Minimally invasive valve repair procedure and apparatus

Information

  • Patent Grant
  • 7914544
  • Patent Number
    7,914,544
  • Date Filed
    Tuesday, December 7, 2004
    19 years ago
  • Date Issued
    Tuesday, March 29, 2011
    13 years ago
Abstract
A clip of a self-closing type is used for valve repair. The clip is generally U-shaped with two end points separated from each other when constrained to be in an open configuration, but tends to coil up to assume its natural closed configuration if the constraint is removed. At least one end point is connected through a suture to a tissue-penetrating needle. A needle holder has an outer tube and an inner member which has a slit at the front and is slidable inside the outer tube. A double-arm clip assembly with each of the end points of the clip attached through a suture to a separate needle may be used for valve repair and may contain two of such clips mutually connected by a flexible connector whereby two leaflets are held together by the connector, with the two clips each anchored to a corresponding one of the leaflets.
Description
BACKGROUND OF THE INVENTION

This invention relates to methods and apparatus for minimally invasive valve repair and more particularly to minimally invasive methods and apparatus for reducing the valve orifice.


Valve repair is currently done in open surgical procedures as described, for example, by F. Maisano, et al. in their article entitled “The double-orifice technique as a standardized approach to treat mitral regurgitation due to severe myxomatous disease” which appeared in European Journal of Cardio-thoracic Surgery, Vol. 17 (2000) 201-205. Cumbersome suture management, knot tying, pain and long recovery time are inherent to such open surgical procedures. It now goes without saying that minimally invasive surgery is the preferred procedure, having allowed surgeons to perform procedures with less pain and disability than open surgical procedures. Tissue-connector apparatus and methods usable in such minimally invasive surgery procedures have recently been disclosed in U.S. patent application Ser. Nos. 09/089,884, now U.S. Pat. No. 6,607,541, and 09/090,305 both filed Jun. 3, 1998 and Ser. Nos. 09/259,705, now U.S. Pat. No. 6,514,265, and 09/260,623, now U.S. Pat. No. 6,613,059, both filed Mar. 1, 2000.


It is therefore a general object of this invention to provide improved minimally invasive methods and apparatus for coaptation of leaflets in the case of regurgitation to reduce the annular orifice.


It is a more specific object of this invention to provide such improved minimally invasive methods and apparatus using a tissue-connector apparatus disclosed in aforementioned U.S. patent applications.


SUMMARY OF THE INVENTION

Methods and apparatus embodying this invention with which the above and other objects can be accomplished are characterized as using a clip of a self-closing type as a tissue connector to capture leaflets and secure them together. Such a clip is typically U-shaped, having two end points, when it is constrained to be in an open configuration but is made of a wire of a shape memory material such that it tends to coil up to assume its natural closed configuration. Thus, if such a clip is placed between a pair of valve leaflets to be repaired, having each of its end points penetrating and completely passing through a different one of the leaflets while being constrained to be in its open configuration, and if the constraint which has been keeping the clip in its open configuration is then removed, it naturally tends to coil up, although it will not come to assume its natural closed configuration because it is hooked to the leaflets, tending nevertheless to reduce the distance of separation between its two end points. This has the effect of holding the leaflets together.


Such a clip may be deployed in the form of a clip assembly, having at least one of the end points of the clip connected to a tissue-piecing needle through a flexible member such as a suture and a release mechanism by which the clip can be easily released. The needle is attached to the front end of a needle-holder and passed through a cannula inserted through an incision towards the valve leaflets to be repaired. The needle-holder, according to a preferred embodiment of the invention, is formed with an outer tube and an inner member which is slidable inside the outer tube and is designed such that as the inner member is pushed forward against the biasing force of a spring contained in the outer tube, a slit which is provided at the front end becomes wider for accepting the needle therein but as the inner member is allowed to move to a backward position, the slit becomes narrower and grips the needle tightly.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings:



FIG. 1 is a schematic view of a tissue-connector apparatus embodying this invention when it is about to be used, its double-arm clip assembly being shown as a diagonal view and its needle holder being shown as a sectional side view;



FIG. 2 is an enlarged external view of the double-arm clip assembly of FIG. 1;



FIG. 3 is an enlarged sectional view of a portion of the needle holder near its front end;



FIG. 4A is a schematic diagonal view of the clip assembly of FIGS. 1 and 2 being used in a valve repair procedure embodying this invention, and FIG. 4B is another schematic diagonal view of the clip of FIG. 4A after it has been released;



FIG. 5 is an external view of a single-arm clip assembly which may be used in a method of minimally invasive valve repair embodying this invention;



FIG. 6 is a schematic sectional view for showing a method of valve repair embodying this invention by using the single-arm clip assembly of FIG. 5;



FIG. 7 is another clip assembly embodying this invention; and



FIG. 8A is a schematic sectional view of leaflets repaired by a clip assembly of FIG. 7, FIG. 8B is a top view of the leaflets of FIG. 8A, and FIG. 8C is a top view of leaflets repaired in an alternative manner.





Throughout herein like components are indicated by the same numerals even where they are components of different assemblies and may not necessarily described repetitiously.


The schematic drawings are intended to be indeed schematic and only to show the basic concepts of the invention, not necessarily representing realistic views, for example, with realistic relative sizes of body components and apparatus components.


DETAILED DESCRIPTION OF THE INVENTION

The invention is described next by way of examples. FIG. 1 shows schematically a tissue-connector apparatus 10 embodying this invention for a minimally invasive procedure. Described briefly, the apparatus 10 consists of a clip assembly 20 and a needle holder 30, which will be described next sequentially in detail.


The clip assembly 20 according to this embodiment may be referred to as the double-arm clip assembly, characterized as having a clip 22 of a self-closing type with two end points each connected through a flexible member 24 such as a suture to a tissue penetrating needle 25 (as disclosed, for example, in aforementioned U.S. patent application Ser. Nos. 09/259,705, now U.S. Pat. No. 6,514,265, and 09/260,623, now U.S. Pat. No. 6,613,059, both filed Mar. 1, 2000, both of which applications are herein incorporated by reference). Each of the needles 25 has a tissue-piercing sharp point and is connected to a corresponding one of the flexible members 24. As shown more clearly in FIG. 2, the two end points of the clip 22 are each provided with and directly connected to a release mechanism 23 such that it can be released easily from the flexible members 24 and from being constrained to remain in its generally U-shaped open configuration.


The clip 22, or a surgical fastener, of the so-called self-closing type may be one disclosed in aforementioned U.S. patent application Ser. Nos. 09/089,884, now U.S. Pat. No. 6,607,541, and 09/090,305, now U.S. Pat. No. 6,641,593, both filed Jun. 3, 1998 (herein said 09/089,884 and 09/090,305 applications also incorporated by reference), as well as in aforementioned U.S. patent application Ser. Nos. 09/259,705, now U.S. Pat. No. 6,514,265, and 09/260,623 now U.S. Pat. No. 6,613,059, characterized as having two end points, being generally U-shaped when in an open configuration (as shown in FIGS. 1 and 2), being naturally in a closed configuration (state or condition) and being elastic (or pseudoelastic, but herein broadly characterized as being “elastic”) so as to tend to return to the closed configuration by reducing the separation distance between its end points when forced into an open configuration. As disclosed in aforementioned U.S. patent application Ser. Nos. 09/089,884, now U.S. Pat. No. 6,607,541, and 09/090,305, now U.S. Pat. No. 6,641,593, such a clip 22 may comprise a deformable wire made of a shape memory alloy such as a nickel titanium based alloy (nitinol). It is also known that the alloy may include additional elements, depending on the desired yield strength of the material or the temperature at which particular pseudoelastic or shape transformation characteristics occur. When the clip 22 is in its closed configuration (not shown) with no external restraining force thereupon, it may be in a completely closed loop with its end points in a side-by-side or overlapping orientation, the wire being looped by more than 360°. The diameter of the wire for the clip 22 and the diameter of the loop when it is in the closed configuration may be selected, depending on the application, and do not limit the scope of the invention.


The needle holder 30 consists essentially of a hollow outer tube 32, an inner member 34 and a spring 38, as shown in FIG. 1. The outer tube 32 is elongated, defining a longitudinal direction. The inner member 34 is also longitudinally elongated and is adapted to slide longitudinally inside the outer tube 32 and to releasably grab the needles 25, one at a time. According to the embodiment shown in FIG. 1, the inner member 34 is comprised of a knob 341 at its proximal end, a conjunction tube 342 in the middle and a needle-holding tube 343 in front. The conjunction tube 342 and the needle holding tube 343 are laser-welded together. A threaded adapter is laser-welded to the proximal end of the conjunction tube 342 for allowing the knob 341 to be screwed thereonto after the spring 38 is inserted inside the outer tube 32 such that, once the needle holder 30 is thus assembled, the knob 341, the conjunction tube 342 and the needle-holding tube 343 will move together as a single unit. The front end of the needle-holding tube 343 is provided with a longitudinally elongated slit 35 for holding the needle 25, and the outer tube 32 has a front opening 33, as shown more clearly in FIG. 3. The needle-holding tube 343 with the slit 35 and the front opening 33 of the outer tube 32 are so designed that the slit 35 will open and become sufficiently wide in front as the inner member 34 is pushed forward through the outer tube 32 for accepting a needle 25 (shown by broken lines in FIG. 3) therein and that the opening of the slit 35 tends to become smaller as the inner member 34 is moved backwards through the outer tube 32 so as to retract the needle-holding tube 343 through the front opening 33 of the outer tube 32, causing the needle-holding tube 343 to securely grab the needle 25 once accepted. The spring 38 is disposed inside the outer tube 32 so as to provide a backward biasing force on the inner member 34. In other words, the inner member 34 is normally in a backward position inside the outer tube 32 under the influence of the backward biasing force of the spring 38 thereon. As the user pushes the inner member 34 forward by operating the knob 341 against aforementioned backward biasing force of the spring, the front part of the needle-holding tube 343 protrudes farther outward from the front opening 33 of the outer tube 32 and the slit 35 opens wider, its front opening becoming wide enough to accept the back part of a needle (away from its tissue-piercing sharp point). If the user then releases the force being applied to the knob 341 after the back part of the needle 25 has been accepted inside the slit 35, the backward biasing force by the spring pushes the inner member 34 backward, reducing the length of the needle-holding tube 343 outside the front opening 33 of the outer tube 32. This has the effect of reducing the opening of the slit 35 and hence of having the needle 25 firmly gripped by the needle holder 30. In summary, the user pushes the knob 341 forward to accept the needle 25 and releases the force on the knob 341 to firmly grab it. When a needle is already being held by the needle holder 30, the user has only to push the knob 341 to release it.


A valve repair procedure embodying this invention, such as for reducing the valve orifice by using the apparatus described above, will be described next.


To access a mitral valve, a small incision is made on the appendage of the left atrium. One of the needles 25 of the clip assembly 20 is grabbed by the needle holder 30, as shown in FIG. 1, by pushing the knob 341 forward to accept the needle 25 and then releasing it to firmly attach the needle 25 to the needle holder 30, as described above. A cannula is inserted into the incision. FIG. 1 shows the cannula schematically at 40 but the patient's body part are omitted from FIG. 1. With an aid of an ultrasound machine (not shown), the needle holder 30 is passed through the cannula 40 towards the leaflets, and the needle 25 held by the needle holder 30 is caused to penetrate and be completely pulled through one of the leaflets. Thereafter, the knob 341 is pushed forward to release the needle 25. The knob 341 is pushed forward again to grab the same needle 25 from the other side of the leaflet to secure the needle 25 on the leaflet. Thereafter, the needle 25 is released, the needle holder 30 is pulled out of the cannula 40 and the other of the needles 25 of the double-arm clip assembly 20 is similarly grabbed by its needle holder 30. The same procedure as described above is repeated to cause the second needle 25 of the clip assembly 20 to penetrate and be completely pulled through and be secured to the other of the leaflets. The needles 25 are pulled, together with the flexible members 24 attached thereto, until the clip 22 comes to span the leaflets, as shown in FIG. 4A. Thereafter, the release mechanisms 23 are squeezed by an instrument such as the needle holder 30 itself to release the clip 22 from the flexible members 24. Free of constraints, the clip 22 now tends to return to its natural closed configuration, reducing the distance separating its two end points. This has the effect of tightly bringing the leaflets together, as shown in FIG. 4B, thereby reducing the valve orifice.


The invention was described above by way of only one example but this example is not intended to limit the scope of the invention. Many modifications and variations are possible within the scope of the invention. For example, although the use of a clip assembly having two needles each connected to a corresponding one of the two end points of a generally U-shaped clip was disclosed, use may be made under certain circumstances of a simpler single-arm clip assembly 20′ shown in FIG. 5 and described, for example, in aforementioned U.S. patent application Ser. Nos. 09/089,884, now U.S. Pat. No. 6,607,541, and 09/090,305, having only one needle 25 attached through a flexible member 24 and a release mechanism 23 to one of the two end points of a clip 22′. Such a single-arm clip assembly 20′ may be used similarly, as described above in connection with the double-arm clip assembly 20 shown in FIGS. 1 and 2, except that the clip 22′ is provided with a stopper 26 at the other of its two end points not connected to the flexible member 24 for keeping the clip 22′ in its generally U-shaped open configuration. After the needle 25 is caused to penetrate both leaflets, as shown in FIG. 6, the clip 22′ can be caused to pull the two leaflets together as the flexible member 24 is pulled, the stopper 26 serving to locate the clip 22′ across the leaflets.



FIG. 7 shows still another clip assembly 20″ embodying this invention, indicating like components by the same numerals as used in FIGS. 2 and 5. This clip assembly 20″ is characterized as having not only two tissue penetrating needles 25 each connected to a flexible member 24 but also two self-closing clips 22′ as shown in and explained with reference to FIG. 5, each having a stopper 26 at one end point for keeping the clip 22′ in a generally U-shaped open configuration and the other end point being connected to a corresponding one of the flexible members 24 through a release mechanism 23 for separating the clip 22′ from the flexible member 24 and thereby releasing the clip 22′ from remaining in its open configuration. These two clips 22′ are connected through their stoppers 26 by another flexible member 29 which may be a suture or a metal wire.


A clip assembly 22′ thus structured may be used in a valve repair procedure, for example, by penetrating a leaflet tissue with one of the needles 25, causing it to come up and out at another position in a manner of ordinary stitching, pulling the associated flexible member 24 until the clip 22′ connected thereto penetrates the leaflet tissue partially such that the end point of this clip 22′ on the side of the release mechanism 23 penetrates the tissue and reappears on the surface while the other end point on the side of the stopped 26 does not penetrate the tissue, and doing the same with the other needle 25 on the leaflet on the opposite side of the valve opening. After the release mechanisms 23 on both clips 22′ are pressed, as described above, to release the clips 22′ from the needles 25, each clip 22′ tends to coil up, getting firmly attached to the respective leaflet, the flexible member 29 therebetween holding the leaflets together, as shown in FIGS. 8A and 8B. In other words, it is the flexible member 29 between the two clips 22′ that holds the leaflets together. As an alternative procedure, the needles 25 may be operated such that the connecting flexible member 29 makes a loop between the leaflets, as shown in FIG. 8C.


Although the clips 22 and 22′, when constrained to an open configuration before they are released from the flexible member 24, are described as being generally U-shaped, this description is intended to be interpreted broadly. As should be clear from the intended function of the clips 22 and 22′, their open configuration may look more like a C or a J than a U. The release mechanisms 23, described above as serving to release the connection between the clip 22 or 22′ and the flexible members 24 and to release the clip 22 or 22′ from its forced open configuration, may be structured as disclosed in aforementioned U.S. patent application Ser. No. 09/260,623, now U.S. Pat. No. 6,613,059, but their structure is not intended to limit the scope of the invention.


In summary, the disclosure is intended to be interpreted broadly. Although the invention has been described as being addressed to a method and an apparatus for valve repair, a person skilled in the art will immediately realize that the method and apparatus of this invention as described above can be used for holding two tissue parts close together, not being limited to valve leaflets. The scope of this invention, therefore, is to be understood as including methods of and apparatus for holding two tissue parts close together.

Claims
  • 1. Apparatus for minimally invasive valve repair, the apparatus comprising: a tissue penetrating needle, a flexible member, and a clip, the tissue penetrating needle being connected through the flexible member to the clip, the clip having two end points which are separated from each other when the clip is in an open configuration and tending to return to a naturally closed configuration by reducing distance between the end points when in the open configuration;a needle holder including an outer tube and an inner member which has a front end adapted to grab the needle and is slidable inside the outer tube;a release mechanism attached to one of the end points of the clip to releasably connect the flexible member to the clip.
  • 2. The apparatus of claim 1 wherein the clip is generally U-shaped when in the open configuration.
  • 3. The apparatus of claim 1 wherein the clip comprises a wire made of shape memory material.
  • 4. The apparatus of claim 1 wherein the clip in the closed configuration is looped by more than 360°.
  • 5. Apparatus for minimally invasive valve repair, the apparatus comprising: a tissue penetrating needle, a flexible member, and a clip, the tissue penetrating needle being connected through the flexible member to the clip, the clip having two end points which are separated from each other when the clip is in an open configuration and tending to return to a naturally closed configuration by reducing distance between the end points when in the open configuration;a needle holder including an outer tube and an inner member which has a front end adapted to grab the needle and is slidable inside the outer tube, the needle holder further including a spring which is disposed inside the outer tube and serves to apply a biasing force on the inner member backward away from the front end; anda release mechanism attached to one of the end points of the clip to releasably connect the flexible member to the clip.
  • 6. The apparatus of claim 5 wherein the front end of the inner member has a slit for accepting and grabbing the needle therein.
  • 7. The apparatus of claim 6 wherein the outer tube, the inner member and the slit are designed such that the slit opens wide enough to accept the needle therein and to release the needle therefrom when the inner member is pushed forward against the biasing force and the slit becomes narrower and firmly grips the needle therein when the inner member is moved backward.
  • 8. The apparatus of claim 5 wherein the clip is generally U-shaped when in the open configuration.
  • 9. The apparatus of claim 5 wherein the clip comprises a wire made of shape memory material.
  • 10. The apparatus of claim 5 including a second needle and a second flexible member coupled to the second needle, wherein each flexible member is connected to one of the two end points of the clip.
  • 11. The apparatus of claim 10 including a second release mechanism to releasably connect the second flexible member to the clip.
  • 12. Apparatus for minimally invasive valve repair, the apparatus comprising: a tissue penetrating needle, a flexible member, and a clip, the tissue penetrating needle being connected through the flexible member to the clip, the clip having a first end point and a second end point which are separated from each other when the clip is in an open configuration and tending to return to a naturally closed configuration by reducing distance between the end points when in the open configuration, wherein the clip in the closed configuration is looped by more than 360°; anda needle holder including an outer tube and an inner member which has a front end adapted to grab the needle and is slidable inside the outer tube; anda release mechanism attached to the first end point of the clip to releasably connect the flexible member to the clip.
  • 13. The apparatus of claim 12 wherein the needle holder further includes a spring which is disposed inside the outer tube and serves to apply a biasing force on the inner member backward away from the front end.
  • 14. The apparatus of claim 13 wherein the front end of the inner member has a slit for accepting and grabbing the needle therein.
  • 15. The apparatus of claim 14 wherein the outer tube, the inner member and the slit are designed such that the slit opens wide enough to accept the needle therein and to release the needle therefrom when the inner member is pushed forward against the biasing force and the slit becomes narrower and firmly grips the needle therein when the inner member is moved backward.
  • 16. The apparatus of claim 12 wherein the clip is generally U-shaped when in the open configuration.
  • 17. The apparatus of claim 12 wherein the clip comprises a wire made of shape memory material.
  • 18. The apparatus of claim 12 including a second needle and a second flexible member coupled to the second needle, wherein each flexible member is connected to one of the two end points of the clip.
  • 19. The apparatus of claim 18 including a second release mechanism attached to the second end point of the clip to releasably connect the second flexible member to the clip.
CROSS-REFERENCE TO OTHER APPLICATIONS

This patent application is a continuation of U.S. patent application Ser. No. 09/686,004, filed Oct. 10, 2000, now U.S. Pat. No. 6,926,730 and entitled “Minimally Invasive Valve Repair Procedure And Apparatus.”

US Referenced Citations (592)
Number Name Date Kind
43098 Cooper Jun 1864 A
636728 Kindel Nov 1899 A
655190 Bramson Aug 1900 A
1087186 Scholfield Feb 1914 A
1167014 O'Brien Jan 1916 A
1539221 John May 1925 A
1583271 Biro May 1926 A
1625602 Gould et al. Apr 1927 A
1867624 Hoffman Jul 1932 A
2201610 Dawson May 1940 A
2240330 Flagg et al. Apr 1941 A
2256382 Dole Sep 1941 A
2264679 Ravel Dec 1941 A
2413142 Jones et al. Dec 1946 A
2430293 Howells Nov 1947 A
2505358 Gusberg et al. Apr 1950 A
2516710 Mascolo Jul 1950 A
2715486 Marcoff-Moghadam Aug 1955 A
2890519 Storz, Jr. Jun 1959 A
2940452 Smialowski Jun 1960 A
3055689 Jorgensen Sep 1962 A
3057355 Smialowski Oct 1962 A
3082426 Miles Mar 1963 A
3143742 Cromie Aug 1964 A
3150379 Brown Sep 1964 A
3180337 Smialowski Apr 1965 A
3249104 Hohnstein May 1966 A
3274658 Pile Sep 1966 A
3452742 Muller Jul 1969 A
3506012 Brown Apr 1970 A
3509882 Blake May 1970 A
3547103 Cook Dec 1970 A
3570497 Lemole Mar 1971 A
3608095 Barry Sep 1971 A
3638654 Akuba Feb 1972 A
3656185 Carpentier Apr 1972 A
RE27391 Merser Jun 1972 E
3753438 Wood et al. Aug 1973 A
3762418 Wasson Oct 1973 A
3776237 Hill et al. Dec 1973 A
3802438 Wolvek Apr 1974 A
3825009 Williams Jul 1974 A
3837345 Matar Sep 1974 A
3874388 King et al. Apr 1975 A
3875648 Bone Apr 1975 A
3905403 Smith et al. Sep 1975 A
3908662 Razgulov et al. Sep 1975 A
3910281 Kletschka et al. Oct 1975 A
3958576 Komiya May 1976 A
3976079 Samuels Aug 1976 A
3995619 Glatzer Dec 1976 A
4006747 Kronenthal et al. Feb 1977 A
4018228 Goosen Apr 1977 A
4038725 Keefe Aug 1977 A
4042979 Angell Aug 1977 A
4073179 Hickey et al. Feb 1978 A
4103690 Harris Aug 1978 A
4111206 Vishnevsky et al. Sep 1978 A
4129059 Van Eck Dec 1978 A
4140125 Smith Feb 1979 A
4170990 Baumgart et al. Oct 1979 A
4185636 Gabbay et al. Jan 1980 A
4192315 Hilzinger et al. Mar 1980 A
4214587 Sakura Jul 1980 A
4217902 March Aug 1980 A
4243048 Griffin Jan 1981 A
4324248 Perlin Apr 1982 A
4345601 Fukuda Aug 1982 A
4352358 Angelchik Oct 1982 A
4366819 Kaster Jan 1983 A
4396139 Hall et al. Aug 1983 A
4416266 Baucom Nov 1983 A
4456017 Miles Jun 1984 A
4465071 Samuels et al. Aug 1984 A
4470415 Wozniak Sep 1984 A
4470533 Schuler Sep 1984 A
4474181 Schenck Oct 1984 A
4485816 Krumme Dec 1984 A
4492229 Grunwald Jan 1985 A
4522207 Klieman et al. Jun 1985 A
4523592 Daniel Jun 1985 A
4532927 Miksza Aug 1985 A
4535764 Ebert Aug 1985 A
4549545 Levy Oct 1985 A
4553542 Schenck et al. Nov 1985 A
4576605 Kaidash et al. Mar 1986 A
4586502 Bedi et al. May 1986 A
4586503 Kirsch et al. May 1986 A
4593693 Schenck Jun 1986 A
4595007 Mericle Jun 1986 A
4612932 Caspar et al. Sep 1986 A
4622970 Wozniak Nov 1986 A
4624255 Schenck et al. Nov 1986 A
4637380 Orejola Jan 1987 A
4641652 Hutterer et al. Feb 1987 A
4653496 Bundy et al. Mar 1987 A
4665906 Jervis May 1987 A
4665917 Clanton et al. May 1987 A
4683895 Pohndorf Aug 1987 A
4706362 Strausburg Nov 1987 A
4719917 Barrows et al. Jan 1988 A
4719924 Crittenden et al. Jan 1988 A
4730615 Sutherland et al. Mar 1988 A
4732151 Jones Mar 1988 A
4809695 Gwathmey et al. Mar 1989 A
4820298 Leveen et al. Apr 1989 A
4844318 Kunreuther Jul 1989 A
4873975 Walsh et al. Oct 1989 A
4890615 Caspari et al. Jan 1990 A
4896668 Popoff et al. Jan 1990 A
4899744 Fujitsuka et al. Feb 1990 A
4901721 Hakki Feb 1990 A
4923461 Caspari et al. May 1990 A
4924866 Yoon May 1990 A
4926860 Stice et al. May 1990 A
4929240 Kirsch et al. May 1990 A
4930674 Barak Jun 1990 A
4932955 Merz et al. Jun 1990 A
4935027 Yoon Jun 1990 A
4950015 Nejib et al. Aug 1990 A
4950283 Dzubow et al. Aug 1990 A
4950285 Wilk Aug 1990 A
4957498 Caspari et al. Sep 1990 A
4983176 Cushman et al. Jan 1991 A
4990152 Yoon Feb 1991 A
4991567 McCuen et al. Feb 1991 A
4994069 Ritchart et al. Feb 1991 A
4997439 Chen Mar 1991 A
5002550 Li Mar 1991 A
5002562 Oberlander Mar 1991 A
5002563 Pyka et al. Mar 1991 A
5007920 Torre Apr 1991 A
5011481 Myers et al. Apr 1991 A
5020713 Kunreuther Jun 1991 A
5026379 Yoon Jun 1991 A
5032127 Frazee et al. Jul 1991 A
5035692 Lyon et al. Jul 1991 A
5035702 Taheri Jul 1991 A
5042707 Taheri Aug 1991 A
5047047 Yoon Sep 1991 A
5053047 Yoon Oct 1991 A
5064431 Gilbertson et al. Nov 1991 A
5074874 Yoon et al. Dec 1991 A
5088692 Weiler Feb 1992 A
5100418 Yoon Mar 1992 A
5100421 Christoudias Mar 1992 A
5104407 Lam et al. Apr 1992 A
5119983 Green et al. Jun 1992 A
5123913 Wilk et al. Jun 1992 A
5127413 Ebert Jul 1992 A
5129913 Ruppert Jul 1992 A
5152769 Baber Oct 1992 A
5154189 Oberlander Oct 1992 A
5158566 Pianetti Oct 1992 A
5171250 Yoon Dec 1992 A
5171252 Friedland Dec 1992 A
5174087 Bruno Dec 1992 A
5178634 Ramos Martinez Jan 1993 A
5192294 Blake Mar 1993 A
5196022 Bilweis Mar 1993 A
5201880 Wright et al. Apr 1993 A
5207694 Broome May 1993 A
5217027 Hermens Jun 1993 A
5219358 Bendel et al. Jun 1993 A
5221259 Weldon et al. Jun 1993 A
5222961 Nakao et al. Jun 1993 A
5222976 Yoon Jun 1993 A
5234447 Kaster et al. Aug 1993 A
5236440 Hlavacek Aug 1993 A
5242456 Nash et al. Sep 1993 A
5242457 Akopov et al. Sep 1993 A
5246443 Mai Sep 1993 A
5250053 Snyder Oct 1993 A
5258011 Drews Nov 1993 A
5261917 Hasson et al. Nov 1993 A
5269783 Sander Dec 1993 A
5269809 Hayhurst et al. Dec 1993 A
5282825 Muck et al. Feb 1994 A
5290289 Sanders et al. Mar 1994 A
5304117 Wilk Apr 1994 A
5304204 Bregen Apr 1994 A
5306296 Wright et al. Apr 1994 A
5312436 Coffey et al. May 1994 A
5314468 Ramos Martinez May 1994 A
5330503 Yoon Jul 1994 A
5334196 Scott et al. Aug 1994 A
5336233 Chen Aug 1994 A
5336239 Gimpelson Aug 1994 A
5346459 Allen Sep 1994 A
5350420 Cosgrove et al. Sep 1994 A
5353804 Kornberg et al. Oct 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5356424 Buzerak et al. Oct 1994 A
5364406 Sewell Nov 1994 A
5366459 Yoon Nov 1994 A
5366462 Kaster et al. Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5374268 Sander Dec 1994 A
5376096 Foster Dec 1994 A
5382259 Phelps et al. Jan 1995 A
5383904 Totakura et al. Jan 1995 A
5387227 Grice Feb 1995 A
5403331 Chesterfield Apr 1995 A
5403333 Kaster Apr 1995 A
5403338 Milo Apr 1995 A
5403346 Loeser Apr 1995 A
5413584 Schulze May 1995 A
5413597 Krajicek May 1995 A
5417684 Jackson et al. May 1995 A
5417700 Egan May 1995 A
5423821 Pasque Jun 1995 A
5431666 Sauer et al. Jul 1995 A
5437680 Yoon Aug 1995 A
5437681 Meade et al. Aug 1995 A
5437685 Blasnik Aug 1995 A
5439479 Shichman et al. Aug 1995 A
5445167 Yoon et al. Aug 1995 A
5445644 Pietrafitta et al. Aug 1995 A
5450860 O'Connor Sep 1995 A
5451231 Rabenau et al. Sep 1995 A
5452733 Sterman et al. Sep 1995 A
5454834 Boebel et al. Oct 1995 A
5456246 Schmieding et al. Oct 1995 A
5462561 Voda Oct 1995 A
5474557 Mai Dec 1995 A
5480405 Yoon Jan 1996 A
5486187 Schenck Jan 1996 A
5486197 Le et al. Jan 1996 A
5488958 Topel et al. Feb 1996 A
5496334 Klundt et al. Mar 1996 A
5499990 Schulken et al. Mar 1996 A
5500000 Feagin et al. Mar 1996 A
5522884 Wright Jun 1996 A
5527342 Pietrzak et al. Jun 1996 A
5533236 Tseng Jul 1996 A
5538509 Dunlap et al. Jul 1996 A
5545214 Stevens Aug 1996 A
5549619 Peters et al. Aug 1996 A
5556411 Taoda et al. Sep 1996 A
5562685 Mollenauer et al. Oct 1996 A
5569205 Hart et al. Oct 1996 A
5569274 Rapacki et al. Oct 1996 A
5569301 Granger et al. Oct 1996 A
5571119 Atala Nov 1996 A
5571175 Vanney et al. Nov 1996 A
5582616 Bolduc et al. Dec 1996 A
5582619 Ken Dec 1996 A
5584879 Reimold et al. Dec 1996 A
5586983 Sanders et al. Dec 1996 A
5591179 Edelstein Jan 1997 A
5593414 Shipp et al. Jan 1997 A
5593424 Northrup, III Jan 1997 A
5597378 Jervis Jan 1997 A
5601571 Moss Feb 1997 A
5601572 Middleman et al. Feb 1997 A
5601600 Ton Feb 1997 A
5603718 Xu Feb 1997 A
5609608 Benett et al. Mar 1997 A
5618311 Gryskiewicz et al. Apr 1997 A
5628757 Hasson May 1997 A
5630540 Blewett May 1997 A
5632752 Buelna May 1997 A
5632753 Loeser May 1997 A
5643295 Yoon Jul 1997 A
5643305 Al-Tameem Jul 1997 A
5645568 Chervitz et al. Jul 1997 A
5653716 Malo et al. Aug 1997 A
5653718 Yoon Aug 1997 A
5658312 Green et al. Aug 1997 A
5660186 Bachir Aug 1997 A
5665109 Yoon Sep 1997 A
5669918 Balazs et al. Sep 1997 A
5676670 Kim Oct 1997 A
5683417 Cooper Nov 1997 A
5690662 Chiu et al. Nov 1997 A
5695504 Gifford, III et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5697913 Sierocuk et al. Dec 1997 A
5697943 Sauer et al. Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5700271 Whitfield et al. Dec 1997 A
5702412 Popov et al. Dec 1997 A
5707362 Yoon Jan 1998 A
5707380 Hinchliffe et al. Jan 1998 A
5709693 Taylor Jan 1998 A
5709695 Northrup, III Jan 1998 A
5715987 Kelley et al. Feb 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5720755 Dakov Feb 1998 A
5725539 Matern Mar 1998 A
5725542 Yoon Mar 1998 A
5725554 Simon et al. Mar 1998 A
5728135 Bregen et al. Mar 1998 A
5732872 Bolduc et al. Mar 1998 A
5735290 Sterman et al. Apr 1998 A
5746753 Sullivan et al. May 1998 A
5755778 Kleshinski May 1998 A
5766189 Matsuno Jun 1998 A
5769870 Salahieh et al. Jun 1998 A
5779718 Green et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5782844 Yoon et al. Jul 1998 A
5797920 Kim Aug 1998 A
5797933 Snow et al. Aug 1998 A
5797934 Rygaard Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5799661 Boyd et al. Sep 1998 A
5799857 Robertson et al. Sep 1998 A
5810848 Hayhurst Sep 1998 A
5810851 Yoon Sep 1998 A
5810853 Yoon Sep 1998 A
5810882 Bolduc et al. Sep 1998 A
5817113 Gifford, III et al. Oct 1998 A
5820631 Nobles Oct 1998 A
5824002 Gentelia et al. Oct 1998 A
5824008 Bolduc et al. Oct 1998 A
5827265 Glinsky et al. Oct 1998 A
5827316 Young et al. Oct 1998 A
5830221 Stein et al. Nov 1998 A
5830222 Makower Nov 1998 A
5833698 Hinchliffe Nov 1998 A
5849019 Yoon Dec 1998 A
5851216 Allen Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5868702 Stevens et al. Feb 1999 A
5868763 Spence et al. Feb 1999 A
5871528 Camps et al. Feb 1999 A
5879371 Gardiner et al. Mar 1999 A
5881943 Heck et al. Mar 1999 A
5882340 Yoon Mar 1999 A
5891130 Palermo et al. Apr 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5893369 LeMole Apr 1999 A
5893856 Jacob et al. Apr 1999 A
5893865 Swindle et al. Apr 1999 A
5893886 Zegdi et al. Apr 1999 A
5895394 Kienzle et al. Apr 1999 A
5904697 Gifford, III et al. May 1999 A
5908428 Scirica et al. Jun 1999 A
5911352 Racenet et al. Jun 1999 A
5919207 Taheri Jul 1999 A
5931842 Goldsteen et al. Aug 1999 A
5941434 Green Aug 1999 A
5941442 Geiste et al. Aug 1999 A
5941888 Wallace et al. Aug 1999 A
5941908 Goldsteen et al. Aug 1999 A
5944730 Nobles et al. Aug 1999 A
5951576 Wakabayashi Sep 1999 A
5951600 Lemelson Sep 1999 A
5954732 Hart et al. Sep 1999 A
5954735 Rygaard Sep 1999 A
5957363 Heck Sep 1999 A
5957938 Zhu et al. Sep 1999 A
5957940 Tanner et al. Sep 1999 A
5961481 Sterman et al. Oct 1999 A
5961539 Northrup, III et al. Oct 1999 A
5964772 Bolduc et al. Oct 1999 A
5964782 Lafontaine et al. Oct 1999 A
5972004 Williamson, IV et al. Oct 1999 A
5972024 Northrup, III et al. Oct 1999 A
5976159 Bolduc et al. Nov 1999 A
5976161 Kirsch et al. Nov 1999 A
5976164 Bencini et al. Nov 1999 A
5976178 Goldsteen et al. Nov 1999 A
5984917 Fleischman et al. Nov 1999 A
5984959 Robertson et al. Nov 1999 A
5989242 Saadat et al. Nov 1999 A
5989268 Pugsley, Jr. et al. Nov 1999 A
5989276 Houser et al. Nov 1999 A
5989278 Mueller Nov 1999 A
5993465 Shipp et al. Nov 1999 A
5993467 Yoon Nov 1999 A
5993468 Rygaard Nov 1999 A
5997556 Tanner Dec 1999 A
6001110 Adams Dec 1999 A
6007544 Kim Dec 1999 A
6010531 Donlon et al. Jan 2000 A
6013084 Ken et al. Jan 2000 A
6022367 Sherts Feb 2000 A
6024748 Manzo et al. Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6033419 Hamblin, Jr. et al. Mar 2000 A
6036699 Andreas et al. Mar 2000 A
6036703 Evans et al. Mar 2000 A
6036710 McGarry et al. Mar 2000 A
6042607 Williamson et al. Mar 2000 A
6056751 Fenton May 2000 A
6063070 Eder May 2000 A
6066148 Rygaard May 2000 A
6074401 Gardiner et al. Jun 2000 A
6074418 Buchanan et al. Jun 2000 A
6077291 Das Jun 2000 A
6080114 Russin Jun 2000 A
6083237 Huitema et al. Jul 2000 A
6106538 Shiber Aug 2000 A
6110188 Narciso Aug 2000 A
6113611 Allen et al. Sep 2000 A
6113612 Swanson et al. Sep 2000 A
6120524 Taheri Sep 2000 A
6132438 Fleischman et al. Oct 2000 A
6139540 Rost et al. Oct 2000 A
6143004 Davis et al. Nov 2000 A
6149658 Gardiner et al. Nov 2000 A
6152935 Kammerer et al. Nov 2000 A
6152937 Peterson et al. Nov 2000 A
6159165 Ferrera et al. Dec 2000 A
6159225 Makower Dec 2000 A
6162233 Williamson, IV et al. Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6165185 Shennib et al. Dec 2000 A
6171320 Monassevitch Jan 2001 B1
6171321 Gifford, III et al. Jan 2001 B1
6176413 Heck et al. Jan 2001 B1
6176864 Chapman Jan 2001 B1
6179840 Bowman Jan 2001 B1
6179848 Solem Jan 2001 B1
6179849 Yencho et al. Jan 2001 B1
6183512 Howanec et al. Feb 2001 B1
6190373 Palermo et al. Feb 2001 B1
6193733 Adams Feb 2001 B1
6193734 Bolduc et al. Feb 2001 B1
6197037 Hair Mar 2001 B1
6217611 Klostermeyer Apr 2001 B1
6221083 Mayer Apr 2001 B1
6241738 Dereume Jun 2001 B1
6241741 Duhaylongsod et al. Jun 2001 B1
6248117 Blatter Jun 2001 B1
6250308 Cox Jun 2001 B1
6254615 Bolduc et al. Jul 2001 B1
6269819 Oz et al. Aug 2001 B1
6280460 Bolduc et al. Aug 2001 B1
6283979 Mers Kelly et al. Sep 2001 B1
6283993 Cosgrove et al. Sep 2001 B1
6296622 Kurz et al. Oct 2001 B1
6296656 Bolduc et al. Oct 2001 B1
6306141 Jervis Oct 2001 B1
6332893 Mortier et al. Dec 2001 B1
6346074 Roth Feb 2002 B1
6346112 Adams Feb 2002 B2
6350269 Shipp et al. Feb 2002 B1
6352543 Cole Mar 2002 B1
6358258 Arcia et al. Mar 2002 B1
6361559 Houser et al. Mar 2002 B1
6368348 Gabbay Apr 2002 B1
6371964 Vargas et al. Apr 2002 B1
6387105 Gifford, III et al. May 2002 B1
6391038 Vargas et al. May 2002 B2
6402764 Hendricksen et al. Jun 2002 B1
6406492 Lytle Jun 2002 B1
6406493 Tu et al. Jun 2002 B1
6409739 Nobles et al. Jun 2002 B1
6409758 Stobie et al. Jun 2002 B2
6416527 Berg et al. Jul 2002 B1
6418597 Deschenes et al. Jul 2002 B1
6419658 Restelli et al. Jul 2002 B1
6419681 Vargas et al. Jul 2002 B1
6419695 Gabbay Jul 2002 B1
6425900 Knodel et al. Jul 2002 B1
6428550 Vargas et al. Aug 2002 B1
6428555 Koster, Jr. Aug 2002 B1
6451048 Berg et al. Sep 2002 B1
6461320 Yencho et al. Oct 2002 B1
6475222 Berg et al. Nov 2002 B1
6478804 Vargas et al. Nov 2002 B2
6485496 Suyker et al. Nov 2002 B1
6491707 Makower et al. Dec 2002 B2
6497671 Ferrera et al. Dec 2002 B2
6497710 Yencho et al. Dec 2002 B2
6514265 Ho et al. Feb 2003 B2
6517558 Gittings et al. Feb 2003 B2
6524338 Gundry Feb 2003 B1
6533812 Swanson et al. Mar 2003 B2
6537248 Mulier et al. Mar 2003 B2
6537288 Vargas et al. Mar 2003 B2
6547799 Hess et al. Apr 2003 B2
6551332 Nguyen et al. Apr 2003 B1
6562053 Schulze May 2003 B2
6575985 Knight et al. Jun 2003 B2
6589255 Schulze et al. Jul 2003 B2
6607541 Gardiner et al. Aug 2003 B1
6607542 Wild et al. Aug 2003 B1
6613059 Schaller et al. Sep 2003 B2
6629988 Weadock Oct 2003 B2
6635214 Rapacki et al. Oct 2003 B2
6641593 Schaller et al. Nov 2003 B1
6648900 Fleischman et al. Nov 2003 B2
6651670 Rapacki et al. Nov 2003 B2
6651672 Roth Nov 2003 B2
6652540 Cole et al. Nov 2003 B1
6652541 Vargas et al. Nov 2003 B1
6660015 Berg et al. Dec 2003 B1
6682540 Sancoff et al. Jan 2004 B1
6695859 Golden et al. Feb 2004 B1
6702826 Liddicoat et al. Mar 2004 B2
6704401 Piepho et al. Mar 2004 B2
6709442 Miller et al. Mar 2004 B2
6712829 Schulze Mar 2004 B2
6719767 Kimblad Apr 2004 B1
6719768 Cole et al. Apr 2004 B1
6743243 Roy et al. Jun 2004 B1
6749622 McGuckin et al. Jun 2004 B2
6776782 Schulze Aug 2004 B2
6776784 Ginn Aug 2004 B2
6776785 Yencho et al. Aug 2004 B1
6802847 Carson et al. Oct 2004 B1
6821286 Carranza et al. Nov 2004 B1
6869444 Gabbay Mar 2005 B2
6913607 Ainsworth et al. Jul 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6921407 Nguyen et al. Jul 2005 B2
6926730 Nguyen et al. Aug 2005 B1
6945980 Nguyen et al. Sep 2005 B2
6955679 Hendricksen et al. Oct 2005 B1
6960221 Ho et al. Nov 2005 B2
6979337 Kato Dec 2005 B2
6979338 Loshakove et al. Dec 2005 B1
7022131 Derowe et al. Apr 2006 B1
7056330 Gayton Jun 2006 B2
7063711 Loshakove et al. Jun 2006 B1
7070618 Streeter Jul 2006 B2
7104949 Anderson et al. Sep 2006 B2
7182769 Ainsworth et al. Feb 2007 B2
7220265 Chanduszko et al. May 2007 B2
7220268 Blatter May 2007 B2
7335212 Edoga et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
RE40377 Williamson, IV et al. Jun 2008 E
7547313 Gardiner et al. Jun 2009 B2
7556647 Drews et al. Jul 2009 B2
7722643 Schaller et al. May 2010 B2
7744611 Nguyen et al. Jun 2010 B2
7763040 Schaller et al. Jul 2010 B2
20010018592 Schaller et al. Aug 2001 A1
20010018593 Nguyen et al. Aug 2001 A1
20010018611 Solem et al. Aug 2001 A1
20010021856 Bolduc et al. Sep 2001 A1
20010047181 Ho et al. Nov 2001 A1
20020010490 Schaller et al. Jan 2002 A1
20020042623 Blatter et al. Apr 2002 A1
20020082614 Logan et al. Jun 2002 A1
20020099395 Acampora et al. Jul 2002 A1
20020151916 Muramatsu et al. Oct 2002 A1
20020165561 Ainsworth et al. Nov 2002 A1
20020173803 Ainsworth et al. Nov 2002 A1
20030074012 Nguyen et al. Apr 2003 A1
20030078603 Schaller et al. Apr 2003 A1
20030083742 Spence et al. May 2003 A1
20030093118 Ho et al. May 2003 A1
20030120341 Shennib et al. Jun 2003 A1
20030125755 Schaller et al. Jul 2003 A1
20030191481 Nguyen et al. Oct 2003 A1
20030195531 Nguyen et al. Oct 2003 A1
20030199974 Lee et al. Oct 2003 A1
20040044406 Woolfson et al. Mar 2004 A1
20040050393 Golden et al. Mar 2004 A1
20040068276 Golden et al. Apr 2004 A1
20040093024 Lousararian et al. May 2004 A1
20040102797 Golden et al. May 2004 A1
20040111099 Nguyen et al. Jun 2004 A1
20040138685 Clague et al. Jul 2004 A1
20040167573 Williamson et al. Aug 2004 A1
20040176663 Edoga Sep 2004 A1
20040193259 Gabbay Sep 2004 A1
20040220593 Greenhalgh Nov 2004 A1
20050004582 Edoga Jan 2005 A1
20050021054 Ainsworth et al. Jan 2005 A1
20050043749 Breton et al. Feb 2005 A1
20050065601 Lee et al. Mar 2005 A1
20050070924 Schaller et al. Mar 2005 A1
20050075659 Realyvasquez et al. Apr 2005 A1
20050075667 Schaller et al. Apr 2005 A1
20050080454 Drews Apr 2005 A1
20050101975 Nguyen et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050131429 Ho et al. Jun 2005 A1
20050267572 Schoon et al. Dec 2005 A1
20060004389 Nguyen et al. Jan 2006 A1
20060064118 Kimblad Mar 2006 A1
20060122634 Ino et al. Jun 2006 A1
20060253143 Edoga Nov 2006 A1
20060271081 Realyvasquez Nov 2006 A1
20060293701 Ainsworth et al. Dec 2006 A1
20070010835 Breton et al. Jan 2007 A1
20070027461 Gardiner et al. Feb 2007 A1
20070106313 Golden et al. May 2007 A1
20070142848 Ainsworth et al. Jun 2007 A1
20080119875 Ino et al. May 2008 A1
20080255404 Nogawa et al. Oct 2008 A1
20090036903 Ino et al. Feb 2009 A1
20090112233 Xiao Apr 2009 A1
20090264903 Lee et al. Oct 2009 A1
20100044410 Argentine et al. Feb 2010 A1
Foreign Referenced Citations (116)
Number Date Country
2703529 Jan 1977 DE
3203410 May 1981 DE
3227984 Feb 1984 DE
3504202 Aug 1985 DE
4133800 Oct 1991 DE
4402058 Apr 1995 DE
19547617 Sep 1997 DE
197 11 288 Oct 1998 DE
19732234 Jan 1999 DE
0072232 Feb 1983 EP
0122046 Mar 1983 EP
0129441 Dec 1984 EP
0130037 Jan 1985 EP
0140557 May 1985 EP
0121362 Sep 1987 EP
0409569 Jan 1991 EP
0432692 Jun 1991 EP
0478949 Aug 1991 EP
0494636 Jul 1992 EP
0537955 Apr 1993 EP
0559429 Sep 1993 EP
0598529 May 1994 EP
0326426 Dec 1994 EP
0419597 Dec 1994 EP
0632999 Jan 1995 EP
0641546 Mar 1995 EP
0656191 Jun 1995 EP
0687446 Dec 1995 EP
0705568 Apr 1996 EP
0711532 May 1996 EP
0705569 Oct 1996 EP
0734697 Oct 1996 EP
0778005 Jun 1997 EP
0815795 Jan 1998 EP
0 826 340 Mar 1998 EP
320 731 Dec 1902 FR
2223410 Apr 1990 GB
07308322 Nov 1995 JP
08336544 Dec 1996 JP
10337291 Dec 1998 JP
2009039556 Feb 2009 JP
2110222 May 1998 RU
577022 Oct 1977 SU
1186199 Oct 1985 SU
1456109 Feb 1989 SU
1560133 Apr 1990 SU
9006725 Jun 1990 WO
9009149 Aug 1990 WO
9014795 Dec 1990 WO
9107916 Jun 1991 WO
9108708 Jun 1991 WO
9117712 Nov 1991 WO
9205828 Apr 1992 WO
9212676 Aug 1992 WO
9222041 Dec 1992 WO
9301750 Feb 1993 WO
9415535 Jul 1994 WO
9415537 Jul 1994 WO
9600035 Jan 1996 WO
9606565 Mar 1996 WO
9638090 Dec 1996 WO
9712555 Apr 1997 WO
9716122 May 1997 WO
9727898 Aug 1997 WO
9728744 Aug 1997 WO
9731575 Sep 1997 WO
9732526 Sep 1997 WO
9740754 Nov 1997 WO
9742881 Nov 1997 WO
9819636 May 1998 WO
9830153 Jul 1998 WO
9842262 Oct 1998 WO
9848707 Nov 1998 WO
9852475 Nov 1998 WO
9907294 Feb 1999 WO
9912484 Mar 1999 WO
9915088 Apr 1999 WO
9937218 Jul 1999 WO
9962408 Dec 1999 WO
9962415 Dec 1999 WO
9963910 Dec 1999 WO
9965409 Dec 1999 WO
WO 9962406 Dec 1999 WO
WO 9962409 Dec 1999 WO
WO 0003759 Jan 2000 WO
0015144 Mar 2000 WO
0044311 Aug 2000 WO
0059380 Oct 2000 WO
0060995 Oct 2000 WO
WO 0064381 Nov 2000 WO
0074603 Dec 2000 WO
0110310 Feb 2001 WO
0119292 Mar 2001 WO
WO 0126557 Apr 2001 WO
WO 0126586 Apr 2001 WO
WO 0128432 Apr 2001 WO
0154618 Aug 2001 WO
0174254 Oct 2001 WO
0182840 Nov 2001 WO
0213701 Feb 2002 WO
0213702 Feb 2002 WO
0230295 Apr 2002 WO
0230298 Apr 2002 WO
0234143 May 2002 WO
02080779 Oct 2002 WO
02080780 Oct 2002 WO
02087425 Nov 2002 WO
03053289 Jul 2003 WO
03088875 Oct 2003 WO
2004045378 Jun 2004 WO
2005011468 Feb 2005 WO
2005041784 May 2005 WO
2005058170 Jun 2005 WO
2006060594 Jun 2006 WO
2007067942 Feb 2007 WO
2009137517 Nov 2009 WO
Related Publications (1)
Number Date Country
20050101975 A1 May 2005 US
Continuations (1)
Number Date Country
Parent 09686004 Oct 2000 US
Child 11007825 US