Minimally invasive repair of heart valve leaflets

Information

  • Patent Grant
  • 11974920
  • Patent Number
    11,974,920
  • Date Filed
    Thursday, June 18, 2020
    4 years ago
  • Date Issued
    Tuesday, May 7, 2024
    8 months ago
Abstract
A method of repairing a heart valve provides intravascular access for repair of a heart valve through a ventricular trans-septal approach. An external guide catheter can be inserted through a vein of a patient into the right ventricle via the right atrium. An internal guide catheter can be inserted through the external guide and can provide access to the septum for a puncture tool to create an opening through the septum to the left ventricle. The internal guide can then be advanced into the left ventricle and used to guide a deployment catheter that deploys a repair device onto the heart valve.
Description
FIELD OF THE INVENTION

The present invention relates to minimally invasive delivery of a suture. More particularly, the present invention relates to attaching the suture as an artificial chordae tendineae to a flailing or prolapsing leaflet in a beating heart via an intravascular ventricular septal approach.


BACKGROUND OF THE INVENTION

Various types of surgical procedures are currently performed to investigate, diagnose, and treat diseases of the heart and the great vessels of the thorax. Such procedures include repair and replacement of mitral, aortic, and other heart valves, repair of atrial and ventricular septal defects, pulmonary thrombectomy, treatment of aneurysms, electrophysiological mapping and ablation of the myocardium, and other procedures in which interventional devices are introduced into the interior of the heart or a great vessel.


Using current techniques, many of these procedures require a gross thoracotomy, usually in the form of a median sternotomy, to gain access into the patient's thoracic cavity. A saw or other cutting instrument is used to cut the sternum longitudinally, allowing two opposing halves of the anterior or ventral portion of the rib cage to be spread apart. A large opening into the thoracic cavity is thus created, through which the surgical team may directly visualize and operate upon the heart and other thoracic contents.


Surgical intervention within the heart by a thoracotomy generally requires isolation of the heart and coronary blood vessels from the remainder of the arterial system, and arrest of cardiac function (an “open heart” procedure). Usually, the heart is isolated from the arterial system by introducing an external aortic cross-clamp through a sternotomy and applying it to the aorta between the brachiocephalic artery and the coronary ostia. Cardioplegic fluid is then injected into the coronary arteries, either directly into the coronary ostia or through a puncture in the aortic root, so as to arrest cardiac function. In some cases, cardioplegic fluid is injected into the coronary sinus for retrograde perfusion of the myocardium. The patient is placed on cardiopulmonary bypass to maintain peripheral circulation of oxygenated blood.


Of particular interest to the present invention are open heart procedures for surgical treatment of heart valves, especially the mitral and aortic valves. According to recent estimates, more than 79,000 patients are diagnosed with aortic and mitral valve disease in U.S. hospitals each year. More than 49,000 mitral valve or aortic valve replacement procedures are performed annually in the U.S., along with a significant number of heart valve repair procedures.


Various surgical techniques may be used during an open heart procedure to repair a diseased or damaged valve, including annuloplasty (contracting the valve annulus), quadrangular resection (narrowing the valve leaflets), commissurotomy (cutting the valve commissures to separate the valve leaflets), shortening mitral or tricuspid valve chordae tendonae, reattachment of severed mitral or tricuspid valve chordae tendonae or papillary muscle tissue, and decalcification of valve and annulus tissue. Alternatively, the valve may be replaced by excising the valve leaflets of the natural valve and securing a replacement valve in the valve position, usually by suturing the replacement valve to the natural valve annulus. Various types of replacement valves are in current use, including mechanical and biological prostheses, homografts, and allografts.


The mitral valve, located between the left atrium and left ventricle of the heart, is most easily reached through the wall of the left atrium, which normally resides on the posterior side of the heart, opposite the side of the heart that is exposed by a median sternotomy. Therefore, to access the mitral valve via a sternotomy, the heart is rotated to bring the left atrium into a position accessible through the sternotomy. An opening, or atriotomy, is then made in the left atrium, anterior to the right pulmonary veins. The atriotomy is retracted by means of sutures or a retraction device, exposing the mitral valve directly posterior to the atriotomy. One of the aforementioned techniques may then be used to repair or replace the valve.


An alternative technique for mitral valve access during an open heart procedure may be used when a median sternotomy and/or rotational manipulation of the heart are/is undesirable. In this technique, a large incision is made in the right lateral side of the chest, usually in the region of the fifth intercostal space. One or more ribs may be removed from the patient, and other ribs near the incision are retracted outward to create a large opening onto the thoracic cavity. The left atrium is then exposed on the posterior side of the heart, and an atriotomy is formed in the wall of the left atrium, through which the mitral valve may be accessed for repair or replacement.


The mitral and tricuspid valves inside the human heart include an orifice (annulus), two (for the mitral) or three (for the tricuspid) leaflets and a subvalvular apparatus. The subvalvular apparatus includes multiple chordae tendineae, which connect the mobile valve leaflets to muscular structures (papillary muscles) inside the ventricles. Rupture or elongation of the chordae tendineae results in partial or generalized leaflet prolapse, which causes mitral (or tricuspid) valve regurgitation. A commonly used technique to surgically correct mitral valve regurgitation is the implantation of artificial chordae (usually 4-0 or 5-0 Gore-Tex sutures) between the prolapsing segment of the valve and the papillary muscle. This open heart operation is generally carried out through a median sternotomy and requires cardiopulmonary bypass with aortic cross-clamp and cardioplegic arrest of the heart.


Using such open heart techniques, the large opening provided by a median sternotomy or right thoracotomy enables the surgeon to see the mitral valve directly through the left atriotomy, and to position his or her hands within the thoracic cavity in close proximity to the exterior of the heart for manipulation of surgical instruments, removal of excised tissue, and/or introduction of a replacement valve through the atriotomy for attachment within the heart. However, these invasive open heart procedures produce a high degree of trauma, a significant risk of complications, an extended hospital stay, and a painful recovery period for the patient. Moreover, while heart valve surgery produces beneficial results for many patients, numerous others who might benefit from such surgery are unable or unwilling to undergo the trauma and risks of current techniques.


One alternative to open heart surgery is a robotically guided, thoracoscopically assisted cardiotomy procedure marketed under the tradename of the DaVinci® system. Instead of requiring a sternotomy, the DaVinci® system uses a minimally invasive approach guided by camera visualization and robotic techniques. Unfortunately, the DaVinci® system is not approved for mitral valve repair procedures on a beating heart. Thus, the use of the DaVinci® system for mitral valve repair still requires a cardiopulmonary bypass with aortic cross-clamp and cardioplegic arrest of the heart.


While there are other laparoscopic and minimally invasive surgical techniques and tools that have been developed, none of these devices are useable for the unique requirements of mitral valve repair on a beating heart. Suturing devices like the Superstich™ vascular suturing device or the Gore® suture passer are designed to permit manual placement of sutures as part of a surgical procedure, but are not designed for use on a beating heart. While certain annuloplasty techniques and instruments that can suture an annuloplasty ring as part of vascular repair or heart bypass surgery may be used in conjunction with a beating heart, these annuloplasty procedures do not involve the capture or retention of a constantly moving leaflet. Consequently, the design and use of annuloplasty techniques and instruments are of little help in solving the problems of developing instruments and techniques for minimally invasive thoracoscopic repair of heart valves during a beating heart procedure.


Recently, a technique has been developed for minimally invasive thoracoscopic repair of heart valves while the heart is still beating. Int'l Pub. No. WO 2006/078694 A2 to Speziali, which is incorporated by reference herein, discloses a thoracoscopic heart valve repair method and apparatus. Instead of requiring open heart surgery on a stopped heart, the thorascopic heart valve repair methods and apparatus taught by Speziali utilize fiber optic technology in conjunction with transesophageal echocardiography (TEE) as a visualization technique during a minimally invasive surgical procedure that can be utilized on a beating heart. U.S. Publication No. 2008/0228223 to Alkhatib also discloses a similar apparatus for attaching a prosthetic tether between a leaflet of a patient's heart valve and another portion of the patient's heart to help prevent prolapse of the leaflet and/or to otherwise improve leaflet function.


More recent versions of these techniques are disclosed in U.S. Patent Application Publication Nos. 2009/0105751 and 2009/0105729 to Zentgraf, which disclose an integrated device that can enter the heart chamber, navigate to the leaflet, capture the leaflet, confirm proper capture, and deliver a suture as part of a mitral valve regurgitation (MR) repair.


These references disclose suturing valve leaflets by accessing the heart through an open surgical approach that requires an artificial opening in the heart wall be made, for example at the apex of the ventricle, during the open surgical approach. It would be advantageous for a minimally invasive suture delivery system to be able to suture valve leaflets in a beating heart procedure without requiring an open surgical approach or an incision into the exterior ventricular wall in order to minimize blood loss.


SUMMARY OF THE INVENTION

Embodiments of the present invention allow for repair of heart valve regurgitation during a beating heart procedure including various steps and apparatuses for entering the heart chamber, navigating to a heart valve leaflet, capturing the leaflet, confirming proper capture, and delivering a suture. The devices and procedures of these embodiments can be used with an intravascular catheter based approach for delivery of sutures for the treatment of heart valve regurgitation.


In one embodiment, the system provides venous access into a heart chamber (venous access via the femoral or jugular vein) while minimizing the loss of blood within and without the system. The device can be inserted through the right atrium and into the right ventricle, with the position within the ventricular apex visualized via ultrasound or fluoroscopy. Once access into the heart chamber is achieved, the system is positioned via a non-invasive imaging modality. The system allows capture of intra-cardiac tissue structure. Once captured, the system allows control to be maintained over said tissue structure. Imaging modalities allow confirmation of proper capture position of the system relative to the tissue structure. The system then accommodates the delivery of the deployment catheter to said tissue structure once proper position has been confirmed.


In one embodiment, a guide-in-guide catheter system provides venous access to the ventricular septal wall for a trans-septal puncture tool to provide the access to the left ventricular cavity. Once the left ventricle is accessed, an internal guide catheter can be advanced within the external guide across the septal wall into the left ventricle. The external guide catheter can have a side exiting lumen to facilitate the positioning of the internal guide, or alternatively a septal puncture catheter with a septal puncture device therein, to the selected area for crossing the ventricular septum. A curve in the guide can angle the tip of the catheter to the desired location for trans-septal puncture. A guide wire may be used to maintain position. After the septal puncture is completed the device can be removed and a dilator inserted into the internal guide to aid the passage of the guide through the septal wall. The dilator can be removed after the internal guide has crossed the septal wall. The internal guide can also have a pre-shaped curvature to the distal tip. This curve can provide the direction support to guide the deployment catheter toward the mitral valve.


The deployment catheter can have a central lumen to accept a guide wire used in positioning the deployment catheter to effectively engage the mitral valve. The central lumen can also be used for an intravascular ultrasound device or a direct visualization device. The suture is deployed by the deployment catheter at the selected site. The deployment catheter can be withdrawn from the guide catheter and re-loaded or replaced for successive suture deployments.


In one embodiment, a medical repair device may be added to the procedure, such as a leaflet extension, a passive valve occlusion device or a pledget. The deployed sutures exit the internal guide catheter and can be temporarily fixed outside the body. Once the desired amount of sutures is positioned, they can be loaded through a central lumen of a septal seal device. The septal seal device is advanced through the external guide catheter and guided, via the sutures and external guide catheter, through the ventricular puncture site. The right ventricular side of the seal device is deployed and then the left side of the seal device is deployed. The internal catheter is then detached from the septal seal element and withdrawn from the external guide catheter. The sutures remain in the internal lumen of the septal closure device attached to the mitral valve and exit through the external guide.


In one embodiment, the sutures can have the tension individually adjusted to evaluate the physiological effect. The evaluation can be done using transesophageal echocardiography or other non-invasive methods. If the suture is overly tightened, a catheter can be delivered through the external guide to the lumen seal inside of the septal seal device. Advancing the catheter through the seal will release suture tension and allow for re-tensioning. When the tensioning task is complete, the sutures can be fixed at the septal seal element.


In one embodiment, an anchor catheter with a distally mounted cam lock element or other mechanical lock permanently fixes to the septal seal element and fixes the position of the sutures while maintaining the adjusted tension. This step completes the septal seal and suture tensioning. The anchor catheter can then be withdrawn with the proximal ends of the sutures. The sutures can then be threaded through the lumen or opening of a cutting catheter. A cutting catheter can be advanced over the sutures until it contacts the septal seal device. The cutting catheter then cuts the sutures at the seal to complete the implant procedure. The entire catheter system is then removed from the patient and the access site closed.


In another embodiment, a deployment catheter is capable of multiple suture deployments in a single activation. This would reduce the number of instrument exchanges and provide increased control of the position of the sutures relative to each other.


A further embodiment uses the sutures to deliver a biomatrix patch to enhance closure. The patch can be attached to the valve with the sutures. The patch could be delivered to either the ventricular or atrial side of the mitral valve leaflet. This patch can improve leaflet coaptation and reduce/eliminate mitral valve regurgitation by augmenting the native leaflet tissue structure supported by the delivery of a biomatrix material that can support the mitral valve annular ring or subvalvular apparatus.


Another embodiment includes the deployment of a passive occlusive device intended to improve valve closure, the device would be delivered, positioned, and anchored via the ventricular septal approach described herein.


The above summary of the various embodiments of the invention is not intended to describe each illustrated embodiment or every implementation of the invention. This summary represents a simplified overview of certain aspects of the invention to facilitate a basic understanding of the invention and is not intended to identify key or critical elements of the invention or delineate the scope of the invention.





BRIEF DESCRIPTION OF DRAWINGS

The embodiments of the present invention may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:



FIG. 1 is a view of a device for venous access into a heart chamber via the femoral vein to facilitate repair of a heart valve leaflet according to an embodiment of the present invention;



FIG. 2A is a view of a valve leaflet repair device according to an embodiment of the present invention with an internal guide and puncture tool passed into the left ventricle;



FIG. 2B is a partial view of the valve leaflet repair device depicted in FIG. 2A;



FIG. 3 is a view of a valve leaflet repair device according to an embodiment of the present invention with an internal guide exiting a side exit guide catheter;



FIG. 4 is a view of a valve leaflet repair device according to an embodiment of the present invention with a deployment catheter exiting an internal guide and positioned at the mitral valve;



FIG. 5A is a view of a deployment catheter tip according to an embodiment of the present invention with a moveable catheter jaw and a suture capture needle, with the catheter jaw in the closed position;



FIG. 5B is a view of the deployment catheter tip of FIG. 5A with the moveable catheter in the open position;



FIG. 6 is a cross-sectional view of the deployment catheter tip of FIGS. 5A and 5B;



FIG. 7 is a view of a valve leaflet repair device according to an embodiment of the present invention with several sutures attached to the mitral valve and exiting through an internal guide;



FIG. 8 is a view of a valve leaflet repair device according to an embodiment of the present invention with ventricular septal seal devices deployed in the septal wall with sutures extending through a center lumen;



FIG. 9 is a schematic representation of the septal seal device of FIG. 8 in place in the heart;



FIG. 10 is a perspective view of septal seal types according to embodiments of the present invention;



FIG. 11 is a partial view of a septal seal device lumen with a seal element for holding a suture in tension showing the suture freed from tension by a catheter that releases the seal element;



FIG. 12 is a view of a valve leaflet repair device according to an embodiment of the present invention with an anchor device fixing the position of the sutures;



FIG. 13 is a side cut-away view of the anchor device of FIG. 12 having a fixation catheter with a locking element for mating with seal internal lock features;



FIG. 14 is a view of a valve leaflet repair device according to an embodiment of the present invention with a cutting device for cutting sutures at the right ventricular side of a septal seal;



FIG. 15 is a side cross-sectional view of the suture cutting device of FIG. 14;



FIG. 16 is a view of a completed implant procedure using a valve leaflet repair device according to an embodiment of the present invention;



FIG. 17 is a flow chart of surgical procedural steps for repair of heart valve leaflets according to an embodiment of the present invention.





While the present invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the present invention to the particular embodiments described. On the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention.


DESCRIPTION OF EMBODIMENTS

In the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, one skilled in the art will recognize that various embodiments of the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as to not unnecessarily obscure aspects of the present invention.


One embodiment of the heart valve repair and delivery system will be examined to demonstrate the multiple catheter access steps required to enter the target heart chamber and deliver the repair device. This embodiment performs the repair of mitral valve regurgitation by delivering sutures to repair the defective valve with a deployment catheter that acts to reduce/eliminate mitral valve regurgitation (MR). In other embodiments, the access approach described herein can be used to access the heart for any other type of procedure, such as, for example, a heart valve replacement, repair of another heart structure or delivery of repair devices other than sutures to valve leaflets.


Embodiments of the present invention can be used as a vascular access system. It can include a standard vascular introducer that 1) eliminates the need for multiple passes of the instrument against the vein wall, 2) minimizes blood loss due to instrument leakage (circular components are more amenable to closer tolerances and sealing capability), and 3) reduces push/pull forces on the vein wall. The introducer contains seals to maintain hemostasis during instrument exchanges. A side exiting external guide catheter 102 can provide access into the right ventricle 10 as shown in FIG. 1. In one embodiment, a distal end of the external guide 102 can include a suction element to ensure that it holds its position in the right ventricle at, for example, the right ventricular apex. The system can include an internal guide catheter 104 disposed in the side exiting external guide catheter 102 design that facilitates the access through the right ventricle 10 to the right ventricular wall. The introducer and/or external guide catheter 102 can therefore function as means for accessing the right ventricle. A standard septal puncture tool 106 with a needle like end can serve as a means for creating an opening in the septum to create the hole in the ventricular septal wall 12 to provide the passageway for the guide catheter 104 through the wall as depicted in FIG. 2A. As used herein, the term catheter can refer to an elongate, generally flexible and tubular medical device that extends along a longitudinal axis and defines a diameter around the longitudinal axis.


The pre-shaped internal guide catheter 104 is then advanced into the left ventricle 14, as shown in FIG. 3, and positioned to deliver a deployment catheter 108 to properly capture a leaflet 16 of the mitral valve 18 for repair as shown in FIG. 4. The internal guide catheter 104 can therefore function as a means for positioning the deployment catheter 108 in the left ventricle. The deployment catheter 108, as shown in FIGS. 5A-5B and 6, can provide a means for deploying a repair device and can include a clamping mechanism 110 or other means for grasping for capturing the leaflet and a suture deployment mechanism including a suture capture needle 112 or other means for inserting the suture into the leaflet. The deployment catheter 108 can be exchangeable within the guide catheter 104 to permit multiple suture 114 deployments on the valve leaflet as shown in FIG. 7. Alternatively, the deployment catheter 108 can deliver several sutures 114 at one deployment. Note that in some Figures, such as FIG. 7, the external guide catheter 102 is not shown for sake of clarity.


As can be seen in FIG. 4, embodiments of the present invention provide a tri-catheter approach for accessing a heart valve to deploy a repair device onto a portion of the valve, such as a valve leaflet. The tri-catheter approach can include the external guide catheter 102, internal guide catheter 104 received within the external guide catheter 102 and deployment catheter 108 received within the internal guide catheter 104. In some embodiments, as depicted in FIG. 4, the tri-catheter arrangement can define a generally S-shaped access configuration to the valve with the catheters defining a first curve in the right atrium to access the right ventricle and a second curve where the internal guide 104 exits the external guide 102 to cross the septum and access the heart valve in the left ventricle. In one embodiment, the external guide 102 defines a curvature of about 130 degrees and the internal guide 104 has a generally U-shaped distal end that angles towards the valve to define the generally S-shaped configuration. Both external guide 102 and internal guide 104 may be given various curvatures to match the anatomy of a given patient. In one embodiment, the external guide 102 has a diameter of between 12 and 16 French and the inner guide 104 has approximately 2 French sizes smaller than the external guide 102. The delivery catheter 108 and other catheters inserted into the internal guide 104 can have a diameter that is approximately 2 French sizes smaller than the internal guide 104.


The deployment catheter 108 can alternatively or additionally deliver an additional medical repair device such as a leaflet extension or a passive valve occlusion device. A medical repair device is a device that is permanently implanted for the repair treatment or a device that supports the primary repair treatment. Such medical repair devices can be suture materials, biomatrix materials used to support or augment a tissue structure, or devices that would provide repair treatment by device assisted coaptation of one of the cardiac valves. In one embodiment, deployment catheter 108 can deliver a pledget, such as described in commonly owned, copending U.S. patent application Ser. No. 13/339,865, which is incorporated by reference herein. In another embodiment, deployment catheter 108 can deliver a replacement valve or a device that seats in the valve annulus and has a portion extending down between the valve leaflets that is anchored to the heart.


After the desired number of sutures 114 is deployed, the sutures 114 are threaded through a lumen of a septal seal device 117. The septal sealing device 117 is then advanced down the guide catheter 104 with a seal catheter and into the right ventricle 10. The device 117 is positioned to have right side and left side seal elements 116, depicted in FIG. 9, positioned on opposite sides of the septal wall 12. The sealing elements 116 are deployed to provide a means for sealing the opening in the septum with the sealing device 117 and the catheter withdrawn as shown in FIG. 8. In one embodiment, seal device 117 comprise a pre-shaped wire frame having tensioned flanges on opposing sides that abut the opposing sides of the septal wall 12 to hold the seal elements 116 in place and an internal lumen 118 extending through the device. In one embodiment, the wire frame is comprised of Nitinol.


The sutures 114 can now be tensioned from a location external of the heart to have a desired tension that provides for proper valve function. The internal lumen 118 of the septal sealing device 117 can have one or more seals 126 that provide pressure on the sutures to prevent them from easily moving to maintain the set tension on the sutures 114 and provide a means for setting the tension. Seals 126 can also serve to maintain the integrity of the lumen 118. The seal can be similar to a silicone slit seal 122 or a flap seal 120, as shown in FIG. 10, both of which facilitate release of the suture 114 position using a catheter 128 or other means for re-tensioning if desired to allow for re-tensioning, as shown in FIG. 11.


After tension of the sutures 114 is confirmed via trans-esophageal echo cardiography, for example, the sutures 114 can be fixed to the sealing device 117 for permanent anchoring of the sutures 114. The sutures 114 are threaded through a lumen in an anchoring catheter 130 to provide coaxial positioning of a locking element 132 or anchoring device that can function as a means for anchoring the sutures at the sealing device 117. Fixation can be accomplished with the anchoring catheter 130 with the releasable locking element 132 that interfaces with internal lock features 134 in the right side sealing element 116 of the sealing device 117 and locks the sutures 114 in position and permanently fixes to the sealing device 117 as shown in FIGS. 12 and 13. The locking mechanism 132 can be a rotational cam lock or a screw in element.


Once the sutures 114 are permanently fixed to the sealing element 116, the sutures 114 can be threaded through the end of a cutting catheter 136 which is advanced until it contacts the sealing element 116 as shown in FIG. 14. The sutures 114 can then be cut at the sealing element 116 with a cutting device or tool 138 in the cutting catheter 136, also shown in FIG. 15, which is then withdrawn. The intervention is then complete and the guide catheters and introducers can be withdrawn leaving behind the anchored sutures 114 as shown in FIG. 16. The access site can then be closed.



FIG. 17 depicts a flowchart of surgical steps 200 that can be taken to repair a heart valve leaflet according to an embodiment of the present invention. At step 202, the femoral or jugular vein is accessed via a cut down or Seldinger technique and an introducer with a hemostasis valve is inserted into the vein. In one embodiment, the outer diameter of the introducer is a maximum of 24 french. At step 202, access is gained to the right atrium 20 using a guide wire and an external guide catheter 102 is advanced over the guide wire to the ventricular apex. In one embodiment, the external guide catheter 102 is a side-exiting catheter. An internal guide catheter 104 is inserted into the external guide catheter following removal of the guide wire until it exits the external guide. At step 206, proper positioning of the internal guide catheter for puncture of the ventricular septal wall 12 is confirmed and a septal puncture device 106 is inserted into the internal guide 104 and advanced to the desired position at the septal wall 12 to puncture the septal wall 12. A guide wire can then be advanced through the internal guide 104 to maintain position in the left ventricle 14. The puncture tool 106 can be withdrawn and a dilator can be used to facilitate passage of the internal guide catheter 104 into the left ventricle 14 and then withdrawn.


At step 208, a suture deployment catheter 108 can be inserted into the internal guide catheter 104 and advanced in the left ventricle 14. The deployment catheter 108 can be positioned near the leaflet 16, capture the leaflet 16 with a moveable jaw 110, advance a suture needle 112 through the leaflet 16, withdraw the needle 112 back through the leaflet 16 and into the catheter 108, release the leaflet 16 and be withdrawn. In one embodiment, proper capture of the valve leaflet 16 is confirmed prior to advancing the needle 112 through the leaflet 16. In one embodiment, this can be done with a fiber optic visualization system. In one embodiment, deployment catheter 108 can be reinserted to deploy additional sutures 114 onto leaflet 16. In another embodiment, leaflet capture and suture deployment can be aided with an augmented reality navigation system utilizing magnetic tracking such as is disclosed in commonly owned, copending U.S. Provisional Application No. 61/565,795, which is hereby incorporated by reference. In some embodiments, deployment catheter 108 can deploy multiple sutures 114 onto leaflet 16 in a single insertion.


At step 210, the sutures 114 are threaded through a lumen 118 of a ventricular septal sealing device 117, which is then advanced to the ventricular septal wall 12 puncture site with a septal sealing catheter. The septal seal device 117 can have seal elements 116 deployed to seal the puncture and the septal sealing catheter is withdrawn, leaving the sutures 114 in the sealing device 117 and extending outward through the body. At step 212, the sutures 114 can be tensioned to a desired level for proper valve leaflet function. In one embodiment, proper tensioning of sutures 114 and valve leaflet function can be confirmed via transesophogeal echo. In one embodiment, tension of the sutures 114 can be released using a catheter 128 and readjusted.


At step 214, the sutures 114 are inserted into a lumen of an anchoring catheter 130, which is advanced through the internal guide 104 to the septal sealing device 117. An anchoring element 132 can then be deployed into the sealing device 117 to fix the sutures 114 in position in the sealing device 117 and the anchoring catheter 130 can be withdrawn. At step 216, a suture cutting catheter 136 is inserted into the guide catheter and used to cut the sutures adjacent the septal sealing device 117 with a cutting element 138. The cutting catheter 136, guide catheters 102, 104 and introducers can then all be withdrawn and the access site can be closed to complete the procedure.


Although the system and method described herein are primarily described in connection with intravenous access for a ventricular septal approach, it should be understood that the devices and methods described can be adapted for use with various other approaches. For example, the system can also provide venous access to the atrial septal wall for a trans-septal puncture that provides access to the left atrium. In addition, the system can be used to provide venous access to the left ventricle through the aortic valve.


It should further be noted that although the system and method described herein are primarily described with reference to repairing a heart valve leaflet, other tissue structures can be targeted for repair as well. For example, the papillary muscle, heart wall or any other intra-cardiac structure can be targeted for repair or anchoring.


In various embodiments, a heart valve repair system as described herein can be provided as a kit including the various catheters and devices described herein and instructions for repairing a heart valve of a patient as described herein. In one embodiment, the present application comprises the instructions. In another embodiment, an FDA required Instructions for Use can comprise the instructions.


Various embodiments of systems, devices, and methods have been described herein. These embodiments are given only by way of example and are not intended to limit the scope of the present invention. It should be appreciated, moreover, that the various features of the embodiments that have been described may be combined in various ways to produce numerous additional embodiments. Moreover, while various materials, dimensions, shapes, implantation locations, etc. have been described for use with disclosed embodiments, others besides those disclosed may be utilized without exceeding the scope of the invention.

Claims
  • 1. A method of repairing a heart valve in a beating heart of a patient, comprising: inserting a guide catheter through a vein of a patient and into a right atrium of a heart of the patient;inserting a septal puncture tool through the guide catheter and into the heart; puncturing a septum in the patient's heart to create an opening through the septum;advancing a deployment catheter through the guide catheter and through the septum to a position adjacent a mitral valve leaflet;inserting a suture through the mitral valve leaflet with the deployment catheter;inserting an anchor catheter through the guide catheter to insert an anchor device adjacent a left ventricle of the heart such that the suture extends from the mitral valve leaflet to the anchor device;adjusting a tension of the suture to achieve proper valve function; andlocking the suture at the anchor device at the tension that achieves proper valve function,wherein locking the suture at the anchor device at the tension that achieves proper valve function includes rotating a portion of the anchor device to clamp the suture under tension within the anchor device.
  • 2. The method of claim 1, further comprising withdrawing the anchor catheter from the body with the anchor device engaged with the suture in the heart.
  • 3. The method of claim 1, further comprising inserting the suture through the anchor device prior to inserting the anchor catheter into the body.
  • 4. The method of claim 1, wherein inserting the anchor device adjacent the left ventricle includes advancing the anchor device along the suture to adjacent the left ventricle.
  • 5. The method of claim 1, further comprising inserting a cutting catheter having a cutting tool through the guide catheter to adjacent the anchor device after adjusting the tension of the suture and cutting the suture adjacent the anchor device with the cutting tool.
  • 6. The method of claim 1, wherein the step of inserting a suture through the mitral valve leaflet with the deployment catheter includes: capturing a heart valve leaflet with a clamping mechanism of the deployment catheter; andinserting the suture through the heart valve leaflet with a needle of the deployment catheter.
  • 7. A method of repairing a heart valve in a beating heart of a patient comprising: intravenously advancing a deployment catheter into a left ventricle of a beating heart of a patient through a septum in the heart;inserting a suture through a mitral valve leaflet with the deployment catheter;inserting an anchor catheter into the heart to insert an anchor device adjacent the left ventricle such that the suture extends from the mitral valve leaflet to the anchor device;adjusting a tension of the suture to achieve proper valve function; andlocking the suture at the anchor device at the tension that achieves proper valve function,wherein locking the suture at the anchor device at the tension that achieves proper valve function includes rotating a portion of the anchor device to clamp the suture under tension within the anchor device.
  • 8. The method of claim 7, further comprising withdrawing the anchor catheter from the body with the anchor device engaged with the suture in the heart.
  • 9. The method of claim 7, further comprising inserting the suture through the anchor device prior to inserting the anchor catheter into the body.
  • 10. The method of claim 7, wherein inserting the anchor device adjacent the left ventricle includes advancing the anchor device along the suture to adjacent the left ventricle.
  • 11. The method of claim 7, further comprising inserting a cutting catheter having a cutting tool into the heart adjacent the anchor device after adjusting the tension of the suture and cutting the suture adjacent the anchor device with the cutting tool.
  • 12. The method of claim 7, wherein the step of inserting a suture through the mitral valve leaflet with the deployment catheter includes: capturing a heart valve leaflet with a clamping mechanism of the deployment catheter; andinserting the suture through the heart valve leaflet with a needle of the deployment catheter.
RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 14/947,399 filed Nov. 20, 2015, now U.S. Pat. No. 10,695,178, which is a continuation of U.S. application Ser. No. 13/486,632 filed Jun. 1, 2012, which claims the benefit of U.S. Provisional Application No. 61/492,135 filed Jun. 1, 2011, each of which are hereby incorporated herein by reference.

US Referenced Citations (366)
Number Name Date Kind
2751908 Wallace Jun 1956 A
3667474 Lapkin Jun 1972 A
3744062 Parsonnet Jul 1973 A
3842840 Schweizer Oct 1974 A
4258716 Sutherland Mar 1981 A
4351345 Carney Sep 1982 A
4836204 Landymore et al. Jun 1989 A
4935027 Yoon Jun 1990 A
4957498 Caspari et al. Sep 1990 A
4967498 Caspari Sep 1990 A
4960424 Grooters Oct 1990 A
4967798 Hammer Nov 1990 A
4972874 Jackson Nov 1990 A
5053013 Ensminger Oct 1991 A
5059201 Asnis Oct 1991 A
5211650 Noda May 1993 A
5297536 Wilk Mar 1994 A
5304185 Taylor Apr 1994 A
5312423 Rosenbluth et al. May 1994 A
5336229 Noda Aug 1994 A
5336231 Adair Aug 1994 A
5383877 Clarke Jan 1995 A
5431666 Sauer et al. Jul 1995 A
5433723 Lindenberg et al. Jul 1995 A
5452733 Sterman Sep 1995 A
5474519 Bloomer Dec 1995 A
5547455 McKenna et al. Aug 1996 A
5556411 Taoda et al. Sep 1996 A
5571215 Sterman Nov 1996 A
5601578 Murphy Feb 1997 A
5626607 Malecki May 1997 A
5653716 Malo et al. Aug 1997 A
5665100 Yoon Sep 1997 A
5667472 Finn et al. Sep 1997 A
5667473 Finn et al. Sep 1997 A
5667478 McFarlin et al. Sep 1997 A
5693091 Larson, Jr. et al. Dec 1997 A
5728113 Sherts Mar 1998 A
5762458 Wang et al. Jun 1998 A
5762613 Sutton et al. Jun 1998 A
5766163 Mueller et al. Jun 1998 A
5772597 Goldberger et al. Jun 1998 A
5772672 Toy et al. Jun 1998 A
5785658 Benaron et al. Jul 1998 A
5797960 Stevens et al. Aug 1998 A
5830231 Geiges, Jr. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5897564 Schulze et al. Apr 1999 A
5908428 Scirica et al. Jun 1999 A
5908429 Yoon Jun 1999 A
5919128 Fitch Jul 1999 A
5961440 Schweich, Jr. Oct 1999 A
5972004 Williamson et al. Oct 1999 A
5972030 Garrison et al. Oct 1999 A
5984939 Yoon Nov 1999 A
5993466 Yoon Nov 1999 A
5993467 Yoon Nov 1999 A
6022360 Reimels et al. Feb 2000 A
6045497 Schweich, Jr. Apr 2000 A
6050936 Schweich, Jr. Apr 2000 A
6053933 Balazs et al. Apr 2000 A
6059715 Schweich, Jr. May 2000 A
6077214 Mortier et al. Jun 2000 A
6117144 Nobles et al. Sep 2000 A
6129683 Sutton et al. Oct 2000 A
6149660 Laufer et al. Nov 2000 A
6152934 Harper et al. Nov 2000 A
6162168 Schweich, Jr. Dec 2000 A
6162233 Williamson Dec 2000 A
6165119 Schweich, Jr. Dec 2000 A
6165120 Schweich, Jr. Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6178346 Amundson et al. Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6190357 Ferrari et al. Feb 2001 B1
6234079 Chertkow May 2001 B1
6234995 Peacock, III May 2001 B1
6245079 Nobles et al. Jun 2001 B1
6260552 Mortier et al. Jul 2001 B1
6261222 Schweich, Jr. Jul 2001 B1
6264602 Mortier et al. Jul 2001 B1
6269819 Oz et al. Aug 2001 B1
6270508 KlIeman et al. Aug 2001 B1
6283993 Cosgrove et al. Sep 2001 B1
6312447 Grimes Nov 2001 B1
6332863 Schweich, Jr. et al. Dec 2001 B1
6332864 Schweich, Jr. et al. Dec 2001 B1
6332893 Mortier et al. Dec 2001 B1
6355050 Andreas et al. Mar 2002 B1
6401720 Stevens et al. Jun 2002 B1
6402679 Mortier et al. Jun 2002 B1
6402680 Mortier et al. Jun 2002 B2
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6419626 Yoon Jul 2002 B1
6436107 Wang et al. Aug 2002 B1
6443922 Roberts et al. Sep 2002 B1
6451054 Stevens Sep 2002 B1
6461366 Seguin Oct 2002 B1
6508777 Macoviak et al. Jan 2003 B1
6514194 Schweich, Jr. et al. Feb 2003 B2
6533796 Sauer et al. Mar 2003 B1
6537198 Vidlund et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6551331 Nobles et al. Apr 2003 B2
6558416 Cosgrove et al. May 2003 B2
6562052 Nobles et al. May 2003 B2
6564805 Garrison et al. May 2003 B2
6582388 Coleman et al. Jun 2003 B1
6585727 Cashman et al. Jul 2003 B1
6589160 Schweich, Jr. et al. Jul 2003 B2
6602288 Cosgrove et al. Aug 2003 B1
6616684 Vidlund et al. Sep 2003 B1
6619291 Hlavka et al. Sep 2003 B2
6622730 Ekvall et al. Sep 2003 B2
6626917 Craig Sep 2003 B1
6626930 Allen et al. Sep 2003 B1
6629534 St. Goar Oct 2003 B1
6629921 Schweich, Jr. et al. Oct 2003 B1
6629984 Chan Oct 2003 B1
6645205 Ginn Nov 2003 B2
6679268 Stevens et al. Jan 2004 B2
6692605 Kerr et al. Feb 2004 B2
6695866 Kuehn et al. Feb 2004 B1
6709456 Langberg et al. Mar 2004 B2
6718985 Hlavka et al. Apr 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726648 Kaplon et al. Apr 2004 B2
6733509 Nobles et al. May 2004 B2
6740107 Loeb et al. May 2004 B2
6743239 Kuehn Jun 2004 B1
6746471 Mortier et al. Jun 2004 B2
6752713 Johnson, Jr. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6755777 Schweich, Jr. et al. Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6770083 Seguin Aug 2004 B2
6770084 Bain et al. Aug 2004 B1
6793618 Schweich, Jr. et al. Sep 2004 B2
6802860 Cosgrove et al. Oct 2004 B2
6808488 Mortier et al. Oct 2004 B2
6810882 Langberg et al. Nov 2004 B2
6840246 Downing Jan 2005 B2
6858003 Evans et al. Feb 2005 B2
6875224 Grimes Apr 2005 B2
6893448 O'Quinn et al. May 2005 B2
6908424 Mortier et al. Jun 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6921407 Nguyen et al. Jul 2005 B2
6929715 Fladda et al. Aug 2005 B2
6936054 Chu Aug 2005 B2
6955175 Stevens et al. Oct 2005 B2
6962605 Cosgrove et al. Nov 2005 B2
6978176 Lattouf Dec 2005 B2
6986775 Morales et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6991635 Takamoto et al. Jan 2006 B2
6997950 Chawla Feb 2006 B2
7004176 Lau Feb 2006 B2
7004952 Nobles et al. Feb 2006 B2
7011669 Kimblad Mar 2006 B2
7044905 Vidlund et al. May 2006 B2
7048754 Martin et al. May 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7083628 Bachman Aug 2006 B2
7083638 Foerster Aug 2006 B2
7090686 Nobles et al. Aug 2006 B2
7094244 Schreck Aug 2006 B2
7100614 Stevens et al. Sep 2006 B2
7112207 Allen et al. Sep 2006 B2
7112219 Vidlund et al. Sep 2006 B2
7115110 Frazier et al. Oct 2006 B2
7118583 O'Quinn et al. Oct 2006 B2
7122040 Hill et al. Oct 2006 B2
7179291 Rourke et al. Feb 2007 B2
7186264 Liddicoat et al. Mar 2007 B2
7189199 McCarthy et al. Mar 2007 B2
7217240 Snow May 2007 B2
7226467 Lucatero et al. Jun 2007 B2
7247134 Vidlund et al. Jul 2007 B2
7250028 Julian et al. Jul 2007 B2
7288097 Seguin Oct 2007 B2
7294148 McCarthy Nov 2007 B2
7381210 Zarbatany et al. Jun 2008 B2
7464712 Oz et al. Dec 2008 B2
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7604646 Goldfarb et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
7635386 Gammie Dec 2009 B1
7666204 Thornton et al. Feb 2010 B2
7815654 Chu Oct 2010 B2
7879048 Bain et al. Feb 2011 B2
7887552 Bachman Feb 2011 B2
8052751 Aklog et al. Nov 2011 B2
8465500 Speziali Jun 2013 B2
8758393 Zentgraf Jun 2014 B2
9044221 Zentgraf et al. Jun 2015 B2
9192374 Zentgraf Nov 2015 B2
10080659 Zentgraf et al. Sep 2018 B1
10499941 Suri Dec 2019 B2
10695178 Zentgraf et al. Jun 2020 B2
20010005787 Oz Jun 2001 A1
20010016675 Mortier et al. Aug 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20020013571 Goldfarb Jan 2002 A1
20020029080 Mortier et al. Mar 2002 A1
20020049402 Peacock, III Apr 2002 A1
20020077524 Schweich, Jr. Jun 2002 A1
20020169359 McCarthy Nov 2002 A1
20020173694 Mortier et al. Nov 2002 A1
20020183766 Seguin Dec 2002 A1
20020183787 Wahr et al. Dec 2002 A1
20030004562 DiCarlo Jan 2003 A1
20030032979 Mortier et al. Feb 2003 A1
20030050529 Vidlund et al. Mar 2003 A1
20030050693 Quijano Mar 2003 A1
20030078600 O'Quinn et al. Apr 2003 A1
20030105519 Fasol Jun 2003 A1
20030130731 Vidlund et al. Jul 2003 A1
20030166992 Schweich, Jr. Sep 2003 A1
20030167071 Martin et al. Sep 2003 A1
20030171641 Schweich, Jr. Sep 2003 A1
20030181928 Vidlund et al. Sep 2003 A1
20030187457 Weber Oct 2003 A1
20030195529 Takamoto et al. Oct 2003 A1
20030199975 Gabbay Oct 2003 A1
20040003819 St. Goar Jan 2004 A1
20040030382 St. Goar Feb 2004 A1
20040039442 St. Goar Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040044365 Bachman Mar 2004 A1
20040049207 Goldfarb et al. Mar 2004 A1
20040049552 Motoyama Mar 2004 A1
20040059351 Eigler Mar 2004 A1
20040087975 Lucatero et al. May 2004 A1
20040087978 Velez et al. May 2004 A1
20040092962 Thornton et al. May 2004 A1
20040097805 Verard et al. May 2004 A1
20040116767 Lebovic Jun 2004 A1
20040122448 Levine Jun 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133063 McCarthy et al. Jul 2004 A1
20040167374 Schweich et al. Aug 2004 A1
20040167539 Kuehn et al. Aug 2004 A1
20040225300 Goldfarb et al. Nov 2004 A1
20040225304 Vidlund et al. Nov 2004 A1
20040236353 Bain et al. Nov 2004 A1
20040236354 Seguin Nov 2004 A1
20040243229 Vidlund et al. Dec 2004 A1
20040267083 McCarthy Dec 2004 A1
20050004665 Aklog Jan 2005 A1
20050004668 Aklog et al. Jan 2005 A1
20050021055 Toubia et al. Jan 2005 A1
20050021056 St. Goar Jan 2005 A1
20050021057 St. Goar Jan 2005 A1
20050033446 Deem et al. Feb 2005 A1
20050044365 Bachman Feb 2005 A1
20050049667 Arbefeuille et al. Mar 2005 A1
20050065396 Mortier et al. Mar 2005 A1
20050075723 Schroeder Apr 2005 A1
20050075727 Wheatley Apr 2005 A1
20050101975 Nguyen et al. May 2005 A1
20050125011 Spence et al. Jun 2005 A1
20050131277 Schweich, Jr. Jun 2005 A1
20050131533 Alfieri et al. Jun 2005 A1
20050143620 Mortier et al. Jun 2005 A1
20050148815 Mortier et al. Jul 2005 A1
20050149014 Hauck et al. Jul 2005 A1
20050154402 Sauer et al. Jul 2005 A1
20050165419 Sauer et al. Jul 2005 A1
20050171601 Cosgrove Aug 2005 A1
20050216039 Lederman Sep 2005 A1
20050240202 Shennib et al. Oct 2005 A1
20050251187 Beane et al. Nov 2005 A1
20060020275 Goldfarb et al. Jan 2006 A1
20060036317 Vidlund et al. Feb 2006 A1
20060041306 Vidlund et al. Feb 2006 A1
20060052868 Mortier et al. Mar 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060069304 Takemoto et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060074485 Realyvasquez Apr 2006 A1
20060089671 Goldfarb et al. Apr 2006 A1
20060100699 Vidlund et al. May 2006 A1
20060127509 Eckman Jun 2006 A1
20060135993 Seguin Jun 2006 A1
20060149123 Vidlund et al. Jul 2006 A1
20060161040 McCarthy Jul 2006 A1
20060161193 Beane et al. Jul 2006 A1
20060184203 Martin et al. Aug 2006 A1
20060195012 Mortier et al. Aug 2006 A1
20060195134 Crittenden Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060241340 Vidlund Oct 2006 A1
20060287657 Bachman Dec 2006 A1
20070002627 Youn Jan 2007 A1
20070027451 Desinger et al. Feb 2007 A1
20070049952 Weiss Mar 2007 A1
20070050022 Vidlund et al. Mar 2007 A1
20070055303 Vidlund et al. Mar 2007 A1
20070088375 Beane et al. Apr 2007 A1
20070100356 Lucatero et al. May 2007 A1
20070112244 McCarthy May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118155 Goldfarb et al. May 2007 A1
20070118213 Loulmet May 2007 A1
20070129737 Goldfarb et al. Jun 2007 A1
20070179511 Paolitto Aug 2007 A1
20070197858 Goldfarb et al. Aug 2007 A1
20070203391 Bloom et al. Aug 2007 A1
20070232941 Rabinovich Oct 2007 A1
20070239272 Navia et al. Oct 2007 A1
20070265643 Beane et al. Nov 2007 A1
20070299468 Viola Dec 2007 A1
20080004485 Moreschi Jan 2008 A1
20080027468 Fenton Jan 2008 A1
20080051703 Thornton et al. Feb 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080065156 Hauser et al. Mar 2008 A1
20080065205 Nguyen et al. Mar 2008 A1
20080091059 Machold Apr 2008 A1
20080091264 Machold Apr 2008 A1
20080097482 Bain et al. Apr 2008 A1
20080097489 Goldfarb et al. Apr 2008 A1
20080109069 Coleman May 2008 A1
20080125860 Webler May 2008 A1
20080125861 Webler May 2008 A1
20080167714 St. Goar Jul 2008 A1
20080183194 Goldfarb et al. Jul 2008 A1
20080188873 Speziali Aug 2008 A1
20080195126 Solem Aug 2008 A1
20080195200 Vidlund et al. Aug 2008 A1
20080208006 Farr Aug 2008 A1
20080228223 Alkhatib Sep 2008 A1
20080243245 Thamber et al. Oct 2008 A1
20090082857 Lashinski et al. Mar 2009 A1
20090105729 Zentgraf Apr 2009 A1
20090105751 Zentgraf Apr 2009 A1
20090131880 Speziali et al. May 2009 A1
20090156995 Martin et al. Jun 2009 A1
20090163934 Raschdorf, Jr. Jun 2009 A1
20090177274 Scorsin et al. Jul 2009 A1
20090192598 Lattouf et al. Jul 2009 A1
20090259304 O'Beirne et al. Oct 2009 A1
20100023118 Medlock Jan 2010 A1
20100030061 Canfield et al. Feb 2010 A1
20100042147 Janovsky Feb 2010 A1
20100160726 Windheuser Jun 2010 A1
20100161042 Maisano Jun 2010 A1
20100174297 Speziali Jul 2010 A1
20100179574 Longoria Jul 2010 A1
20100185172 Fabro Jul 2010 A1
20100217283 St. Goar Aug 2010 A1
20100298929 Thornton et al. Nov 2010 A1
20110011917 Loulmet Jan 2011 A1
20110029071 Zlotnick Feb 2011 A1
20110106245 Miller May 2011 A1
20120157760 Aklog et al. Jun 2012 A1
20120184971 Zentgraf et al. Jul 2012 A1
20120290077 Aklog et al. Nov 2012 A1
20130035757 Zentgraf et al. Feb 2013 A1
20130150710 Zentgraf et al. Jun 2013 A1
20140039324 Speziali Feb 2014 A1
20160143737 Zentgraf et al. May 2016 A1
Foreign Referenced Citations (42)
Number Date Country
20200401788 May 2005 DE
1039851 Jul 2005 EP
1637091 Mar 2006 EP
1845861 Oct 2007 EP
1408850 Sep 2009 EP
06142114 May 1994 JP
2004-531337 Oct 2004 JP
2007-535342 Dec 2007 JP
WO 199900059 Jan 1999 WO
WO 199930647 Jun 1999 WO
WO 200006026 Feb 2000 WO
WO 200006027 Feb 2000 WO
WO 200006028 Feb 2000 WO
WO 200016700 Mar 2000 WO
WO 200166018 Sep 2001 WO
WO 200195809 Dec 2001 WO
WO 2003001893 Jan 2003 WO
WO 2003059209 Jul 2003 WO
WO 2003082157 Oct 2003 WO
WO 2003082158 Oct 2003 WO
WO 2004021893 Mar 2004 WO
WO 2004043265 May 2004 WO
WO 2005039428 May 2005 WO
WO 2005087140 Sep 2005 WO
WO 2005094525 Oct 2005 WO
WO 2006012750 Feb 2006 WO
WO 2006032051 Mar 2006 WO
WO 2006065966 Jun 2006 WO
WO 2006078694 Jul 2006 WO
WO 2006116310 Nov 2006 WO
WO 2006127509 Nov 2006 WO
WO 2007002627 Jan 2007 WO
WO 2007027451 Mar 2007 WO
WO 2007062128 May 2007 WO
WO 2007081418 Jul 2007 WO
WO 2007117612 Oct 2007 WO
WO 2008010738 Jan 2008 WO
WO 2008112237 Sep 2008 WO
WO 2009052528 Apr 2009 WO
WO 2011070477 Jun 2011 WO
WO 2011137336 Nov 2011 WO
WO 2012167120 Dec 2012 WO
Non-Patent Literature Citations (29)
Entry
US 6,197,052 B1, 03/2001, Cosgrove et al. (withdrawn)
Interactive Cardio Vascular and Thoracic Surgery; Abstracts; Suppl 3 to vol. 7 (Sep. 2008) 52 pages.
Machine translation of JP 06142114.
Port Access System for Mitral Valve Repair Proves Its Value in Study; MedGadget Jul. 9, 2009 (2 pages).
PCT/US2012/040512, filed Jun. 1, 2012, Written Opinion dated Dec. 21, 2012, 5 pages.
PCT/US2012/040512, filed Jun. 1, 2012, Search Report dated Dec. 21, 2012, 6 pages.
PCT/US2012/067563, International Preliminary Examination Report, dated Jun. 3, 2014, 9 pages.
Extended European Search Report, EP 06718728.6, dated Nov. 11, 2009, 7 pages.
PCT International Preliminary Report on Patentability for PCT/US2008/080560, dated Apr. 29, 2010, 7 pages.
PCT International Search Report and Written Opinion, PCT/US06/01699, dated May 6, 2008, 5 pages.
European Search Report, EP 08839048.9, dated Sep. 16, 2010, 7 pages.
PCT International Search Report, PCT/US2008/080560, dated Aug. 25, 2009, 3 pages.
PCT/US2011/067884, Search Report/Written Opinion dated Jul. 30, 2011, 11 pages.
EP Application No. 12792116.1, Extended Search Report dated Jan. 8, 2015, 7 pages.
JP Application No. 2014-513757, Notification of Refusal dated Mar. 7, 2016, translation as obtained through Global Dossier, 3 pages.
AU Application No. 2012261998, Patent Examination Report No. 1, dated Mar. 3, 2016, 4 pages.
CN Application No. 201280038285.7, First Office Action dated Aug. 4, 2015, translation as obtained through Global Dossier, 6 pages.
EP Application No. 12792116.1, Communication Pursuant to Article 94(3) EPC, dated May 24, 2018, 7 pages.
Canadian Application No. 2,837,206, Office Action dated Apr. 18, 2018, 3 pages.
Application and File History for U.S. Appl. No. 11/813,695, filed Jul. 11, 2007, now U.S. Pat. No. 8,465,500. Inventor: Speziali.
Application and File History for U.S. Appl. No. 12,254,808, filed Oct. 20, 2008. Inventor: Zentgraf.
Application and File History for U.S. Appl. No. 12/254,807, filed Oct. 20, 2008, now U.S. Pat. No. 8,758,393. Inventor: Zentgraf.
Application and File History for U.S. Appl. No. 12/709,220, filed Feb. 19, 2010. Inventor: Speziali.
Application and File History for U.S. Appl. No. 13/898,709, filed May 21, 2013. Inventor: Speziali.
Application and File History for U.S. Appl. No. 13/339,865, filed Dec. 29, 2011. Inventors: Zentgraf et al.
Application and File History for U.S. Appl. No. 13/340,185, filed Dec. 29, 2011. Inventors: Zentgraf et al.
Application and File History for U.S. Appl. No. 13/486,632, filed Jun. 1, 2012. Inventor Zentgraf et al.
Application and File History for U.S. Appl. No. 13/692,027, filed Dec. 3, 2012. Inventors: Zentgraf et al.
Application and File History for U.S. Appl. No. 14/310,069, filed Jun. 20, 2014. Inventor: Zentgraf.
Related Publications (1)
Number Date Country
20200368022 A1 Nov 2020 US
Provisional Applications (1)
Number Date Country
61492135 Jun 2011 US
Continuations (2)
Number Date Country
Parent 14947399 Nov 2015 US
Child 16905645 US
Parent 13486632 Jun 2012 US
Child 14947399 US