Minimizing the effect of borehole current in tensor induction logging tools

Information

  • Patent Grant
  • 8030935
  • Patent Number
    8,030,935
  • Date Filed
    Friday, October 15, 2004
    19 years ago
  • Date Issued
    Tuesday, October 4, 2011
    12 years ago
Abstract
Logging tools, methods, and computer programs for use in borehole logging are described. The logging tool includes three or more tensors, each tensor including one or more coils. Each coil is characterized by coil parameters including an axis orientation, a cross-sectional area, a number of turns, and a location. At least one of the coil axes is disposed at an angle to the borehole axis. One or more of the coil parameters are selected to minimize sensitivity to borehole current.
Description
BACKGROUND

Tensor induction tools may increase the amount of information that may be gathered during logging. Tensor induction tools with one or more elements whose magnetic axes are disposed at an angle to the borehole axis, however, may experience a borehole-current effect. The borehole-current effect refers to current induced in the borehole that distorts measurements of current induced in the formation.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a system for downhole logging.



FIG. 2 shows an example logging tool.



FIG. 3 shows coils within an example tensor.



FIG. 4 is a block diagram of an example system for minimizing the effects of borehole current and direct coupling between one or more transmission tensors and one or more reception tensors.



FIGS. 5-7 are block diagrams of an example system for minimizing the effects of borehole current.



FIG. 8 is a block diagram of an example system for minimizing direct coupling between one or more transmission tensors and one or more reception tensors.



FIG. 9 is a block diagram of an example system for determining one or more borehole properties.





DETAILED DESCRIPTION

As shown in FIG. 1, logging equipment 100 (simplified for ease of understanding) includes a mast 105, draw works or winch 110, wireline 115, and logging tool 120. The logging tool 120 is placed in the borehole 125 to measure one or more properties of the formation surrounding the borehole 125. The logging tool 120 may be in communication with a processor 130. The processor 130 may receive data from the logging tool 120. The processor 130 may modify, analyze, or record the data from the logging tool 120. For example, the processor 130 may be an electromechanical plotter to plot data from the logging tool 120. The processor 130 may be in communication with a terminal 135 to receive input or provide output to an operator. The processor 130 and the terminal 135 may be integrated, or they may be separate. The processor 130 may control the draw works or winch 110 to control the movement of the logging tool 120 in the borehole 125. Although FIG. 1 illustrates an example wireline system, the systems, methods, and computer programs described herein may be used in other downhole system, including, for example, logging-while drilling systems.


An example logging tool 120 is shown in FIG. 2. The example logging tool 120 includes four tensors 205, 210, 215, and 220 to transmit or receive signals. One or more of the tensors 205, 210, 215, and 220 are transmission tensors for transmitting signals. One or more of the tensors 205, 210, 215, and 220 are reception tensors for receiving signals. In certain example logging tools 120, one or more of the tensors 205, 210, 215, and 220 may be transmission or reception tensors at different times. One or more of the tensors 205, 210, 215, and 220 may be joined by wiring or other circuitry to modify the signals received or transmitted by the tensors. One or more of the tensors 205, 210, 215, and 220 may be connected with one or more transmitters or receivers, which may be controlled by the processor 130.


Example elements within a tensor, such as tensor 205, are shown in FIG. 3. The tensor includes three coils 305, 310, and 315. Each of the coils 305, 310, and 315 may have a number of turns of wire about a core. Each of the coils 305, 310, and 315 may have a cross-sectional area. The number of turns, the cross-sectional area, and the orientation of each coil may alter the behavior of the coil in the presence of a signal. The coils 305, 310, and 315, shown in FIG. 3, are oriented mutually orthogonal to each other: the core of coil 305 is along the Z axis, the core of coil 310 is along the X axis, and the core of the coil 315 is along the Y axis. In general however, the coils 305, 310, and 315 may have a different orientation relative to each other.


Coils in reception tensors that are disposed at an angle relative to the axis of the borehole will receive a borehole signal due to the borehole current. Therefore, if tensor 205 is aligned with the borehole axis, coil 305 will not receive any borehole signal, while coils 310 and 315 will receive borehole signal because they are oriented orthogonal to the borehole axis. In practice, the tensor 205 may be disposed in the borehole 125 so that one or more of the coils 305, 310, and 315 may have a component orthogonal to the borehole axis.



FIG. 4 illustrates an example system for minimizing the sensitivity of logging tool 120 to borehole current. The system selects the one or more of the location, the cross sectional area, or the number of turns (“coil parameters”) for each coil in the logging tool 120 to minimize the sensitivity to borehole current (block 405). The system may also select one or more of the coil parameters for each coil to minimize direct coupling between the reception tensors and the transmission tensors (block 410). In certain example implementations, blocks 405 and 410 may be performed simultaneously.


Returning to FIG. 2, in example implementations of logging tool 120 that follow, tensor 205 is a transmission tensor, while tensors 210, 215, and 220 are reception tensors. Among the reception tensors, tensor 215 is a main receiver tensor and tensors 210 and 220 are bucking tensors. The signal induced in the bucking tensors 210 and 220 may be subtracted from the signal induced in the main receiver tensor 215 by circuitry connecting the main receiver tensor 205 and the bucking tensors 210 and 220. Bucking tensor 210 may be Zb1 away from transmission tensor 205, main receiver tensor 215 may be Zm away from transmission tensor 205, and bucking tensor 220 may be Zb2 away from transmission tensor 205.


An example system for selecting one or more of the coil parameters for each coil in the logging tool 120 to minimize sensitivity to borehole current (block 405) is shown in FIG. 5. The system may determine the borehole signal induced in each reception tensor due to the one or more transmission tensors (block 505). The system may then adjust one or more of the coil parameters to substantially cancel the borehole signal in the main receiver tensor 215 (block 510).


An example system for determining the borehole signal induced in each reception tensor due to the one or more transmission tensors (block 505) is shown in FIG. 6. The system may characterize the borehole current at location z that is induced by a transmission tensor, using the following equation:










I


(
z
)






-

(

z

z
0


)







(

Equation





1

)








where I is the current (in Amperes), z is the distance along the borehole axis away from the transmission tensor, and z0 is the characteristic length of the exponential attenuation determined by the square root of the ratio of the drilling fluid conductivity divided by the formation conductivity (block 605).


The coupling between a coil oriented orthogonal to the borehole axis and the borehole current may depend on the cross sectional area and the number of turns of the coil, and the strength of the borehole current. The borehole current, as shown above in Equation 1, may be a function of the distance z. Therefore, the signal induced in a coil oriented orthogonal to the borehole axis may be characterized by the following equation:

ΔV∝I(z)·NR·SR  (Equation 2)

where ΔV denotes the borehole signal induced in the coil oriented orthogonal to the borehole axis, and SR and NR are the cross sectional area and the number of turns of the receiving coil, respectively (block 610). If the coil is not fully oriented orthogonal to the borehole axis, trigonometric functions may be used to determine the borehole current induced in the coil.


An example system for adjusting the location, cross sectional area, and number of turns of coils to substantially cancel the borehole signal in the main receiver tensor (block 510) is shown in FIG. 7. The system may adjust one or more of the location, cross-sectional area, and number of turns of the coils in one or more tensors (block 705). The system may then subtract the bore signal induced in one or more bucking receivers from the borehole signal induced in the main receiver tensor (block 710). For example, if induction tool 120 only included two reception tensors (e.g., bucking tensor 210 and main receiver tensor 215), the borehole signal induced in the reception tensors could be expressed as:

ΔV∝[I(zm)·Nm·Sm−I(zb)·Nb1·Sb1]  (Equation 3)


By selecting the coil parameters the borehole signal (ΔV) may be set to be zero. In such a configuration, the induction tool 120 may have no, or very little, sensitivity to the borehole current. In certain implementations, however, the coil parameters in the reception tensors may be selected to cancel out the direct coupling between the one or more transmission tensors and the one or more reception tensors (block 410).


The borehole signal generated by the borehole current in the example induction tool 120 (FIG. 2) may be expressed by the following equation:

ΔV∝[I(zm)·Nm·Sm−I(zb1)·Nb1·Sb1−I(zb2)·Nb2·Sb2]  (Equation 4)

where the subscripts m, b1 and b2 denote the main receiver tensor 215 and the buckling tensors 210 and 220, respectively, N denotes the number of turns in a coil, S denotes the cross-sectional area of a coil, and I denotes the borehole current induced in the coil. For this example configuration of tensors, the system may solve the following equation to minimize the borehole signal (block 505):

I(zmNm·Sm−I(zb1Nb1·Sb1−I(zb2Nb2·Sb2=0  (Equation 5)


The system may also adjust one or more of the coil parameters to minimize direct coupling between the one or more reception tensors and the one or more transmission tensors (block 410). An example system for performing block 410 is shown in FIG. 8. The example system may adjust the coil parameters to satisfy the following equation (block 805):













N
m

·

S
m



Z
m
3


-





(




N
b1

·

S
b1



Z
b1
3


+







N
b2

·

S
b2



Z
b2
3


+





+







N
bQ

·

S
bQ



Z
bQ
3



)


=




0




(

Equation





6

)








The equation above is generalized for a system with one main receiver tensor and Q bucking receiver tensors. In the case of the example induction tool 120 shown in FIG. 2, the system may solve the following equation:













N
m

·

S
m



Z
m
3


-



N
b1

·

S
b1



Z
b1
3


-



N
b2

·

S
b2



Z
b2
3



=
0




(

Equation





7

)







In certain example implementations, the cross-sectional areas of the coils may be equal. In such an implementation, using Equation (1), Equations (5) and (7) may be rewritten as:











N
m

-


N
b1

·



(



Z
m

-

Z
b1



Z
0


)



-


N
b2

·



-

(



Z
b2

-

Z
m



Z
0


)





=
0




(

Equation





8

)









N
m


Z
m
3


-


N
b1


Z
b1
3


-


N
b2


Z
b2
3



=
0




(

Equation





9

)







In certain implementations, Zm may be between several inches to hundreds of inches while Nm may be between one and hundreds of turns. Other constraints may be added to this set of equations, such as one or more of the following:










0
<


Z
b1


Z
m


<
1

,




(

Equation





10

a

)






1
<


Z
b2


Z
m


<
2.




(

Equation





10

b

)







Once Zm and Nm are fixed, Equations (8) and (9) may be simultaneously satisfied by adjusting Zb1, Zb2, Nb1 and Nb2. Z0 is a formation-related parameter that may represent the rate at which the borehole current decays along the borehole axis. In certain implementations, Z0 may be set to a fixed value (e.g., Z0=5Zm).


In one example system for selecting the coil parameters to minimize the sensitivity to borehole current (405) and minimize direct coupling between reception tensors and transmission tensors (block 410), a main receiver tensor 215 may have the following properties Zm=40 in., Nm=70. In one example system, the locations and number of turns of coils in of the bucking receivers 210 and 220 may be set to Zb1=(40−10)=30 inches and Zb2=(40+10)=50 inches. In the example system, solving for Equations (7) and (9) provides the solutions Nb1=−17.912, Nb2=−53.793.


Equations (7) and (9) may be underdetermined because they include six variables (Zm, Nm, Zb1, Nb1, Zb2, Nb2), with only two equations to solve for the variables. Therefore, there may be an infinite number of solutions.



FIG. 9 shows an example system for measuring one or more borehole properties using a logging induction tool, such as induction tool 120. The system may transmit a signal from one or more transmission tensors (block 905). One or more reception tensors may receive the signal (block 910). The system subtracts out the direct coupling signal and the borehole signal from the signal (block 915). The system may determine one or more borehole and formation properties from the signal (block 920). For example, the system may determine one or more of the following: the formation conductivity, the electric anisotropy in the formation around the borehole 125, the relative dip of the formation, and the strike angles between the borehole and the formation.


The present invention is therefore well-adapted to carry out the objects and attain the ends mentioned, as well as those that are inherent therein. While the invention has been depicted, described and is defined by references to examples of the invention, such a reference does not imply a limitation on the invention, and no such limitation is to be inferred. The invention is capable of considerable modification, alteration and equivalents in form and function, as will occur to those ordinarily skilled in the art having the benefit of this disclosure. The depicted and described examples are not exhaustive of the invention. Consequently, the invention is intended to be limited only by the spirit and scope of the appended claims, giving full cognizance to equivalents in all respects.

Claims
  • 1. A method of measuring one or more borehole and formation properties, the method comprising: providing a logging tool comprising three or more reception tensors and only one corresponding transmission tensor in a borehole, where the three or more reception tensors comprise at least a main tensor and a set of bucking tensors, where each of the three or more reception tensors is characterized by a distance from that tensor to the transmission tensor, where each of the three or more reception tensors and the only one corresponding transmission tensor includes one or more coils, where each coil has a coil axis and is characterized by coil parameters including: an axis orientation;a cross-sectional area;a number of turns; where one or more of the coil parameters of the three or more reception tensors are selected to minimize sensitivity to borehole current, at least in part, by configuring the tensors of the three or more reception tensors to satisfy a first equation to balance at least a main tensor pro and a set of bucking tensor products, where: each main tensor product is a product of borehole current induced in at least one coil of the at least a main tensor, the cross-sectional area of the at least one coil of the at least a main tensor, and the number of turns of the at least one coil of the at least a main tensor; andeach bucking tensor product is a product of borehole current induced in at least one coil of one of the set of bucking tensors, the cross-sectional area of the at least one coil of one of the set of bucking tensors, and the number of turns of the at least one coil of one of the set of bucking tensors; and where one or more of the cross-sectional area and the number of turns of one or more of the coils of the three or more reception tensors, and the distance from one of the three or more reception tensors to the only one corresponding transmission tensor, is selected to minimize direct coupling between the only one corresponding transmission tensor and one or more of the three or more reception tensors;transmitting a set of signals with the transmission tensor;receiving a corresponding set of signals with one or more of the three or more reception tensors; anddetermining one or more borehole and formation properties based on the corresponding set of signals received by one or more of the three or more reception tensors.
  • 2. The method of claim 1, where the borehole is in a formation, and where the determining one or more borehole and formation properties based on the corresponding set of signals received by one or more of the three or more reception tensors comprises: determining an electric anisotropy of the formation; anddetermining formation conductivity in different directions.
  • 3. The method of claim 1, where the borehole is in a formation, and where the determining one or more borehole and formation properties based on the corresponding set of signals received by one or more of the three or more reception tensors comprises: determining a relative dip of the formation.
  • 4. The method of claim 1, where the borehole is in a formation, and where the determining one or more borehole and formation properties based on the corresponding set of signals received by one or more of the three or more reception tensors comprises: determining a strike angle between the borehole and the formation.
  • 5. The method of claim 1, where the borehole current at a location z induced by the only one corresponding transmission tensor is characterized by the equation:
  • 6. The method of claim 5, where the borehole is in a formation characterized by a formation conductivity at z, where the borehole comprises drilling fluid characterized by a drilling fluid conductivity at z, and where the characteristic length of the exponential attenuation is a square root of a ratio of the drilling fluid conductivity divided by the formation conductivity.
  • 7. The method of claim 5, where the receiving the corresponding set of signals with one or more of the three or more reception tensors comprises: receiving a set of borehole signals at z due to the borehole current, where at least one of the set of borehole signals is characterized by the equation: ΔV∝I(z)·NR·SR, where ΔV is one of the set of borehole signals, NR is the number of turns of at least one of the coils of the three or more reception tensors, and SR is a cross-sectional area of at least one of the coils of the three or more reception tensors.
  • 8. The method of claim 7, where the receiving the corresponding set of signals with one or more of the three or more reception tensors further comprises: receiving one or more of the borehole signals with the at least a main tensor;receiving one or more of the borehole signals with the set of bucking tensors;wherein the one or more of the borehole signals received with the at least a main tensor are approximately equal to the one or more of the borehole signals received with the set of bucking tensors.
  • 9. The method of claim 8, where the receiving the corresponding set of signals with one or more of the three or more reception tensors further comprises: subtracting at least one of the one or more of the borehole signals received by the set of bucking tensors from at least one of the one or more of the borehole signals received by the main tensor.
  • 10. The method of claim 8, where the selection of one or more of the cross-sectional area and the number of turns of one or more of the coils of the three or more reception tensors, and the distance from one of the three or more reception tensors to the only one corresponding transmission tensor to minimize direct coupling between the only one corresponding transmission tensor and one or more of the three or more reception tensors is based, at least in part, on configuring one of the three or more reception tensors to satisfy a second equation to balance at least a main tensor result and a set of bucking tensor results, where: each main tensor result is a product of the cross-sectional area of the at least one coil of the at least a main tensor and the number of turns of the at least one coil of the at least a main tensor divided by a cubed distance between the at least a main tensor and one of the set of bucking tensors; andeach bucking tensor result is a product of the cross-sectional area of at least one coil of one of the set of bucking tensors and the number of turns of at least one coil of one of the set of bucking tensors divided by a cubed distance between the at least a main tensor and one of the set of bucking tensors.
  • 11. The method of claim 1, where the selection of one or more of the cross-sectional area and the number of turns of one or more of the coils of the three or more reception tensors, and the distance from one of the three or more reception tensors to the only one corresponding transmission tensor, to minimize direct coupling between the only one corresponding transmission tensor and one or more of the three or more reception tensors is based, at least in part, on configuring one of the three or more reception tensors to satisfy a second equation to balance at least a main tensor result and a set of second bucking tensor results, where: each main tensor result is a product of the cross-sectional area of the at least one coil of the at least a main tensor and the number of turns of the at least one coil of the at least a main tensor divided by a cubed distance between the at least a main tensor and one of the set of bucking tensors; andeach bucking tensor result is a product of the cross-sectional area of at least one coil of one of the set of bucking tensors and the number of turns of at least one coil of one of the set of bucking tensors divided by a cubed distance between the at least a main tensor and one of the set of bucking tensors.
  • 12. A method of designing a logging tool for use in a borehole, the method comprising: determining a configuration of a logging tool comprising three or more reception tensors and only one corresponding transmission tensor in a borehole, where the three or more reception tensors comprise at least a main tensor and a set of bucking tensors, where each of the three or more reception tensors is characterized by a distance from that tensor to the transmission tensor, where each of the three or more reception tensors and the only one corresponding transmission tensor includes one or more coils, where each coil has a coil axis and is characterized by coil parameters including: an axis orientation;a cross-sectional area;a number of turns;where one or more of the coil parameters of the three or more reception tensors are selected to minimize sensitivity to borehole current, at least in part, by configuring the tensors of the three or more reception tensors to satisfy a first equation to balance at least a main tensor product and a set of bucking tensor products, where: each main tensor product is a product of borehole current induced in at least one coil of the at least a main tensor, the cross-sectional area of the at least one coil of the at least a main tensor, and the number of turns of the at least one coil of the at least a main tensor; andeach bucking tensor product is a product of borehole current induced in at least one coil of one of the set of bucking tensors, the cross-sectional area of the at least one coil of the set of bucking tensors, and the number of turns of the at least one coil of one of the set of bucking tensors; andwhere one or more of the cross-sectional area and the number of turns of one or more of the coils of the three or more reception tensors, and the distance from one of the three or more reception tensors to the only one corresponding transmission tensor, is selected to minimize direct coupling between the only one corresponding transmission tensor and one or more of the three or more reception tensors;wherein the determining is performed by a computer.
  • 13. The method claim 12, where one or more of the tensors include three coils, where the coil axes are substantially orthogonal to each other.
  • 14. The method of claim 12, where the selecting one or more of the coil parameters to minimize sensitivity to borehole current further comprises: determining a set of borehole signals induced in one or more of the three or more reception tensors.
  • 15. The method of claim 14, where the determining the set of borehole signals induced in one or more of the three or more reception tensors further comprises: characterizing the borehole current at a location z induced by the only one corresponding transmission tensor by the equation:
  • 16. The method of claim 15, where the borehole is in a formation characterized by a formation conductivity at z, where the borehole comprises drilling fluid characterized by a drilling fluid conductivity at z, and where the characteristic length of the exponential attenuation is a square root of a ratio of the drilling fluid conductivity divided by the formation conductivity.
  • 17. The method of claim 16, where the determining the set of borehole signals induced in one or more of the three or more reception tensors further comprises: characterizing at least one of the set of borehole signals received by one of the three or more reception tensors at z due to the borehole by the equation ΔV∝I(z)·NR·SR, where ΔV is one of the set of the borehole signals, NR is a number of turns of at least one of the coils of the three or more reception tensors, and SR is a cross-sectional area of at least one of the coils of the three or more reception tensors.
  • 18. The method of claim 16, where the selecting one or more of the coil parameters to minimize sensitivity to borehole current comprises: selecting one or more of the coil parameters of one or more coils of the three or more reception coils to minimize sensitivity to borehole current so that at least one of the set of borehole signals received by the at least a main tensor are approximately equal to at least one of the set of borehole signals received by the set of bucking tensors.
  • 19. The method of claim 18, further comprising: designing wiring between the at least a main tensor and the set of bucking tensors to subtract at least one of the set of borehole signals received by one or more of the set of bucking tensors from at least one of the set of borehole signals received by the at least a main tensor.
  • 20. A non-transitory computer-readable medium having a computer program stored thereon, for determining one or more borehole and formation properties, based, at least in part, on a set of measurements from a logging tool comprising three or more reception tensors and only one corresponding transmission tensor in a borehole, where the three or more reception tensors comprise at least a main tensor and a set of bucking tensors, where each of the three or more reception tensors is characterized by a distance from that tensor to the transmission tensor, where each of the three or more reception tensors and the only one corresponding transmission tensor includes one or more coils, where each coil has a coil axis and is characterized by coil parameters including: an axis orientation;a cross-sectional area;a number of turns;where one or more of the coil parameters of the three or more reception tensors are selected to minimize sensitivity to borehole current, at least in part, by configuring the tensors of the three or more reception tensors to satisfy a first equation to balance at least a main tensor product and a set of bucking tensor products, where: each main tensor product is a product of borehole current induced in at least one coil of the at least a main tensor, the cross-sectional area of the at least one coil of the at least a main tensor, and the number of turns of the at least one coil of the at least a main tensor; andeach bucking tensor product is a product of borehole current induced in at least one coil of one of the set of bucking tensors, the cross-sectional area of the at least one coil of one of the set of bucking tensors, and the number of turns of the at least one coil of one of the bucking tensors; andwhere one or more of the cross-sectional area and the number of turns of one or more of the coils of the three or more reception tensors, and the distance from one of the three or more reception tensors to the only one corresponding transmission tensor is selected to minimize direct coupling between the only one corresponding transmission tensor and one or more of the three or more reception tensors;the computer program comprising executable instructions that cause a computer to: perform the selecting one or more of the coil parameters of the three or more reception tensors are minimize sensitivity to borehole current;perform the selecting one or more of the cross-sectional area and the number of turns of one or more of the coils of the three or more reception tensors, and the distance from one of the three or more reception tensors to the only one corresponding transmission tensor to minimize direct coupling;cause the transmission of a set of signals with the only one corresponding transmission tensor;cause the reception of a corresponding set of signals with one or more of the three or more reception tensors; anddetermine the one or more borehole and formation properties based on the corresponding set of signals received by one or more of the three or more reception tensors.
  • 21. The non-transitory computer-readable medium of claim 20, where the borehole is in a formation, and where the executable instructions that cause the computer to determine the one or more borehole and formation properties based on the corresponding set of signals received by one or more of the three or more reception tensors further cause the computer to: determine an electric anisotropy of the formation; anddetermine formation conductivity in different directions.
  • 22. The non-transitory computer-readable medium of claim 20, where the borehole is in a formation, and where the executable instructions that cause the computer to determine the one or more borehole and formation properties based on the corresponding set of signals received by one or more of the three or more reception tensors further cause the computer to: determine a relative dip of the formation.
  • 23. The non-transitory computer-readable medium of claim 20, where the borehole is in a formation, and where the executable instructions that cause the computer to determine the one or more borehole and formation properties based on the corresponding set of signals received by one or more of the three or more reception tensors further cause the computer to: determine a strike angle between the borehole and the formation.
  • 24. The non-transitory computer-readable medium of claim 20, where the borehole current at a location z induced by the only one corresponding transmission tensor is characterized by the equation:
  • 25. The non-transitory computer-readable medium of claim 24, where the borehole is in a formation characterized by a formation conductivity at z, where the borehole comprises drilling fluid characterized by a drilling fluid conductivity at z, and where the characteristic length of the exponential attenuation is a square root of a ratio of the drilling fluid conductivity divided by the formation conductivity.
  • 26. The non-transitory computer-readable medium of claim 24, where the executable instructions that cause the computer to receive the corresponding set of signals with one or more of the three or more reception tensors further cause the computer to: receive a set of borehole signals at z due to the borehole current, where at least one of the set of borehole signals is characterized by the equation: ΔV∝I(z)·NR·SR, where ΔV is one of the set of the borehole signals, NR is the number of turns of one or more coils of one or more of the three or more reception tensors, and SR is the cross-sectional area of one or more coils of one or more of the three or more reception tensors.
  • 27. The non-transitory computer-readable medium of claim 26, where the executable instructions that cause the computer to receive the corresponding set of signals with one or more of the three or more reception tensors further cause the computer to: receive at least one of the set of borehole signals with the at least a main tensor that are approximately equal to at least one of the set of borehole signals received by one or more of the set of bucking tensors.
  • 28. The non-transitory computer-readable medium of claim 27, where the executable instructions that cause the computer to receive the corresponding set of signals with one or more of the three or more reception tensors further cause the computer to: subtract the at least one of the set of borehole signals received by one or more of the set of bucking tensors from the at least one of the set of borehole signals received by the at least a main tensor.
  • 29. A non-transitory computer-readable medium, having a computer program stored thereon for designing a logging tool for use in a borehole, the computer program including executable instructions that cause a computer to: determine a configuration of a logging tool comprising three or more reception tensors and only one corresponding transmission tensor in a borehole, where the three or more reception tensors comprise at least a main tensor and a set of bucking tensors, where each of the three or more reception tensors is characterized by a distance from that tensor to the transmission tensor, where each of the three or more reception tensors and the only one corresponding transmission tensor includes one or more coils, where each coil has a coil axis and is characterized by coil parameters including: an axis orientation:a cross-sectional areaa number of turns;where one or more of the coil parameters of the three or more reception tensors are selected to minimize sensitivity to borehole current, at least in part, by configuring the tensors of the three or more reception tensors to satisfy a first equation to balance at least a main tensor product and a set of bucking tensor products, where: each main tensor product is a product of borehole current induced in at least one coil of the at least a main tensor, the cross-sectional area of the at least one coil of the at least a main tensor, and the number of turns of the at least one coil of the at least a main tensor; andeach bucking tensor product is a product of borehole current induced in at least one coil of one of the set of bucking tensors, the cross-sectional area of the at least one coil of one of the set of bucking tensors, and the number of turns of the at least one coil of one of the bucking tensors; andwhere one or more of the cross-sectional area and the number of turns of one or more of the coils of the three or more reception tensors, and the distance from one of the three or more reception tensors to the only one corresponding transmission tensor is selected to minimize direct coupling between the only one corresponding transmission tensor and one or more of the three or more reception tensors.
  • 30. The non-transitory computer-readable medium of claim 29, where one or more of the tensors include three coils, where the coil axes are substantially orthogonal to each other.
  • 31. The non-transitory computer-readable medium of claim 29, the computer program comprising further executable instructions that cause the computer to: determine a set of borehole signals induced in one or more of the three or more reception tensors.
  • 32. The non-transitory computer-readable medium of claim 31, where the executable instructions to determine the set of borehole signals induced in one or more of the three or more reception tensors further cause the computer to: characterize the borehole current at a location z induced by the only one corresponding transmission tensor by the equation
  • 33. The non-transitory computer-readable medium of claim 32, where the borehole is in a formation characterized by a formation conductivity at z, where the borehole comprises drilling fluid characterized by a drilling fluid conductivity at z, and where the characteristic length of the exponential attenuation is a square root of a ratio of the drilling fluid conductivity divided by the formation conductivity.
  • 34. The non-transitory computer-readable medium of claim 33, where the executable instructions that cause the computer to determine the set of borehole signals induced in one or more of the three or more reception tensors further cause the computer to: characterize at least one of the set of borehole signals received by one or more of the three or more reception tensors at z due to the borehole by the equation ΔV∝I(z)·NR·SR, where ΔV is at least one of the set of borehole signals, NR is the number of turns of at least one of the coils of at least one of the three or more reception tensors, and SR is the cross-sectional area of at least one of the coils of the three or more reception tensors.
  • 35. The note-transitory computer-readable medium of claim 33, the computer program comprising further executable instructions that cause the computer to: select one or more of the coil parameters of the three or more reception tensors so that at least one of the set of borehole signals received by the at least a main tensor is approximately equal to at least one of the set of borehole signals received by at least one of the set of bucking tensors.
  • 36. The non-transitory computer-readable medium of claim 35, the computer program comprising further executable instructions that cause the computer to: design wiring coupling the at least a main tensor with the set of bucking tensors to subtract the at least one of the set of borehole signals received by at least one of the set of bucking tensors from the at least one of the set of borehole signals received by the at least a main tensor.
  • 37. The non-transitory computer-readable medium of claim 29, where the selection of one or more of the cross-sectional area and the number of turns of one or more of the coils of the three or more reception tensors, and the distance from one of the three or more reception tensors to the only one corresponding transmission tensor, to minimize direct coupling between the only one corresponding transmission tensor and one or more of the three or more reception tensors is based, at least in part, on configuring one of the three or more reception tensors to satisfy a second equation to balance at least a main tensor result and a set of second bucking tensor results, where: each main tensor result is a product of the cross-sectional area of the at least one coil of the at least a main tensor and the number of turns of the at least one coil of the at least a main tensor divided by a cubed distance between the at least a main tensor and one of the set of bucking tensors; andeach bucking tensor result is a product of the cross-sectional area of the at least one coil of one of the set of bucking tensors and the number of turns of at least one coil of one of the set of bucking tensors divided by a cubed distance between the at least a main tensor and one of the set of bucking tensors.
US Referenced Citations (34)
Number Name Date Kind
5041975 Minerbo et al. Aug 1991 A
5065099 Sinclair et al. Nov 1991 A
5157605 Chandler et al. Oct 1992 A
5200705 Clark et al. Apr 1993 A
5329448 Rosthal Jul 1994 A
5339037 Bonner et al. Aug 1994 A
5463320 Bonner et al. Oct 1995 A
6216089 Minerbo Apr 2001 B1
6297639 Clark et al. Oct 2001 B1
6304086 Minerbo et al. Oct 2001 B1
6351127 Rosthal et al. Feb 2002 B1
6373254 Dion et al. Apr 2002 B1
6380744 Clark et al. Apr 2002 B1
6393364 Gao et al. May 2002 B1
6557794 Rosthal et al. May 2003 B2
6566881 Omeragic et al. May 2003 B2
6573722 Rosthal et al. Jun 2003 B2
6624634 Rosthal et al. Sep 2003 B2
6630830 Omeragic et al. Oct 2003 B2
6682613 Bai et al. Jan 2004 B2
6690170 Homan et al. Feb 2004 B2
6693430 Rosthal et al. Feb 2004 B2
6710601 Rosthal et al. Mar 2004 B2
20010004212 Omeragic et al. Jun 2001 A1
20020008520 Clark et al. Jan 2002 A1
20020008521 Clark et al. Jan 2002 A1
20020105332 Rosthal et al. Aug 2002 A1
20030004647 Sinclair Jan 2003 A1
20030071626 Omeragic et al. Apr 2003 A1
20030146751 Rosthal et al. Aug 2003 A1
20030146753 Rosthal et al. Aug 2003 A1
20030155923 Omeragic et al. Aug 2003 A1
20030155924 Rosthal et al. Aug 2003 A1
20040119476 Homan et al. Jun 2004 A1
Foreign Referenced Citations (1)
Number Date Country
1067457 Jan 1984 SU
Related Publications (1)
Number Date Country
20060082374 A1 Apr 2006 US