A first vertical shaft 32, which is an elevator hoistway in one example, extends between the building level 24 and at least one second level 36 above the building level 24. Another vertical shaft 34 extends between the same building levels in this example. Vertical shafts 32 and 34 allow individuals entering the building 22 to access the building level 36 where they can then travel to higher levels within the building through one or more vertical shafts 40. In one example, a plurality of elevator hoistways are provided and each of the vertical shafts shown corresponds to a hoistway. In another example, at least one of the vertical shafts 40 comprises a stairwell.
Having separated vertical shafts 32 and 34 on the one hand and the vertical shafts 40 on the other hand allows for effectively isolating the building level 36 and those above it from the building levels 24 and 26, which include passageways to the outside of the building. By isolating the building level 36 and those above it, the vertical shafts 40 are isolated from airflow on the levels 24 and 26. Providing such isolation minimizes or eliminates the stack effect that otherwise may be associated with airflow through the passageways 28 and 30 into the building from the outside.
The vertical shafts 32 and 34 provide a vertical airlock that isolates the vertical shafts 40 from the airflow on the building levels 24 and 26, for example. In one example, each vertical shaft 32 and 34 is isolated from airflow on the building level 24. In another example, each shaft 32 and 34 is isolated from airflow on the building level 36. In still another example, the shafts 32 and 34 are isolated from airflow on both levels 24 and 36.
In the example of
A controller 64 controls movement of the doors 60 and 62, which comprise sliding doors in this example. The controller 64 allows one of the doors 60 or 62 to open only when the other door 62 or 60 is closed. By keeping at least one of the doors 60 or 62 closed at all times, airflow from the space outside of the enclosure 52 is not permitted into the space within the shaft 32. Accordingly, the enclosure 52 provides isolation of the interior of the shaft 32 from airflow on the building level where the enclosure 52 is located. In one example, an enclosure 52 is provided on each building level to which the shaft 32 provides access. In the example of
By providing a vertical airlock to isolate upper building levels that are associated with vertically extending shafts such as elevator hoistways or stairwells from lower building levels that include passageways to an outside of the building, airflow management becomes possible without relying upon conventional techniques such as revolving doors for sealing the passageways between the building interior and the outside.
The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this invention. The scope of legal protection given to this invention can only be determined by studying the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US04/35496 | 10/26/2004 | WO | 00 | 1/11/2007 |
Number | Date | Country | |
---|---|---|---|
60593026 | Jul 2004 | US |