22, 2013, which issued during the prosecution of Applicant's PCT/IL201/050451.
An International Search Report & Written Opinion both dated Mar. 21, 2014, which issued during the prosecution of Applicant's PCT/IL13/50992.
An International Search Report and Written Opinion both dated Apr. 9, 2014, which issued during the prosecution of Applicant's PCT/IL13/50860.
An International Search Report and a Written Opinion both dated Apr. 15, 2014, which issued during the prosecution of Applicant's PCT/IL2013/050861.
An International Search Report & Written Opinion both dated May 12, 2015, which issued during the prosecution of Applicant's PCT/IL2014/050914.
An International Search Report and a Written Opinion both dated May 30, 2007, which issued during the prosecution of Applicant's PCT/IL2006/000342.
An International Search Report and a Written Opinion both dated Jun. 10, 2010, which issued during the prosecution of Applicant's PCT/IL09/01209.
An International Search Report and a Written Opinion both dated Aug. 17, 2010, which issued during the prosecution of Applicant's PCT/IL10/00357.
An International Search Report & Written Opinion both dated Sep. 8, 2009, which issued during the prosecution of Applicant's PCT/IL09/00593.
An International Search Report and a Written Opinion both dated Sep. 12, 2008, which issued during the prosecution of Applicant's PCT/IL07/01503.
An International Search Report and Written Opinion dated Nov. 8, 2010, which issued during the prosecution of Applicant's PCT/IL2010/000358.
An International Search Report and a Written Opinion both dated Nov. 23, 2011, which issued during the prosecution of Applicant's PCT/IL2011/000446.
Supplementary European Search Report dated Sep. 25, 2015, which issued during the prosecution of Applicant's European App No. 09794095.1.
A Supplementary European Search Report dated Feb. 1, 2011, which issued during the prosecution of European Patent Application No. EP 07849540.
An English translation of an Office Action dated Dec. 12, 2013 which issued during the prosecution of Chinese Patent Application No. 200980157331.3.
Communication regarding amended claims filed dated Dec. 27, 2012, regarding European App No. 11792047.0.
An Office Action dated Mar. 23, 2015, which issued during the prosecution of European Patent Application No. EP 09834225.6.
An English translation of an Office Action dated Jul. 17, 2015 which issued during the prosecution of Chinese Patent Application No. 201080059948.4.
An English translation of an Office Action dated Dec. 16, 2015 which issued during the prosecution of Chinese Patent Application No. 201080059948.4.
Communication from the European Patent Office dated Jun. 11, 2015, which issued during the prosecution of European Patent Application No. 11811934.
A communication from the European Patent Office dated Sep. 28, 2011 which issued during the prosecution of European Application No. 09834225.6.
A communication from the European Patent Office dated Oct. 19, 2012 which issued during the prosecution of European Application No. 11792047.0.
An Office Action dated Oct. 23, 2012, which issued during the prosecution of Japanese Patent Application No. 2009-539871.
An English Translation of an Office Action dated Nov. 24, 2015, which issued during the prosecution of Israel Patent Application No. 223448. (the relevant part only).
Notice of Allowance dated Nov. 17, 2015, which issued during the prosecution of U.S. Appl. No. 14/486,226.
Notice of Allowance dated Jan. 29, 2016, which issued during the prosecution of U.S. Appl. No. 14/551,951.
An Office Action dated Jun. 18, 2015, which issued during the prosecution of U.S. Appl. No. 14/551,951.
An Office Action dated Jan. 4, 2016, which issued during the prosecution of U.S. Appl. No. 14/589,100.
An Office Action dated May 4, 2016, which issued during the prosecution of U.S. Appl. No. 14/589,100.
An International Search Report and a Written Opinion both dated Nov. 14, 2011, which issued during the prosecution of Applicant's PCT/IL2011/000404.
An International Search Report and a Written Opinion both dated Dec. 6, 2012 which issued during the prosecution of Applicant's PCT/IL2012/000250.
A Notice of Allowance dated Apr. 3, 2013, which issued during the prosecution of U.S. Appl. No. 12/563,930.
An Office Action dated Aug. 24, 2012, which issued during the prosecution of U.S. Appl. No. 12/563,930.
An Office Action dated Dec. 29, 2011, which issued during the prosecution of U.S. Appl. No. 12/563,952.
A Restriction Requirement dated Oct. 27, 2011, which issued during the prosecution of U.S. Appl. No. 12/563,952.
A Notice of Allowance dated May 24, 2012, which issued during the prosecution of U.S. Appl. No. 12/563,952.
An Office Action dated Apr. 1, 2013 which issued during the prosecution of U.S. Appl. No. 13/167,476.
An Office Action dated Nov. 21, 2013, which issued during the prosecution of U.S. Appl. No. 13/167,476.
An Advisory Action dated Feb. 4, 2014, which issued during the prosecution of U.S. Appl. No. 13/167,476.
A Restriction Requirement dated Oct. 25, 2012 which issued during the prosecution of U.S. Appl. No. 13/167,444.
An Office Action dated Jan. 17, 2013, which issued during the prosecution of U.S. Appl. No. 13/167,444.
An Office Action dated Aug. 26, 2014 which issued during the prosecution of U.S. Appl. No. 13/167,444.
An Office Action dated Aug. 23, 2013 which issued during the prosecution of U.S. Appl. No. 13/167,444.
Notice of Allowance dated Nov. 12, 2015, which issued during the prosecution of U.S. Appl. No. 13/319,007.
Notice of Allowance dated Jan. 7, 2016, which issued during the prosecution of U.S. Appl. No. 13/319,007.
An Office Action dated Oct. 2, 2013, which issued during the prosecution of U.S. Appl. No. 13/167,492.
A Restriction Requirement dated Nov. 2, 2012, which issued during the prosecution of U.S. Appl. No. 13/167,492.
An Office Action dated Feb. 14, 2013 which issued during the prosecution of U.S. Appl. No. 13/167,492.
Notice of Allowance dated Nov. 7, 2014, which issued during the prosecution of U.S. Appl. No. 13/167,492.
An Office Action dated Jun. 10, 2014, which issued during the prosecution of U.S. Appl. No. 13/167,492.
Notice of Allowance dated Dec. 9, 2014, which issued during the prosecution of U.S. Appl. No. 13/167,476.
Notice of Allowance dated Jan. 22, 2015, which issued during the prosecution of U.S. Appl. No. 13/167,444.
An International Preliminary Report on Patentability dated May 1, 2012, which issued during the prosecution of Applicant's PCT/IL2010/000890.
An International Preliminary Report on Patentability dated Jun. 9, 2015, which issued during the prosecution of Applicant's PCT/IL2013/050992.
U.S. Appl. No. 60/873,075, filed Dec. 5, 2006.
U.S. Appl. No. 60/902,146, filed Feb. 16, 2007.
An Office Action dated Mar. 29, 2018, which issued during the prosecution of U.S. Appl. No. 15/188,507.
Notice of Allowance dated Sep. 17, 2014, which issued during the prosecution of U.S. Appl. No. 12/961,721.
An Office Action dated Oct. 1, 2015, which issued during the prosecution of U.S. Appl. No. 14/141,228.
A Restriction Requirement dated Jun. 2, 2014, which issued during the prosecution of U.S. Appl. No. 13/319,030.
An Office Action dated Oct. 14, 2014, which issued during the prosecution of U.S. Appl. No. 13/319,030.
An Office Action dated Jun. 18, 2015, which issued during the prosecution of U.S. Appl. No. 13/319,030.
An Office Action dated May 3, 2016, which issued during the prosecution of U.S. Appl. No. 13/319,030.
Notice of Allowance dated Dec. 30, 2016, which issued during the prosecution of U.S. Appl. No. 13/319,030.
An Office Action dated Apr. 7, 2015, which issued during the prosecution of U.S. Appl. No. 13/319,007.
An Office Action dated Apr. 8, 2016, which issued during the prosecution of U.S. Appl. No. 14/141,228.
An Office Action dated Oct. 5, 2015, which issued during the prosecution of U.S. Appl. No. 14/246,417.
An Office Action dated Apr. 7, 2016, which issued during the prosecution of U.S. Appl. No. 14/242,151.
An Office Action dated May 23, 2016, which issued during the prosecution of U.S. Appl. No. 14/209,171.
An Office Action dated Jul. 20, 2016, which issued during the prosecution of U.S. Appl. No. 14/246,417.
An Office Action dated Jun. 14, 2016, which issued during the prosecution of U.S. Appl. No. 14/273,155.
An Office Action dated Jun. 17, 2016, which issued during the prosecution of U.S. Appl. No. 14/357,040.
An Office Action dated Mar. 24, 2015, which issued during the prosecution of U.S. Appl. No. 14/486,226.
U.S. Appl. No. 61/001,013, filed Oct. 29, 2007.
U.S. Appl. No. 61/132,295, filed Jun. 16, 2008.
U.S. Appl. No. 61/265,936, filed Dec. 2, 2009.
U.S. Appl. No. 61/283,445, filed Dec. 2, 2009.
U.S. Appl. No. 61/207,908, filed Feb. 17, 2009.
U.S. Appl. No. 61/733,979, filed Dec. 6, 2012.
U.S. Appl. No. 61/717,303, filed Oct. 23, 2012.
U.S. Appl. No. 61/820,979, filed May 8, 2013.
U.S. Appl. No. 61/745,848, filed Dec. 6, 2012.
U.S. Appl. No. 61/555,570, filed Nov. 4, 2011.
U.S. Appl. No. 61/557,082, filed Nov. 8, 2011.
U.S. Appl. No. 60/662,616, filed Mar. 17, 2005.
U.S. Appl. No. 60/700,542, filed Jul. 18, 2005.
U.S. Appl. No. 61/782,121, filed Mar. 14, 2013.
European Search Report dated Jul. 15, 2016, which issued during the prosecution of Applicant's European App No. 13849947.0.
European Search Report dated Nov. 4, 2015, which issued during the prosecution of European Patent Application No. EP 1077 2091.4.
Search Report in European Patent Application 10826224.7 dated Nov. 16, 2015.
Supplementary European Search Report dated Dec. 23, 2014 which issued during the prosecution of Applicant's European App No. 10834311.
Supplementary European Search Report dated Jan. 21, 2014 which issued during the prosecution of Applicant's European App No. 11 78 6226.
A Supplementary European Search Report dated Jan. 20, 2015, which issued during the prosecution of European Patent Application No. 12803037.6.
Supplementary European Search Report dated Aug. 4, 2014 which issued during the prosecution of Applicant's European App No. 11 81 1934.6.
European Search Report dated Jun. 24, 2016, which issued during the prosecution of European Patent Application No. EP 12847363.
Supplementary European Search Report dated Apr. 29, 2015, which issued during the prosecution of Applicant's European App No. 14200202.
An Office Action dated Dec. 16, 2013, which issued during the prosecution of U.S. Appl. No. 13/666,262.
An Office Action dated Dec. 18, 2013, which issued during the prosecution of U.S. Appl. No. 13/666,141.
Notice of Allowance dated Jun. 25, 2014, which issued during the prosecution of U.S. Appl. No. 13/666,262.
A Notice of Allowance dated Feb. 2, 2015, which issued during the prosecution of U.S. Appl. No. 13/504,870.
Notice of Allowance dated Aug. 19, 2013, which issued during the prosecution of U.S. Appl. No. 11/908,906.
An Office Action dated Jun. 8, 2012, which issued during the prosecution of U.S. Appl. No. 11/908,906.
An Office Action dated Dec. 21, 2013, which issued during the prosecution of U.S. Appl. No. 11/908,906.
A Restriction Requirement dated Aug. 5, 2011, which issued during the prosecution of U.S. Appl. No. 11/908,906.
An Office Action dated Sep. 16, 2009 which issued during the prosecution of U.S. Appl. No. 11/950,930.
Notice of Allowance dated Sep. 12, 2014, which issued during the prosecution of U.S. Appl. No. 11/950,930.
An Office Action dated Aug. 5, 2010 which issued during the prosecution of U.S. Appl. No. 11/950,930.
An Office Action dated Feb. 17, 2010 which issued during the prosecution of U.S. Appl. No. 11/950,930.
A Restriction Requirement dated Apr. 19, 2010 which issued during the prosecution of U.S. Appl. No. 12/341,960.
An Office Action dated Sep. 28, 2011, which issued during the prosecution of U.S. Appl. No. 12/437,103.
An Office Action dated Jun. 13, 2012, which issued during the prosecution of U.S. Appl. No. 12/437,103.
A Restriction Requirement dated Jul. 12, 2011, which issued during the prosecution of U.S. Appl. No. 12/437,103.
Notice of Allowance dated Mar. 6, 2014, which issued during the prosecution of U.S. Appl. No. 12/437,103.
Notice of Allowance dated Dec. 20, 2013, which issued during the prosecution of U.S. Appl. No. 12/437,103.
Notice of Allowance dated Apr. 27, 2012, which issued during the prosecution of U.S. Appl. No. 12/341,960.
An Office Action dated Mar. 29, 2011, which issued during the prosecution of U.S. Appl. No. 12/341,960.
An Office Action dated Aug. 4, 2010, which issued during the prosecution of U.S. Appl. No. 12/341,960.
An Interview Summary dated Jul. 27, 2011, which issued during the prosecution of U.S. Appl. No. 12/341,960.
Notice of Allowance dated Aug. 21, 2019, which issued during the prosecution of U.S. Appl. No. 15/703,385.
Notice of Allowance dated Oct. 16, 2019, which issued during the prosecution of U.S. Appl. No. 15/703,385.
Notice of Allowance dated Dec. 24, 2020, which issued during the prosecution of U.S. Appl. No. 15/668,659.
Notice of Allowance dated Oct. 21, 2020, which issued during the prosecution of U.S. Appl. No. 15/668,659.
Declaration of Ivan Vesely, Ph.D., in Support of Petition for Inter Partesreview of U.S. Pat. No. 7,563,267—dated May 29, 2019.
U.S. Appl. No. 60/128,690, filed Apr. 9, 1999.
U.S. Appl. No. 60/613,867, filed Sep. 27, 2004.
An Office Action dated Dec. 24, 2020, which issued during the prosecution of U.S. Appl. No. 16/144,054.
An Office Action dated Feb. 2, 2021, which issued during the prosecution of U.S. Appl. No. 16/811,732.
An Office Action dated Jan. 13, 2021, which issued during the prosecution of European Patent Application No. 15751089.2.
An Office Action together with an English summary dated Mar. 3, 2021, which issued during the prosecution of Chinese Patent Application No. 201780047391.4.
Declaration of Dr. Ivan Vesely, Ph.D. in Support of Petition for Inter Partes Review of U.S. Pat. No. 10,226,341—dated Dec. 17, 2020.
Petition for Inter Partes Review of U.S. Pat. No. 10,226,341 and Exhibits 1001-1013—dated Dec. 29, 2020.
Batista, Randas JV, et al. “Partial left ventriculectomy to treat end-stage heart disease.” The Annals of thoracic surgery 64.3 (1997): 634-638.
Beall Jr, Arthur C., et al. “Clinical experience with a dacron velour-covered teflon-disc mitral-valve prosthesis.” The Annals of thoracic surgery 5.5 (1968): 402-410.
Kalbacher, D., et al. “1000 MitraClip™ procedures: Lessons learnt from the largest single-centre experience worldwide.” (2019): 3137-3139.
Maisano, F., et al. “The edge-to-edge technique: a simplified method to correct mitral insufficiency.” European journal of cardio-thoracic surgery 13.3 (1998): 240-246.
Fucci, C., et al. “Improved results with mitral valve repair using new surgical techniques.” European journal of cardio-thoracic surgery 9.11 (1995): 621-627.
Notice of Allowance dated Nov. 19, 2019, which issued during the prosecution of U.S. Appl. No. 15/668,559.
Mitral Valve Academic Research Consortium. “Clinical Trial Design Principles and Endpoint Definitions for Transcatheter Mitral Valve Repair and Replacement: Part 1: Clinical Trial Design Principles a Consensus Document from the Mitral Valve Academic Research Consortium.” Journal of the American College of Cardiology 66.3 (2015): 278-307.
An Office Action dated Aug. 29, 2018, which issued during the prosecution of U.S. Appl. No. 15/329,920.
An Office Action dated May 8, 2018, which issued during the prosecution of U.S. Appl. No. 15/902,403.
An Office Action dated May 11, 2018, which issued during the prosecution of U.S. Appl. No. 15/899,858.
Notice of Allowance dated Oct. 5, 2018, which issued during the prosecution of U.S. Appl. No. 15/886,517.
Notice of Allowance dated Jul. 19, 2019, which issued during the prosecution of U.S. Appl. No. 15/899,858.
Notice of Allowance dated Nov. 16, 2020, which issued during the prosecution of U.S. Appl. No. 16/324,339.
Notice of Allowance dated Apr. 27, 2020, which issued during the prosecution of U.S. Appl. No. 16/591,330.
An Advisory Action dated Jan. 2, 2020, which issued during the prosecution of U.S. Appl. No. 15/668,659.
Notice of Allowance dated Oct. 17, 2019, which issued during the prosecution of U.S. Appl. No. 15/329,920.
An Office Action dated Dec. 31, 2019, which issued during the prosecution of U.S. Appl. No. 16/591,330.
Notice of Allowance dated Feb. 9, 2021, which issued during the prosecution of U.S. Appl. No. 16/937,216.
An Advisory Action dated Nov. 18, 2020, which issued during the prosecution of U.S. Appl. No. 16/811,732.
An International Search Report and a Written Opinion both dated Mar. 27, 2018, which issued during the prosecution of Applicant's PCT/IL2017/050849.
Notice of Allowance dated Jun. 11, 2021, which issued during the prosecution of U.S. Appl. No. 16/811,732.
Notice of Allowance dated Jul. 16, 2021, which issued during the prosecution of U.S. Appl. No. 16/811,732.
Patent Trial and Appeal Board Decision Granting Institution in U.S. Pat. No. 10,226,341—Dated Jul. 20, 2021.
European Search Report dated Jun. 10, 2021 which issued during the prosecution of Applicant's European App No. 21157988.3.
Notice of Allowance dated Nov. 19, 2018, which issued during the prosecution of U.S. Appl. No. 15/197,069.
Poirier, Nancy C., et al. “A novel repair for patients with atrioventricular septal defect requiring reoperation for left atrioventricular valve regurgitation.” European journal of cardio-thoracic surgery 18.1 (2000): 54-61.
An Office Action dated Mar. 29, 2021, which issued during the prosecution of U.S. Appl. No. 16/738,516.
Ando, Tomo, et al. “Iatrogenic ventricular septal defect following transcatheter aortic valve replacement: a systematic review.” Heart, Lung and Circulation 25.10 (2016): 968-974.
Urena, Marina, et al. “Transseptal transcatheter mitral valve replacement using balloon-expandable transcatheter heart valves: a step-by-step approach.” JACC: Cardiovascular Interventions 10.19 (2017): 1905-1919.
An English summary of an Official Action dated Mar. 29, 2021, which issued during the prosecution of Chinese Patent Application No. 201780061210.3.
An International Search Report and a Written Opinion both dated Jan. 28, 2020, which issued during the prosecution of Applicant's PCT/IL2019/051031.
An International Preliminary Report on Patentability dated Mar. 9, 2021, which issued during the prosecution of Applicant's PCT/IL2019/051031.
An Office Action dated May 4, 2021, which issued during the prosecution of U.S. Appl. No. 16/636,204.
Notice of Allowance dated May 17, 2021, which issued during the prosecution of U.S. Appl. No. 16/138,129.
Notice of Allowance dated Jun. 4, 2021, which issued during the prosecution of U.S. Appl. No. 16/802,353.
An Office Action dated May 12, 2021, which issued during the prosecution of Canadian Patent Application No. 2,973,940.
Petition for Inter Partes Review of U.S. Pat. No. 10,702,385—dated Jun. 4, 2021.
Declaration of Ivan Vesely, Ph.D. in Support of Petition for Inter Partes Review of U.S. Pat. No. 10,702,385—dated Jun. 4, 2021.
Notice of Allowance dated Oct. 30, 2018, which issued during the prosecution of U.S. Appl. No. 15/197,069.
An International Search Report and a Written Opinion both dated Jul. 12, 2021, which issued during the prosecution of Applicant's PCT/IL2021/050132.
Notice of Allowance dated Oct. 3, 2019, which issued during the prosecution of U.S. Appl. No. 15/691,032.
An Office Action dated Sep. 6, 2018, which issued during the prosecution of U.S. Appl. No. 15/213,791.
Condado, José Antonio, et al. “Percutaneous edge-to-edge mitral valve repair: 2-year follow-up in the first human case.” Catheterization and cardiovascular interventions 67.2 (2006): 323-325.
Notice of Allowance dated Mar. 18, 2020, which issued during the prosecution of U.S. Appl. No. 16/284,331.
Notice of Allowance dated Nov. 21, 2018, which issued during the prosecution of U.S. Appl. No. 15/213,791.
Notice of Allowance dated Jul. 3, 2019, which issued during the prosecution of U.S. Appl. No. 15/691,032.
IPR2021-00383 Petitioners' Authorized Reply to Patent Owner's Preliminary Response dated May 27, 2021.
Exhibit 1014—Transcript of proceedings held May 20, 2021 (Edwards Lifesciences vs. Cardiovalve).
Exhibit 1015—Facilitate, Meriam-Webster.com, https://www.merriamwebster.com/dictionary/facilitate (visited May 26, 2021).
Patent Owner's Authorized Surreply to Petitioner's Reply to Patent Owner's Preliminary Response dated Jun. 4, 2021(Edwards Lifesciences vs. Cardiovalve).
An Invitation to pay additional fees dated May 19, 2021, which issued during the prosecution of Applicant's PCT/IL2021/050132.
An Office Action dated Aug. 18, 2021, which issued during the prosecution of U.S. Appl. No. 17/210,183.
An International Search Report and a Written Opinion both dated May 3, 2022, which issued during the prosecution of Applicant's PCT/IL2021/051433.
An Office Action dated Jul. 8, 2022, which issued during the prosecution of U.S. Appl. No. 16/144,054.
An Office Action dated Jun. 28, 2022, which issued during the prosecution of U.S. Appl. No. 16/135,969.
An Office Action together with an English Summary dated May 7, 2022 which issued during the prosecution of Chinese Patent Application No. 201880058940.2.
Ex Parte Quayle dated May 2, 2022, which issued during the prosecution of U.S. Appl. No. 16/879,952.
IPR2021-00383 Decision Final Written Decision dated Jul. 18, 2022.
IPR2021-01051 Preliminary Guidance Patent Owner's Motion to Amend dated Jun. 24, 2022.
Notice of Allowance dated May 4, 2022, which issued during the prosecution of U.S. Appl. No. 16/680,739.
An Office Action dated Sep. 29, 2022, which issued during the prosecution of U.S. Appl. No. 17/010,886.
An Office Action dated Sep. 29, 2022, which issued during the prosecution of U.S. Appl. No. 16/656,790.
An Office Action dated Nov. 2, 2022, which issued during the prosecution of U.S. Appl. No. 17/004,693.
An Office Action dated Nov. 28, 2022, which issued during the prosecution of U.S. Appl. No. 17/141,853.
An Office Action dated Oct. 19, 2022, which issued during the prosecution of U.S. Appl. No. 17/875,589.
An Office Action dated Oct. 26, 2022, which issued during the prosecution of U.S. Appl. No. 16/746,489.
An Office Action dated Nov. 25, 2021, which issued during the prosecution of European Patent Application No. 18826823.9.
IPR2021-01051 Institution decision dated Dec. 10, 2021.
Notice of Allowance dated Dec. 7, 2021, which issued during the prosecution of U.S. Appl. No. 17/394,807.
Notice of Allowance dated Dec. 6, 2021, which issued during the prosecution of U.S. Appl. No. 16/738,516.
Notice of Allowance dated Dec. 29, 2021, which issued during the prosecution of U.S. Appl. No. 17/210,183.
IPR2021-00383 Petitioners' Reply to Patent Owner's Response dated Jan. 5, 2022.
IPR2021-00383 Petitioners' Opposition to Patent Owner's Contingent Motion to Amend dated Jan. 5, 2022.
An Office Action dated Sep. 22, 2021, which issued during the prosecution of European Patent Application No. 20714289.4.
Summary of Examination Notice dated Jan. 6, 2022, which issued during the prosecution of Chinese Patent Application No. 201880064313.X.
An Office Action dated Jan. 12, 2022, which issued during the prosecution of U.S. Appl. No. 17/101,787.
An Office Action dated Mar. 3, 2023, which issued during the prosecution of European Patent Application No. 17751143.3.
European Search Report dated Mar. 20, 2023 which issued during the prosecution of Applicant's European App No. 22204764.9.
Notice of Allowance dated Apr. 6, 2023, which issued during the prosecution of U.S. Appl. No. 16/746,489.
An Office Action dated Apr. 14, 2023, which issued during the prosecution of U.S. Appl. No. 16/144,054.
An Office Action dated May 15, 2023, which issued during the prosecution of U.S. Appl. No. 16/656,790.
An Office Action dated May 16, 2023, which issued during the prosecution of U.S. Appl. No. 17/114,771.
An Office Action dated May 17, 2023, which issued during the prosecution of U.S. Appl. No. 17/466,785.
An Office Action dated May 25, 2023, which issued during the prosecution of U.S. Appl. No. 17/397,235.
Related Publications (1)
Number Date Country
20210196461 A1 Jul 2021 US
Continuations (1)
Number Date Country
Parent 16318025 US
Child 17181722 US