The present disclosure relates generally to improved techniques for minimizing unwanted responses in haptic feedback systems.
A continuous distribution of sound energy, which we will refer to as an “acoustic field”, can be used for a range of applications including haptic feedback in mid-air.
Haptic curve reproduction involves the rapid translation of focal points in an ultrasonic phased array configuration in order to create a haptic sensation. Human skin is not sensitive to ultrasound frequencies alone, but can be stimulated by modulating ultrasound by a low frequency (˜100 Hz) signal. An alternative to modulation in pressure amplitude (the traditional approach) is spatiotemporal modulation—moving a focal point along a repeatable path produces a similar modulated pressure at any one point along that path to that of simple amplitude modulation. This pressure profile produces a sensation on the skin and therefore can be used for haptic feedback. This can be used to create shapes, volumes, and other haptic effects.
Because haptics from ultrasound requires large pressure amplitudes, it is susceptible to the generation of parametric audio. This is an effect whereby the nonlinearity of soundwaves in air can create audible sound. This mixing takes the form of difference tones (intermodulation distortion). For instance, if 40 kHz and 41 kHz sound waves are produced from the same transducer at sufficient amplitude, a 41−40=1 kHz tone is produced in the air and is perceivable. This is particularly easy to do with traditional amplitude modulation. For instance, modulating a 40,000 kHz by 200 Hz becomes,
(0.5+0.5 cos(2π*200t))cos(2π 40000t)=0.5 cos(2π40000t)+0.25 cos(2π 39800t)+0.25 cos(2π 40200t).
The modulation splits the 40 kHz carrier into two side-bands at 39.8 kHz and 40.2 kHz. The resulting frequencies can mix to form 200 Hz and 400 Hz.
Spatiotemporal modulation can also lead to many side bands with large spacing which leads to intermodulation distortion at many frequencies. Moving a focal point in space requires each transducer to shift its output rapidly in phase. This can be described by,
output(t)=cos(ωct+f (t)),
where ωc is the ultrasonic carrier frequency (2*pi*40 kHz in the previous example) and f(t) represents the phase angle. While the amplitude of the curve remains constant, changing the phase in time causes deviation from a pure tone. This comes about by expanding the function,
In this form, it is clear that modulating the phase can wrap into sidebands related to multiple powers of the phase function.
Note that the phase functions presented here can be implemented as driving signals to transducers but also can be implemented as physical displacement. If the transducer is moved one carrier wavelength relative to others towards or away from the path, that represents a 27( phase shift, and can be interpolated in between. Smoothing methods presented here can be applied to this displacement-generated phase function equally well.
Further, high-Q resonant systems have a narrow frequency response but as a result, a long impulse response. Energy takes many cycles to leave the system and at any particular moment the current state is highly dependent on driving history. A typical solution to this problem involves using a drive amplitude (or width in the case of pulse-width-modulation (PWM)) which results in the correct steady-state result. The desired output will only be generated after sufficient cycles have elapsed related to the ring up time. While this results in the ideal solution when full amplitude is desired, headroom in the driving circuit is unused when less than full amplitude is needed.
Take, for instance, a linear system that takes 5 cycles to reach 95% steady-state value. It approaches the steady state exponentially and can reach approximately 45% of the final value in one cycle with each additional cycle yielding diminishing returns. If the desired final output is the maximum output that the system is capable of, getting there in 5 cycles is optimal. However, if the desired output is only 45% of maximum, a different solution would be to drive it at full-scale for one cycle, then cut the drive back to what would yield a steady-state result of 45% of maximum. The result is the system reaching the desired output in one cycle rather than 5. In this invention, we present methods to characterize the system and predict the necessary drive conditions to force it into an output faster than steady-state driving conditions are capable of.
Any haptic curve must be represented as a location as a function of time to be traced using an acoustic focus from a phased array. Disclosed are methods to manipulate a given parametrized curve in order to yield a smooth phase function for each transducer which minimizes unwanted parametric audio.
Further, the impulse response of a system describes the behavior of the system over time and can be convolved with a given input to simulate a response to that input. To produce a specific response, a deconvolution with the impulse response is necessary to generate an input. In a highly-resonant system the impulse response can be simplified to Fourier components at the resonant frequency which reduces deconvolution to algebra. This allows for feed-forward input generation for a desired output via linear algebra.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, serve to further illustrate embodiments of concepts that include the claimed invention and explain various principles and advantages of those embodiments.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
(1) Methods for Audio Reduction in Airborne Haptic Curves
A given curve to be traced with spatiotemporal modulation does not define a unique phase function (f(t)) solution. For instance, when tracing a line, more time could be spent on one half of the line than the other. Compared to an equal-time line this will create a different phase functions, yet the entire line is traced in both cases. On top of this, a given curve (repeated with a specific frequency) does not define a unique haptic experience. For a given carrier frequency, diffraction will limit the focusing resolution, and therefore some small deviations in the focus position can be made for a given curve and not create a discernible effect. The goal of this disclosure is to present methods with which to create a requested spatiotemporal haptic effect by adjusting the curve to be traced and the phase function(s) to trace that curve in a way which produces minimal parametric audio.
Sharp features in the phase modulation function arise from sharp features in the curve being traced by the array. This includes both sharp features in space (hard angles, changes in direction) but also sharp features in time (sudden stops or starts). For instance, a common path in airborne haptics is a line parallel to the array at a fixed height. The array traces the line from one end to the other and back again at a frequency selected to maximize sensitivity.
The phase function value is related to the distance of the focal point to the transducer. On one end of the line (the closest point) the phase function is smooth because the distance versus time is also smooth. If the line were to be extended past this point, the distance to the transducer would start to extend again. It is this minimum distance which causes the smooth inflection point. The far point, however, represents an abrupt stop and reverse of the phase function.
The resulting ‘kink’ in the curve causes many harmonics and noise. This is shown in
The goal of the methods presented below is to provide a framework to make arbitrary haptic curves with smooth phase functions to reduce undesired parametric audio. These do not represent all solutions but merely give some specific examples on how it may be done. Solutions may include subdividing an input curve into discrete points, but this is not necessary for all methods. Any solution which provides a continuous solution can also be sampled to produce a discrete solution.
I. Method 1: Direct Radius Smoothing
The phase function for a given transducer is directly proportional to the distance that transducer is from the focus. Therefore, we can smooth this function directly by choosing a path parameterization which gives a smooth distance versus time from a given transducer.
Using the geometry presented in
The radius function is then,
R(t)=√{square root over ((e0x+fx(t))2+(e0y+fy(t) )2+(e0z+fz(t))2)}.
The goal is then to create a mapping function, g(t) which smooths the radius function. Using a single-frequency smoothing function, a mapping function g(t) would be,
While analytic solutions do not always exist, a simple solver should get close enough to be effective in most cases. This particular radius smoothing function expects Rf to be larger than R0 so an arbitrary curve would need to be divided into sections of monotonically increasing or decreasing sections. For the increasing sections, solve as normal. For the decreasing sections, it needs to be solved from the last point to the first and then read in reversed order.
The new curve would then be,
{right arrow over (P)}(t)={right arrow over (e)}0{right arrow over (p)}(g)(t)),
using the selected transducer as the center of the coordinate or simply {right arrow over (p)}(g(t)), from the origin.
Using this mapping function, one transducer ({right arrow over (e)}0) 510 would have a perfect, single-frequency phase function. Other transducers would get increasingly less-perfect as their distances increase from the solved transducer. This method works well if the perfect-transducer for the solver is the farthest one from the haptic interaction.
Shown in
Shown in
With far fewer sidebands, the smoothed curve will produce less parametric audio.
While best implemented with foreknowledge of the desired path, this method can be implemented in real-time with a sample buffer where points are redistributed in blocks, dividing the curve into increasing and decreasing distance. A sufficiently large buffer would be needed so as to always include enough points to divide the space into distinct sections. This would be a function of the update rate and the size of the possible interaction regions.
II. Method 2: Temporally Smooth Points Distributions
An approximation of the previous method may be achieved by manipulating traversal rate on the path so that it has minimum velocity at sharp points which might cause noise. If {right arrow over (P)}(t) represents a fixed-velocity parametrized TPS curve which starts and stops at a hard location (such as a line), a minimum-velocity curve would be,
where tf is the time representing the end of the curve. To return to the start of the curve the phase functions can be run in reverse. This results in a low-spread power spectrum.
This method is unaware that the start of the curve is already a spatiotemporal minimum and therefore smooths both ends. While not perfect for the presented transducer, the net result over all of the transducers in the array can be very similar in total to the other methods presented.
Shown in
Shown in
This can be implemented in real-time with a sample buffer or with sub-sampling. A sample buffer would have to look ahead for sharp transitions and redistribute to first accelerate to get ahead in space and then decelerate into those points. Sub-sampling would be done by assuming each point is itself a “sharp” transition and distributions would follow a smooth function (like above) in between on a direct-line path. This should be especially effective if the accepted point rate is at 400 Hz or less with an update rate of 40 kHz or higher.
III. Method 3: Spatial Filtering
The radius function for an arbitrary haptic path is given by:
R(t)=√{square root over ((e0x+fx(t))2+(e0y+fy(t))2+(e0z+fz(t))2)}.
From this equation, it is clear that spatial functions (fx(t), etc) with high-frequency content will directly translate to high-frequency content in R(t). If we filter the spatial functions irectly, R(t) and therefore the phase function for the curve, will have a minimum of high-frequency content.
This can be accomplished with any number of standard frequency filtering approaches, both pre-processed and real-time. Processing continuous curves can be done with analogue filter implementations. Curves divided into a series of points can be filtered using traditional digital methods such as infinite impulse response (IIR) and finite impulse response (FIR) filters. Each dimension at a time must be filtered individually.
Frequency filtering approaches fall into two categories: ones involving feedback/feedforward called infinite impulse response (IIR) and ones without feedback called finite impulse response (FIR). IIR filtering requires less buffering and computation cost but often introduces phase delay. FIR filtering can be phase-perfect but requires a buffer equal to the size of the coefficients which can get large for low-frequency filtering.
Filtering can be adjusted to achieve the desired balance between path reproduction accuracy and audio reduction.
IV. Method 4: Spatial Approximations (Fourier, Splines, Polynomials, etc.)
Any input path or series of points representing a path can be approximated with smooth path using curve fitting techniques.
For example, a haptic path is often repeated several times in order to create a haptic sensation. If a complete loop is buffered in advance, this nicely encapsulates a repetitive sequence and can be expressed as a Fourier series. Being directly related to the frequency domain, increasing orders of approximation directly relates to the trade-off between accuracy and unwanted audio. The Fourier series approximation is given by,
where the integrals are taken over one period. Each dimension would need to be approximated separately.
Polynomial fits are another class of smooth functions which can easily be fit to a set of input points. Critical points can be chosen in advance or in a buffered or sub-sampled signal and a fitting routine such as least-squares can be used to fit a low-order polynomial. Selecting critical points with sudden stops or high curvature will likely be the most effective. The higher-order used, the more accurate the curve will be to the input points, but the higher curvature will allow for higher frequency content. Essentially non-oscillatory (ENO) polynomials may also be used to counter this through the weighted selection of high-order polynomial interpolations which are representative yet minimize unwanted high-frequency content. If desired, the number of critical points could relate to the order of the polynomial fit in order to include those points exactly (a determinate system). If implemented real-time, the fit would need to update smoothly as new critical points are determined.
Splines offer yet another curve approximation system which can emphasize smoothness and low curvature. As with other methods, the input could be critical points from a sub-sampled system or chosen algorithmically from an input buffer.
V. Additional Disclosure
As far as is known, no attempt has ever been made to adjust curve parameterization (point spacing/location) in order to improve unintended audio. The idea here is recognizing the direct relationship between spatial spectral content and parametric audio.
These techniques are much easier to implement at a software level versus direct filtering at the firmware level. These techniques are easier to tune to adjust accuracy versus audio.
(2) Dynamic Transducer Activation Based on User Location Information for Haptic Feedback
I. Feed-Forward Input Generation for a Desired Output Via Linear Algebra
The impulse response of a system can be used to predict its output for a given drive by use of convolution,
Vout(t)=Vin(t)*h(t),
where Vout(t) is the output of the system, Vin(t) is the driving signal, h(t) is the system's impulse response, and * is the convolution operator. One way to organize a system is to divide the past of the system into segments each with fixed time interval T. Past drive signals are grouped into equal-time segments and designated by the number of periods in the past they represent. If these signals are Dnwhere n represents the number of periods in the past, this results in:
V0(t)=D0(t)*h(t)+D1(t)*h(t−T)D2(t)*h(t−2T)+ . . . , (1)
where V0 and D0 represent the output and drive of next cycle to be produced and all other terms encapsulate the history of the system. The time offsets may be foregone by writing this as an index, hn=h(t−nT). The notation may be simplified by denoting vectors D=[D1, . . . , Dn] and h=[h1, . . . , hn], where each entry in the vector is the time-series data for the drive and impulse response respectively. The convolution operator would then first convolve then add as a vector product. Equation 1 can then be written as,
V0=D0*h0D*h,
and the inverse problem which we are trying to solve is,
D0=(V0−(D*h))*−1h0.
where *−1 is the deconvolution operator.
This solution may be expanded to an array of coupled systems by measuring the impulse response of one element when another is driven. Take, for example, two elements A and B. The impulse response of A when B is driven is defined as hBA and the opposite case of response of B when A is driven as hAB. The traditional impulse response in this notation would be hAA and hBB respectively. The above analysis reduces to a system of two equations,
VA0=DA0*hAA0+DA*hAA+DB0*hBA0+DB*hBA,
VB0=DB0* hBB0+DB*hBB+DA0*hAB0+DA*hAB,
where the 0 subscripts represent the next cycle for the various parameters, Da and DB are the vectors of time-series driving data analogous to D above, and VA0 and VB0 are the output of each element. When VA0 and VB0 are specified this reduces to an indeterminate system in which a solution can be approximated. This technique can be expanded to an arbitrarily sized array of elements. This is the most general form of the invention. This formula calculates the necessary drive (D0) for a desired output (V0) given the history of the drive contained in D*h. Presented below are methods to simplify the deconvolution process under certain conditions.
While convolution calculations are straightforward, the inverse problem is often difficult. Deconvolution algorithms can be computationally challenging and can yield oscillatory or unstable behavior. A major simplification can be made when working with high-Q resonant systems by using the convolution theorem. This states that the Fourier transform of two convolved signals is the multiplication of their individual Fourier transforms. In a resonant system, the Fourier transform the impulse response is dominated by the component at the resonant frequency. If the driving signal are kept largely monochromatic, the system may be reduced largely to algebra. In the above notation this takes the form,
(V0)=(D0*h0+D1*h1+D2*h2+ . . . )≈A(V0)=A(D0)·A(h0)+A(D1)·A(h1)+A(D2)·A(h2)+ . . . , (2)
where denotes the Fourier transform, and A is an operator which returns the complex Fourier component at the resonant frequency of the element. By specifying the desired output in terms of the resonant frequency complex Fourier component (A(V0)), each term on the right are simply complex values, and the system is now algebraic. The single-element control function in this notation reduces to:
D0=(V0−(D·h))/h0. (3)
In this case both the output (V0), drive (D0), and first-period impulse response (h0) would be complex numbers representing the Fourier component at the resonant frequency. D and h are vectors containing the time shifted impulse response and drive Fourier components respectively. The number of historical data points to include in any one timestep is dependent on the desired accuracy of the drive as well as the computational power available. The complex output is relatively easy to realize in practice and will be covered below.
An array of coupled elements can be similarly simplified. Given an array with m elements the equation 3 can be written as,
where n refers to the given period delay offset, the numbered indexes in the impulse response are the impulse on the second number with the first number driven (as above), and h0−1 is the inverse of the first-cycle impulse response matrix. The output of this, like equation 2, is an array of complex driving coefficients for the m transducers given the desired m outputs in V.
Another simplification of the above method can be accomplished through a recursive definition of the impulse response function. In many systems, the impulse response function can be approximate by purely exponential decay. In this case, the total contribution from the previous activations can be approximated by,
where α is an experimentally derived constant. Each cycle the previous contribution is multiplied by α and summed with the new cycle. In this way, only one multiplication is necessary each cycle to calculate the complete historical contribution. This simplification works very well for systems well described by a damped harmonic oscillator. This can be applied on an element-by-element basis for an array system but tends to only work well if the cross-coupling is minimal as the first-order nature of this recursive filter does not pass ringing. A hybrid recursive filter can be made by including a fixed number of cycles using the previous explicit method and then lumping the remainder into a recursive term. If the bulk of the ringing behavior can be captured in the fixed cycles which are explicitly calculated, the remainder should be well described by a recursive approach.
Resonant systems can display non-linear behavior near the resonant frequency. This can manifest as a nonlinearity in the amplitude response. As a result, the impulse response function changes as a function of current drive level. This can cause the estimation of the previous contributions (Dh) to be inaccurate at high drive levels. To compensate for this, the impulse response matrix must become a function of drive level. For each element the impulse response can be measured for a given amplitude, h(A). Using this notation, the driving activation coefficients can be calculated using,
Where h0−1 is the small-amplitude impulse response. For the next period the amplitude(s) used to modify h can be estimated using the Do just derived,
where An are calculated from previous time steps (already calculated in 2 and can be reused). In this notation Dn and An are the drive and amplitude at n periods in the past and hn is the time-shifted impulse response for that amplitude. In our notation, for the next timestep, this would be incremented to A1 and used within the historical term in equation 5 above.
The methods presented above rely on an accurate impulse response. In a real system, this can change under various environmental conditions including temperature, altitude, age, and many others. Accuracy of the methods depend on tracking the most important factors and adjusting the impulse responses accordingly. This can be implemented using a large store of recorded impulse responses which are then accessed based on external sensors or clocks. Alternatively, a different resonant driving frequency can be used which could restore accuracy to the impulse response as most decay and cross talk mechanisms will remain largely similar even if the resonant frequency of the system changes. In another arrangement, a mathematical model of the change in impulse response can be implemented in the system to change the stored impulse response over time and function. In yet another arrangement, the device can be setup to measure the impulse response at certain times such as start-up or during periods of minimal output to re-adjust the internal tables. This could be accomplished electrically via an impedance sweep or with some other electrical measuring method. Alternatively, feedback from an external measurement device (such as a microphone for an ultrasonic transducer system) could be used to update tables.
The feed-forward control scheme can introduce some high-frequency components to the drive which could be detrimental in certain applications (high-power airborne ultrasound for instance). In this case there are a number of possible solutions to limit the high-frequency components while still retaining the precise control of feed-forward. One simple method is to simply apply IIR low-pass filters to the output drive coefficients of equation 1 (one for each of the real and imaginary components). For each cycle, the previous cycle's output is the output of the filter, then a new drive term is calculated with equation 1, and that is filtered, and so on. Another option is a simple comparison of the change of D from one cycle to the next and limit this to a certain magnitude (point by point), this limited D is the input to the history term in the next cycle. This is effectively a low-order low-pass filter.
The filter, or magnitude limiter, can adapt to the input, by analyzing the bandwidth of the input and applying a filter which starts to attenuate based on that value. For the simple case of a magnitude-change filter, a running max change from the previous n input samples could be stored and that could be used as the limiting change. In that way if the input is requesting high-frequency changes, high-frequency changes are passed, but if the input is slow and smooth, the output coefficients are also limited in their rate of change. In another implementation, the input signal could be analyzed for frequency content (say with a series of band filters) and an adjustable IIR filter applied to each driving term based upon the input frequency analysis. The exact relationship between the content of the input and filtered output can be adjusted to optimize accuracy (by passing all frequencies) versus noise (heavily filtering).
Examples shown in the figures are generated using a 2-level PWM interpretation of the coefficient output equation 1. This is done simply by matching the Fourier component of PWM to the desired output by adjusting the phase and width of the pulse. When an amplitude requested exceeds what is possible by the drive, phase can still be preserved by amplitude is kept at maximum duty cycle (50%). This clipping of amplitude does not impede the method and is implemented in the simulations above. Despite this being the only type of simulation shown, the invention presented here is not limited to a 2-level PWM drive. Any drive system will work from PWM to analogue. The only requirement is that the drive for each resonant-frequency-period have a Fourier component at that frequency which matches in the output from equation 1. The cleaner the drive is from a frequency perspective, the better the system will perform. This can be achieved by switching many times per cycle, many different voltage levels available, or a full high-bandwidth analogue drive.
Feedback from an external pickup could also be incorporated.
Feed-forward drive allows for the precise control of resonant systems.
Possible uses include:
1. Controlling arrays of resonant ultrasonic transducers for parametric audio. By more accurately controlling each element, the quality of reproduction will increase as well as being able to more carefully steer and control the ultrasound field.
2. Controlling an array of resonant ultrasonic transducers for haptic feedback. Better control of the amplitude and phase will allow for better focus control (smaller focus, cleaner modulation) and less unwanted audio
3. Controlling one or an array of ultrasonic transducers for ranging. Distance estimates involve encoding a ‘key’ into the ultrasound output on top of either amplitude or phase. In the simplest application, this would simply be a ‘pulse’ which turns on and off. In other applications where the transducer is continually producing output, the key could be a deliberate phase shift. The sharper the key is in time, the more accurate the range calculation is on reception. The method presented allows for sharper transitions than what is capable in standard control.
4. PWM control of motors with resonant behavior.
5. Control of resonant loudspeakers.
These graphs are examples of cross-talk performance showing amplitude and phase accuracy of two strongly-coupled phase-modulated transducers with transducer 2 at 90 degrees out of phase with transducer 1. The mathematical model uses the same real-world 40 kHz transducer model as the previous figures with an added coupling losses spring. Input coefficients are converted to a PWM signal with 100 steps per period to emulate real-world digital drive. The input drive is 80% amplitude with 0.5*pi radians of modulation at 200 Hz, with transducer 2 at 90 degrees out of phase with transducer 1. The graphs 2000, 2020 show the large errors introduced by coupling with the amplitude dropping by as much as 15%. The graphs 2040, 2060 show the control possible with feed-forward coupled control, with amplitude and phase accuracy on the order of 2%.
The mathematical model uses the same real-world 40 kHz transducer model as the previous figures with an added coupling losses spring. Input coefficients are converted to a PWM signal with 100 steps per period to simulate real-world digital drive. The input drive is 50% amplitude depth at 200 Hz, with transducer 2 at 90 degrees out of phase with transducer 1. The graphs 2100, 2120 show the large errors introduced by coupling: the amplitude is out of phase with drive input in graph 2100 and causes massive phase errors in graph 2120. The graphs 2150, 2170 show the control possible with feed-forward coupled control, with amplitude accuracy better than 1% in graph 2140 and phase under tight control except near zero-output in graph 2160.
II. Additional Disclosure
There is quite a bit of text spent comparing the feed-forward method to current (steady-state) methods.
Feedback control designs require sampling at the system which increases cost and complexity.
One inventive step lies in recognizing that the impulse response for a highly-resonant system can be approximated by Fourier components at the resonant frequency (equation 2). This key simplification reduces the deconvolution operator to matrix algebra. Beyond this, manipulating the impulse response to be a function of drive amplitude to compensate for amplitude non-linearities is novel. Also, adapting this to a coupled resonant-system array and solving for the necessary drive as a matrix inversion is new.
(3) Conclusion
While the foregoing descriptions disclose specific values, any other specific values may be used to achieve similar results. Further, the various features of the foregoing embodiments may be selected and combined to produce numerous variations of improved haptic systems.
In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.
Moreover, in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way but may also be configured in ways that are not listed.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
This application claims the benefit of two U.S. Provisional Patent Applications, each of which is incorporated by reference in its entirety: 1) Ser. No. 62/609,429, filed on Dec. 22, 2017; and 2) Ser. No. 62/777,770, filed on Dec. 11, 2018.
Number | Name | Date | Kind |
---|---|---|---|
4218921 | Berge | Aug 1980 | A |
4771205 | Mequio | Sep 1988 | A |
4881212 | Takeuchi | Nov 1989 | A |
5226000 | Moses | Jul 1993 | A |
5243344 | Koulopoulos | Sep 1993 | A |
5329682 | Thurn | Jul 1994 | A |
5422431 | Ichiki | Jun 1995 | A |
5426388 | Flora | Jun 1995 | A |
5477736 | Lorraine | Dec 1995 | A |
5511296 | Dias | Apr 1996 | A |
5729694 | Holzrichter | Mar 1998 | A |
5859915 | Norris | Jan 1999 | A |
6029518 | Oeftering | Feb 2000 | A |
6193936 | Gardner | Feb 2001 | B1 |
6436051 | Morris | Aug 2002 | B1 |
6503204 | Sumanaweera | Jan 2003 | B1 |
6647359 | Verplank | Nov 2003 | B1 |
6771294 | Pulli | Aug 2004 | B1 |
6772490 | Toda | Aug 2004 | B2 |
6800987 | Toda | Oct 2004 | B2 |
7107159 | German | Sep 2006 | B2 |
7109789 | Spencer | Sep 2006 | B2 |
7182726 | Williams | Feb 2007 | B2 |
7225404 | Zilles | May 2007 | B1 |
7284027 | Jennings, III | Oct 2007 | B2 |
7345600 | Fedigan | Mar 2008 | B1 |
7487662 | Schabron | Feb 2009 | B2 |
7577260 | Hooley | Aug 2009 | B1 |
7692661 | Cook | Apr 2010 | B2 |
RE42192 | Schabron | Mar 2011 | E |
7966134 | German | Jun 2011 | B2 |
8000481 | Nishikawa | Aug 2011 | B2 |
8123502 | Blakey | Feb 2012 | B2 |
8269168 | Axelrod | Sep 2012 | B1 |
8279193 | Birnbaum | Oct 2012 | B1 |
8369973 | Risbo | Feb 2013 | B2 |
8607922 | Werner | Dec 2013 | B1 |
8833510 | Koh | Sep 2014 | B2 |
8884927 | Cheatham, III | Nov 2014 | B1 |
9208664 | Peters | Dec 2015 | B1 |
9267735 | Funayama | Feb 2016 | B2 |
9421291 | Robert | Aug 2016 | B2 |
9612658 | Subramanian | Apr 2017 | B2 |
9662680 | Yamamoto | May 2017 | B2 |
9816757 | Zielinski | Nov 2017 | B1 |
9841819 | Carter | Dec 2017 | B2 |
9863699 | Corbin, III | Jan 2018 | B2 |
9898089 | Subramanian | Feb 2018 | B2 |
9945818 | Ganti | Apr 2018 | B2 |
9958943 | Long | May 2018 | B2 |
9977120 | Carter | May 2018 | B2 |
10101811 | Carter | Oct 2018 | B2 |
10101814 | Carter | Oct 2018 | B2 |
10133353 | Eid | Nov 2018 | B2 |
10140776 | Schwarz | Nov 2018 | B2 |
10146353 | Smith | Dec 2018 | B1 |
10168782 | Tchon | Jan 2019 | B1 |
10268275 | Carter | Apr 2019 | B2 |
10281567 | Carter | May 2019 | B2 |
10318008 | Sinha | Jun 2019 | B2 |
10444842 | Long | Oct 2019 | B2 |
10469973 | Hayashi | Nov 2019 | B2 |
10496175 | Long | Dec 2019 | B2 |
10497358 | Tester | Dec 2019 | B2 |
10510357 | Kovesi | Dec 2019 | B2 |
10523159 | Megretski | Dec 2019 | B2 |
10531212 | Long | Jan 2020 | B2 |
10569300 | Hoshi | Feb 2020 | B2 |
10685538 | Carter | Jun 2020 | B2 |
10755538 | Carter | Aug 2020 | B2 |
10818162 | Carter | Oct 2020 | B2 |
10911861 | Buckland | Feb 2021 | B2 |
10915177 | Carter | Feb 2021 | B2 |
10921890 | Subramanian | Feb 2021 | B2 |
10930123 | Carter | Feb 2021 | B2 |
10943578 | Long | Mar 2021 | B2 |
11048329 | Lee | Jun 2021 | B1 |
11098951 | Kappus | Aug 2021 | B2 |
11169610 | Sarafianou | Nov 2021 | B2 |
11189140 | Long | Nov 2021 | B2 |
11204644 | Long | Dec 2021 | B2 |
11276281 | Carter | Mar 2022 | B2 |
20010033124 | Norris | Oct 2001 | A1 |
20020149570 | Knowles | Oct 2002 | A1 |
20030024317 | Miller | Feb 2003 | A1 |
20030144032 | Brunner | Jul 2003 | A1 |
20030182647 | Radeskog | Sep 2003 | A1 |
20040005715 | Schabron | Jan 2004 | A1 |
20040014434 | Haardt | Jan 2004 | A1 |
20040052387 | Norris | Mar 2004 | A1 |
20040091119 | Duraiswami | May 2004 | A1 |
20040210158 | Organ | Oct 2004 | A1 |
20040226378 | Oda | Nov 2004 | A1 |
20040264707 | Yang | Dec 2004 | A1 |
20050052714 | Klug | Mar 2005 | A1 |
20050056851 | Althaus | Mar 2005 | A1 |
20050212760 | Marvit | Sep 2005 | A1 |
20050267695 | German | Dec 2005 | A1 |
20050273483 | Dent | Dec 2005 | A1 |
20060085049 | Cory | Apr 2006 | A1 |
20060090955 | Cardas | May 2006 | A1 |
20060091301 | Trisnadi | May 2006 | A1 |
20060164428 | Cook | Jul 2006 | A1 |
20070036492 | Lee | Feb 2007 | A1 |
20070094317 | Wang | Apr 2007 | A1 |
20070177681 | Choi | Aug 2007 | A1 |
20070263741 | Erving | Nov 2007 | A1 |
20080012647 | Risbo | Jan 2008 | A1 |
20080084789 | Altman | Apr 2008 | A1 |
20080130906 | Goldstein | Jun 2008 | A1 |
20080226088 | Aarts | Sep 2008 | A1 |
20080273723 | Hartung | Nov 2008 | A1 |
20080300055 | Lutnick | Dec 2008 | A1 |
20090093724 | Pernot | Apr 2009 | A1 |
20090116660 | Croft, III | May 2009 | A1 |
20090232684 | Hirata | Sep 2009 | A1 |
20090251421 | Bloebaum | Oct 2009 | A1 |
20090319065 | Risbo | Dec 2009 | A1 |
20100013613 | Weston | Jan 2010 | A1 |
20100016727 | Rosenberg | Jan 2010 | A1 |
20100030076 | Vortman | Feb 2010 | A1 |
20100044120 | Richter | Feb 2010 | A1 |
20100066512 | Rank | Mar 2010 | A1 |
20100085168 | Kyung | Apr 2010 | A1 |
20100103246 | Schwerdtner | Apr 2010 | A1 |
20100109481 | Buccafusca | May 2010 | A1 |
20100199232 | Mistry | Aug 2010 | A1 |
20100231508 | Cruz-Hernandez | Sep 2010 | A1 |
20100262008 | Roundhill | Oct 2010 | A1 |
20100302015 | Kipman | Dec 2010 | A1 |
20100321216 | Jonsson | Dec 2010 | A1 |
20110006888 | Bae | Jan 2011 | A1 |
20110010958 | Clark | Jan 2011 | A1 |
20110051554 | Varray | Mar 2011 | A1 |
20110066032 | Vitek | Mar 2011 | A1 |
20110199342 | Vartanian | Aug 2011 | A1 |
20110310028 | Camp, Jr. | Dec 2011 | A1 |
20120057733 | Morii | Mar 2012 | A1 |
20120063628 | Rizzello | Mar 2012 | A1 |
20120066280 | Tsutsui | Mar 2012 | A1 |
20120223880 | Birnbaum | Sep 2012 | A1 |
20120229400 | Birnbaum | Sep 2012 | A1 |
20120229401 | Birnbaum | Sep 2012 | A1 |
20120236689 | Brown | Sep 2012 | A1 |
20120243374 | Dahl | Sep 2012 | A1 |
20120249409 | Toney | Oct 2012 | A1 |
20120249474 | Pratt | Oct 2012 | A1 |
20120299853 | Dagar | Nov 2012 | A1 |
20120307649 | Park | Dec 2012 | A1 |
20120315605 | Cho | Dec 2012 | A1 |
20130035582 | Radulescu | Feb 2013 | A1 |
20130079621 | Shoham | Mar 2013 | A1 |
20130094678 | Scholte | Apr 2013 | A1 |
20130100008 | Marti | Apr 2013 | A1 |
20130101141 | McElveen | Apr 2013 | A1 |
20130173658 | Adelman | Jul 2013 | A1 |
20130331705 | Fraser | Dec 2013 | A1 |
20140027201 | Islam | Jan 2014 | A1 |
20140104274 | Hilliges | Apr 2014 | A1 |
20140139071 | Yamamoto | May 2014 | A1 |
20140168091 | Jones | Jun 2014 | A1 |
20140201666 | Bedikian | Jul 2014 | A1 |
20140204002 | Bennet | Jul 2014 | A1 |
20140265572 | Siedenburg | Sep 2014 | A1 |
20140269207 | Baym | Sep 2014 | A1 |
20140269208 | Baym | Sep 2014 | A1 |
20150002477 | Cheatham, III | Jan 2015 | A1 |
20150005039 | Liu | Jan 2015 | A1 |
20150006645 | Oh | Jan 2015 | A1 |
20150007025 | Sassi | Jan 2015 | A1 |
20150013023 | Wang | Jan 2015 | A1 |
20150029155 | Lee | Jan 2015 | A1 |
20150066445 | Lin | Mar 2015 | A1 |
20150070147 | Cruz-Hernandez | Mar 2015 | A1 |
20150070245 | Han | Mar 2015 | A1 |
20150078136 | Sun | Mar 2015 | A1 |
20150081110 | Houston | Mar 2015 | A1 |
20150084929 | Lee | Mar 2015 | A1 |
20150110310 | Minnaar | Apr 2015 | A1 |
20150130323 | Harris | May 2015 | A1 |
20150168205 | Lee | Jun 2015 | A1 |
20150192995 | Subramanian | Jul 2015 | A1 |
20150220199 | Wang | Aug 2015 | A1 |
20150226537 | Schorre | Aug 2015 | A1 |
20150226831 | Nakamura | Aug 2015 | A1 |
20150248787 | Abovitz | Sep 2015 | A1 |
20150258431 | Stafford | Sep 2015 | A1 |
20150277610 | Kim | Oct 2015 | A1 |
20150293592 | Cheong | Oct 2015 | A1 |
20150304789 | Babayoff | Oct 2015 | A1 |
20150323667 | Przybyla | Nov 2015 | A1 |
20150331576 | Piya | Nov 2015 | A1 |
20150332075 | Burch | Nov 2015 | A1 |
20160019762 | Levesque | Jan 2016 | A1 |
20160019879 | Daley | Jan 2016 | A1 |
20160026253 | Bradski | Jan 2016 | A1 |
20160044417 | Clemen, Jr. | Feb 2016 | A1 |
20160124080 | Carter | May 2016 | A1 |
20160138986 | Carlin | May 2016 | A1 |
20160175701 | Froy | Jun 2016 | A1 |
20160175709 | Idris | Jun 2016 | A1 |
20160189702 | Blanc | Jun 2016 | A1 |
20160242724 | Lavallee | Aug 2016 | A1 |
20160246374 | Carter | Aug 2016 | A1 |
20160249150 | Carter | Aug 2016 | A1 |
20160291716 | Boser | Oct 2016 | A1 |
20160306423 | Uttermann | Oct 2016 | A1 |
20160320843 | Long | Nov 2016 | A1 |
20160339132 | Cosman | Nov 2016 | A1 |
20160374562 | Vertikov | Dec 2016 | A1 |
20170002839 | Bukland | Jan 2017 | A1 |
20170004819 | Ochiai | Jan 2017 | A1 |
20170018171 | Carter | Jan 2017 | A1 |
20170024921 | Beeler | Jan 2017 | A1 |
20170052148 | Estevez | Feb 2017 | A1 |
20170123487 | Hazra | May 2017 | A1 |
20170123499 | Eid | May 2017 | A1 |
20170140552 | Woo | May 2017 | A1 |
20170144190 | Hoshi | May 2017 | A1 |
20170153707 | Subramanian | Jun 2017 | A1 |
20170168586 | Sinha | Jun 2017 | A1 |
20170181725 | Han | Jun 2017 | A1 |
20170193768 | Long | Jul 2017 | A1 |
20170193823 | Jiang | Jul 2017 | A1 |
20170211022 | Reinke | Jul 2017 | A1 |
20170279951 | Hwang | Sep 2017 | A1 |
20170336860 | Smoot | Nov 2017 | A1 |
20170366908 | Long | Dec 2017 | A1 |
20180035891 | Van Soest | Feb 2018 | A1 |
20180039333 | Carter | Feb 2018 | A1 |
20180047259 | Carter | Feb 2018 | A1 |
20180074580 | Hardee | Mar 2018 | A1 |
20180081439 | Daniels | Mar 2018 | A1 |
20180101234 | Carter | Apr 2018 | A1 |
20180139557 | Ochiai | May 2018 | A1 |
20180146306 | Benattar | May 2018 | A1 |
20180151035 | Maalouf | May 2018 | A1 |
20180166063 | Long | Jun 2018 | A1 |
20180181203 | Subramanian | Jun 2018 | A1 |
20180182372 | Tester | Jun 2018 | A1 |
20180190007 | Panteleev | Jul 2018 | A1 |
20180246576 | Long | Aug 2018 | A1 |
20180253627 | Baradel | Sep 2018 | A1 |
20180267156 | Carter | Sep 2018 | A1 |
20180304310 | Long | Oct 2018 | A1 |
20180309515 | Murakowski | Oct 2018 | A1 |
20180310111 | Kappus | Oct 2018 | A1 |
20180350339 | Macours | Dec 2018 | A1 |
20180361174 | Radulescu | Dec 2018 | A1 |
20190038496 | Levesque | Feb 2019 | A1 |
20190091565 | Nelson | Mar 2019 | A1 |
20190163275 | Iodice | May 2019 | A1 |
20190175077 | Zhang | Jun 2019 | A1 |
20190187244 | Riccardi | Jun 2019 | A1 |
20190196578 | Iodice | Jun 2019 | A1 |
20190196591 | Long | Jun 2019 | A1 |
20190197840 | Kappus | Jun 2019 | A1 |
20190197841 | Carter | Jun 2019 | A1 |
20190197842 | Long | Jun 2019 | A1 |
20190204925 | Long | Jul 2019 | A1 |
20190206202 | Carter | Jul 2019 | A1 |
20190235628 | Lacroix | Aug 2019 | A1 |
20190257932 | Carter | Aug 2019 | A1 |
20190310710 | Deeley | Oct 2019 | A1 |
20190342654 | Buckland | Nov 2019 | A1 |
20200042091 | Long | Feb 2020 | A1 |
20200080776 | Kappus | Mar 2020 | A1 |
20200082804 | Kappus | Mar 2020 | A1 |
20200103974 | Carter | Apr 2020 | A1 |
20200117229 | Long | Apr 2020 | A1 |
20200193269 | Park | Jun 2020 | A1 |
20200218354 | Beattie | Jul 2020 | A1 |
20200302760 | Carter | Sep 2020 | A1 |
20200320347 | Nikolenko | Oct 2020 | A1 |
20200327418 | Lyons | Oct 2020 | A1 |
20200380832 | Carter | Dec 2020 | A1 |
20210037332 | Kappus | Feb 2021 | A1 |
20210043070 | Carter | Feb 2021 | A1 |
20210109712 | Long | Apr 2021 | A1 |
20210111731 | Long | Apr 2021 | A1 |
20210112353 | Kappus | Apr 2021 | A1 |
20210141458 | Sarafianou | May 2021 | A1 |
20210165491 | Sun | Jun 2021 | A1 |
20210170447 | Buckland | Jun 2021 | A1 |
20210183215 | Carter | Jun 2021 | A1 |
20210201884 | Kappus | Jul 2021 | A1 |
20210225355 | Long | Jul 2021 | A1 |
20210303072 | Carter | Sep 2021 | A1 |
20210303758 | Long | Sep 2021 | A1 |
20210334706 | Yamaguchi | Oct 2021 | A1 |
20210381765 | Kappus | Dec 2021 | A1 |
20210397261 | Kappus | Dec 2021 | A1 |
20220083142 | Brown | Mar 2022 | A1 |
20220095068 | Kappus | Mar 2022 | A1 |
20220113806 | Long | Apr 2022 | A1 |
20220155949 | Ring | May 2022 | A1 |
20220198892 | Carter | Jun 2022 | A1 |
20220236806 | Carter | Jul 2022 | A1 |
20220252550 | Catsis | Aug 2022 | A1 |
20220300028 | Long | Sep 2022 | A1 |
20220300070 | Iodice | Sep 2022 | A1 |
20220329250 | Long | Oct 2022 | A1 |
Number | Date | Country |
---|---|---|
2470115 | Jun 2003 | CA |
101986787 | Mar 2011 | CN |
102459900 | May 2012 | CN |
102591512 | Jul 2012 | CN |
103797379 | May 2014 | CN |
103984414 | Aug 2014 | CN |
107340871 | Nov 2017 | CN |
0057594 | Aug 1982 | EP |
309003 | Mar 1989 | EP |
0696670 | Feb 1996 | EP |
1875081 | Jan 2008 | EP |
1911530 | Apr 2008 | EP |
2271129 | Jan 2011 | EP |
1461598 | Apr 2014 | EP |
3207817 | Aug 2017 | EP |
3216231 | Aug 2019 | EP |
2464117 | Apr 2010 | GB |
2513884 | Nov 2014 | GB |
2513884 | Nov 2014 | GB |
2530036 | Mar 2016 | GB |
2008074075 | Apr 2008 | JP |
2010109579 | May 2010 | JP |
2011172074 | Sep 2011 | JP |
2012048378 | Mar 2012 | JP |
2012048378 | Mar 2012 | JP |
2015035657 | Feb 2015 | JP |
2016035646 | Mar 2016 | JP |
20120065779 | Jun 2012 | KR |
20130055972 | May 2013 | KR |
20160008280 | Jan 2016 | KR |
20200082449 | Jul 2020 | KR |
9118486 | Nov 1991 | WO |
9639754 | Dec 1996 | WO |
03050511 | Jun 2003 | WO |
2005017965 | Feb 2005 | WO |
2007144801 | Dec 2007 | WO |
2009071746 | Jun 2009 | WO |
2009112866 | Sep 2009 | WO |
2010003836 | Jan 2010 | WO |
2010139916 | Dec 2010 | WO |
2011132012 | Oct 2011 | WO |
2012023864 | Feb 2012 | WO |
2012104648 | Aug 2012 | WO |
2013179179 | Dec 2013 | WO |
2014181084 | Nov 2014 | WO |
2014181084 | Nov 2014 | WO |
2015006467 | Jan 2015 | WO |
2015039622 | Mar 2015 | WO |
2015127335 | Aug 2015 | WO |
2016007920 | Jan 2016 | WO |
2016095033 | Jun 2016 | WO |
2016099279 | Jun 2016 | WO |
2016132141 | Aug 2016 | WO |
2016132144 | Aug 2016 | WO |
2016132144 | Aug 2016 | WO |
2016137675 | Sep 2016 | WO |
2016162058 | Oct 2016 | WO |
2017172006 | Oct 2017 | WO |
2020049321 | Mar 2020 | WO |
Entry |
---|
Corrected Notice of Allowability dated Jun. 21, 2019 for U.S. Appl. No. 15/966,213 (2 pages). |
International Search Report and Written Opinion for Application No. PCT/GB2018/053739, dated Jun. 4, 2019, 16 pages. |
Notice of Allowance dated Jul. 31, 2019 for U.S. Appl. No. 15/851,214 (pp. 1-9). |
Notice of Allowance dated Jul. 31, 2019 for U.S. Appl. No. 16/296,127 (pp. 1-9). |
Office Action dated Jul. 10, 2019 for U.S. Appl. No. 15/210,661 (pp. 1-12). |
Office Action dated Jul. 26, 2019 for U.S. Appl. No. 16/159,695 (pp. 1-8). |
European Office Action for Application No. EP16750992.6, dated Oct. 2, 2019, 3 pages. |
Office Action dated Dec. 11, 2019 for U.S. Appl. No. 15/959,266 (pp. 1-15). |
Jager et al., “Air-Coupled 40-KHZ Ultrasonic 2D-Phased Array Based on a 3D-Printed Waveguide Structure”, 2017 IEEE, 4 pages. |
Wooh et al., “Optimum beam steering of linear phased arays,” Wave Motion 29 (1999) pp. 245-265, 21 pages. |
Canada Application 2,909,804 Office Action dated Oct. 18, 2019, 4 pages. |
Notice of Allowance dated Feb. 10, 2020, for U.S. Appl. No. 16/160,862 (pp. 1-9). |
Office Action dated Mar. 20, 2020 for U.S. Appl. No. 15/210,661 (pp. 1-10). |
Office Action dated Feb. 25, 2020 for U.S. Appl. No. 15/960,113 (pp. 1-7). |
Office Action dated Feb. 7, 2020 for U.S. Appl. No. 16/159,695 (pp. 1-8). |
Office Action dated Jan. 29, 2020 for U.S. Appl. No. 16/198,959 (p. 1-6). |
Office Action dated Jan. 10, 2020 for U.S. Appl. No. 16/228,767 (pp. 1-6). |
Yaroslav Ganin et al., Domain-Adversarial Training of Neural Networks, Journal of Machine Learning Research 17 (2016) 1-35, submitted May 2015; published Apr. 2016. |
Yaroslav Ganin et al., Unsupervised Domain Adaptataion by Backpropagation, Skolkovo Institute of Science and Technology (Skoltech), Moscow Region, Russia, Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015, JMLR: W&CP vol. 37, copyright 2015 by the author(s), 11 pages. |
Ashish Shrivastava et al., Learning from Simulated and Unsupervised Images through Adversarial Training, Jul. 19, 2017, pp. 1-16. |
Konstantinos Bousmalis et al., Domain Separation Networks, 29th Conference on Neural Information Processing Sysgtems (NIPS 2016), Barcelona, Spain. Aug. 22, 2016, pp. 1-15. |
Eric Tzeng et al., Adversarial Discriminative Domain Adaptation, Feb. 17, 2017, pp. 1-10. |
David Joseph Tan et al., Fits like a Glove: Rapid and Reliable Hand Shape Personalization, 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 5610-5619. |
Jonathan Taylor et al., Efficient and Precise Interactive Hand Tracking Through Joint, Continuous Optimization of Pose and Correspondences, SIGGRAPH '16 Technical Paper, Jul. 24-28, 2016, Anaheim, CA, ISBN: 978-1-4503-4279-87/16/07, pp. 1-12. |
Toby Sharp et al., Accurate, Robust, and Flexible Real-time Hand Tracking, CHI '15, Apr. 18-23, 2015, Seoul, Republic of Korea, ACM 978-1-4503-3145-6/15/04, pp. 1-10. |
Jonathan Taylor et al., Articulated Distance Fields for Ultra-Fast Tracking of Hands Interacting, ACM Transactions on Graphics, vol. 36, No. 4, Article 244, Publication Date: Nov. 2017, pp. 1-12. |
GitHub—IntelRealSense/hand_tracking_samples: researc codebase for depth-based hand pose estimation using dynamics based tracking and CNNs, Mar. 26, 2020, 3 pages. |
Stan Melax et al., Dynamics Based 3D Skeletal Hand Tracking, May 22, 2017, pp. 1-8. |
Yarin Gal et al., Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, Oct. 4, 2016, pp. 1-12, Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 2016, JMLR: W&CP vol. 48. |
Kaiming He et al., Deep Residual Learning for Image Recognition, http://image-net.org/challenges/LSVRC/2015/ and http://mscoco.org/dataset/#detections-challenge2015, Dec. 10, 2015, pp. 1-12. |
Sergey Ioffe et al., Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariat Shift, Mar. 2, 2015, pp. 1-11. |
Diederik P. Kingma et al., Adam: A Method for Stochastic Optimization, Jan. 30, 2017, pp. 1-15. |
Christoper M. Bishop, Pattern Recognition and Machine Learning, pp. 1-758. |
Markus Oberweger et al., DeepPrior++: Improving Fast and Accurate 3D Hand Pose Estimation, Aug. 28, 2017, pp. 1-10. |
Markus Oberweger et al., Hands Deep in Deep Learning for Hand Pose Estimation, Dec. 2, 2016, pp. 1-10. |
Mahdi Rad et al., Feature Mapping for Learning Fast and Accurate 3D Pose Inference from Synthetic Images, Mar. 26, 2018, pp. 1-14. |
Jonathan Tompson et al., Real-Time Continuous Pose Recovery of Human Hands Using Convolutional Networks, ACM Trans. Graph. 33, 5, Article 169, pp. 1-10. |
Vincent Lepetit et al., Model Based Augmentation and Testing of an Annotated Hand Pose Dataset, ResearchGate, https://www.researchgate.net/publication/307910344, Sep. 2016, 13 pages. |
Shome Subhra Das, Detectioin of Self Intersection in Synthetic Hand Pose Generators, 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), Nagoya University, Nagoya, Japan, May 8-12, 2017, pp. 354-357. |
Marin, About LibHand, LibHand—A Hand Articulation Library, www.libhand.org/index.html, Mar. 26, 2020, pp. 1-2; www.libhand.org/download.html, 1 page; www.libhand.org/examples.html, pp. 1-2. |
GitHub—danfis/libccd: Library for collision detection between two convex shapes, Mar. 26, 2020, pp. 1-6. |
OGRECave/ogre—GitHub: ogre/Samples/Media/materials at 7de80a7483f20b50f2b10d7ac6de9d9c6c87d364, Mar. 26, 2020, 1 page. |
Shanxin Yuan et al., BigHand2.2M Bechmark: Hand Pose Dataset and State of the Art Analysis, Dec. 9, 2017, pp. 1-9. |
Office Action dated Apr. 8, 2020, for U.S. Appl. No. 16/198,959 (pp. 1-17). |
Office Action dated Apr. 16, 2020 for U.S. Appl. No. 15/839,184 (pp. 1-8). |
Notice of Allowance dated Apr. 22, 2020 for U.S. Appl. No. 15/671,107 (pp. 1-5). |
Office Action dated Apr. 17, 2020 for U.S. Appl. No. 16/401,148 (pp. 1-15). |
Office Action dated Apr. 28, 2020 for U.S. Appl. No. 15/396,851 (pp. 1-12). |
Office Action dated Apr. 29, 2020 for U.S. Appl. No. 16/374,301 (pp. 1-18). |
Nina Gaissert, Christian Wallraven, and Heinrich H. Bulthoff, “Visual and Haptic Perceptual Spaces Show High Similarity in Humans”, published to Journal of Vision in 2010, available at http://www.journalofvision.org/content/10/11/2 and retrieved on Apr. 22, 2020 (Year: 2010), 20 pages. |
Hua J, Qin H., Haptics-based dynamic implicit solid modeling, IEEE Trans Vis Comput Graph. Sep.-Oct. 2004;10(5):574-86. |
Hilleges et al. Interactions in the air: adding further depth to interactive tabletops, UIST '09: Proceedings of the 22nd annual ACM symposium on User interface software and technologyOct. 2009 pp. 139-148. |
International Search Report and Written Opinion for Application No. PCT/GB2019/051223, dated Aug. 8, 2019, 15 pages. |
Partial International Search Report for Application No. PCT/GB2018/053735, dated Apr. 12, 2019, 14 pages. |
International Search Report and Written Opinion for Application No. PCT/GB2018/053738, dated Apr. 11, 2019, 14 pages. |
Sean Gustafson et al., “Imaginary Phone”, Proceedings of the 24th Annual ACM Symposium on User Interface Software and Techology: Oct. 16-19, 2011, Santa Barbara, CA, USA, ACM, New York, NY, Oct. 16, 2011, pp. 283-292, XP058006125, DOI: 10.1145/2047196.2047233, ISBN: 978-1-4503-0716-1. |
Office Action dated May 18, 2020 for U.S. Appl. No. 15/960,113 (pp. 1-21). |
Optimal regularisation for acoustic source reconstruction by inverse methods, Y. Kim, P.A. Nelson, Institute of Sound and Vibration Research, University of Southampton, Southampton, SO17 1BJ, UK; 25 pages. |
Takahashi et al., “Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound” IEEE Transactions on Haptics vol. 3, No. 3 p. 165 (2010). |
International Search Report and Written Opinion for Application No. PCT/GB2019/052510, dated Jan. 14, 2020, 25 pages. |
Partial ISR for Application No. PCT/GB2020/050013 dated May 19, 2020 (16 pages). |
Search report for PCT/GB2015/052507 dated Mar. 11, 2020 (19 pages). |
Search report for PCT/GB2015/052916 dated Feb. 26, 2020 (18 pages). |
Notice of Allowance in U.S. Appl. No. 15/210,661 dated Jun. 17, 2020 (22 pages). |
Notice of Allowance dated Jun. 17, 2020 for U.S. Appl. No. 15/210,661 (pp. 1-9). |
Brian Kappus and Ben Long, Spatiotemporal Modulation for Mid-Air Haptic Feedback from an Ultrasonic Phased Array, ICSV25, Hiroshima, Jul. 8-12, 2018, 6 pages. |
Hoshi et al.,Tactile Presentation by Airborne Ultrasonic Oscillator Array, Proceedings of Robotics and Mechatronics Lecture 2009, Japan Society of Mechanical Engineers; May 24, 2009 (5 pages). |
ISR & WO for PCT/GB2020/052545 (dated Jan. 27, 2021) 14 pages. |
ISR and WO for PCT/GB2020/052544 (dated Dec. 18, 2020) (14 pages). |
ISR for PCT/GB2020/052546 (dated Feb. 23, 2021) (14 pages). |
ISR for PCT/GB2020/053373 (dated Mar. 26, 2021) (16 pages). |
Notice of Allowance dated Apr. 20, 2021 for U.S. Appl. No. 16/563,608 (pp. 1-5). |
Notice of Allowance dated Jun. 10, 2021 for U.S. Appl. No. 17/092,333 (pp. 1-9). |
Notice of Allowance dated Jun. 25, 2021 for U.S. Appl. No. 15/396,851 (pp. 1-10). |
Office Action dated Jun. 25, 2021 for U.S. Appl. No. 16/899,720 (pp. 1-5). |
Office Action dated Mar. 31, 2021 for U.S. Appl. No. 16/228,760 (pp. 1-21). |
Office Action dated May 13, 2021 for U.S. Appl. No. 16/600,500 (pp. 1-9). |
Office Action dated May 14, 2021 for U.S. Appl. No. 16/198,959 (pp. 1-6). |
“Welcome to Project Soli” video, https://atap.google.com/#project-soli Accessed Nov. 30, 2018, 2 pages. |
Sixth Sense webpage, http://www.pranavmistry.com/projects/sixthsense/Accessed Nov. 30, 2018, 7 pages. |
Damn Geeky, “Virtual projection keyboard technology with haptic feedback on palm of your hand,” May 30, 2013, 4 pages. |
E.S. Ebbini et al. (1991), Aspherical-section ultrasound phased array applicator for deep localized hyperthermia, Biomedical Engineering, IEEE Transactions on (vol. 38 Issue: 7), pp. 634-643. |
Gavrilov, L.R. (2008) “The Possibility of Generating Focal Regions of Complex Configurations in Application to the Problems of Stimulation of Human Receptor Structures by Focused Ultrasound” Acoustical Physics, vol. 54, No. 2, pp. 269-278. |
Mingzhu Lu et al. (2006) Design and experiment of 256-element ultrasound phased array for noninvasive focused ultrasound surgery, Ultrasonics, vol. 44, Supplement, Dec. 22, 2006, pp. e325-e330. |
Gavrilov L R et al (2000) “A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery” Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on (vol. 47, Issue: 1), pp. 125-139. |
Pompei, F.J. (2002), “Sound from Ultrasound: The Parametric Array as an Audible Sound Source”, Massachusetts Institute of Technology (132 pages). |
Hasegawa, K. and Shinoda, H. (2013) “Aerial Display of Vibrotactile Sensation with High Spatial-Temporal Resolution using Large Aperture Airbourne Ultrasound Phased Array”, University of Tokyo (6 pages). |
Hoshi T et al, “Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound”, IEEE Transactions on Haptics, IEEE, USA, (Jul. 1, 2010), vol. 3, No. 3, ISSN 1939-1412, pp. 155-165. |
Yoshino, K. and Shinoda, H. (2013), “Visio Acoustic Screen for Contactless Touch Interface with Tactile Sensation”, University of Tokyo (5 pages). |
Kamakura, T. and Aoki, K. (2006) “A Highly Directional Audio System using a Parametric Array in Air” WESPAC IX 2006 (8 pages). |
Alexander, J. et al. (2011), Adding Haptic Feedback to Mobile TV (6 pages). |
Tom Carter et al, “UltraHaptics: Multi-Point Mid-Air Haptic Feedback for Touch Surfaces”, Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST '13, New York, New York, USA, (Jan. 1, 2013), ISBN 978-1-45-032268-3, pp. 505-514. |
Search Report for GB1308274.8 dated Nov. 11, 2013. (2 pages). |
Iwamoto T et al, “Two-dimensional Scanning Tactile Display using Ultrasound Radiation Pressure”, Haptic Interfaces for Virtual Environment and Teleoperator Systems, 20 06 14th Symposium on Alexandria, VA, USA Mar. 25-26, 2006, Piscataway, NJ, USA,IEEE, (Mar. 25, 2006), ISBN 978-1-4244-0226-7, pp. 57-61. |
Iwamoto et al. (2008), Non-contact Method for Producing Tactile Sensation Using Airborne Ultrasound, EuroHaptics, pp. 504-513. |
Search report for PCT/GB2015/052578 dated Oct. 26, 2015 (12 pages). |
Marzo et al., Holographic acoustic elements for manipulation of levitated objects, Nature Communications DOI: l0.1038/ncomms9661 (2015) (7 pages). |
Search report for PCT/GB2014/051319 dated Dec. 8, 2014 (4 pages). |
Search Report for GB1415923.0 dated Mar. 11, 2015. (1 page). |
Marshall, M ., Carter, T., Alexander, J., & Subramanian, S. (2012). Ultratangibles: creating movable tangible objects on interactive tables. In Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems, (pp. 2185-2188). |
Obrist et al., Talking about Tactile Experiences, CHI 2013, Apr. 27-May 2, 2013 (10 pages). |
Benjamin Long et al, “Rendering volumetric haptic shapes in mid-air using ultrasound”, ACM Transactions on Graphics (TOG), ACM, US, (Nov. 11, 2014), vol. 33, No. 6, ISSN 0730-0301, pp. 1-10. |
Freeman et al., Tactile Feedback for Above-Device Gesture Interfaces: Adding Touch to Touchless Interactions ICMI'14, Nov. 12-16, 2014, Istanbul, Turkey (8 pages). |
Obrist et al., Emotions Mediated Through Mid-Air Haptics, CHI 2015, Apr. 18-23, 2015, Seoul, Republic of Korea. (10 pages). |
Wilson et al., Perception of Ultrasonic Haptic Feedback on the Hand: Localisation and Apparent Motion, CHI 2014, Apr. 26-May 1, 2014, Toronto, Ontario, Canada. (10 pages). |
Phys.org, Touchable Hologram Becomes Reality, Aug. 6, 2009, by Lisa Zyga (2 pages). |
Iwamoto et al., Airborne Ultrasound Tactile Display: Supplement, The University of Tokyo 2008 (2 pages). |
Hoshi, T., Development of Aerial-Input and Aerial-Tactile-Feedback System, IEEE World Haptics Conference 2011, p. 569-573. |
EPSRC Grant summary EP/J004448/1 (2011) (1 page). |
Hoshi, T., Handwriting Transmission System Using Noncontact Tactile Display, IEEE Haptics Symposium 2012 pp. 399-401. |
Takahashi, M. et al., Large Aperture Airborne Ultrasound Tactile Display Using Distributed Array Units, SICE Annual Conference 2010 p. 359-62. |
Hoshi, T., Non-contact Tactile Sensation Synthesized by Ultrasound Transducers, Third Joint Euro haptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems 2009 (5 pages). |
Tom Nelligan and Dan Kass, Intro to Ultrasonic Phased Array (date unknown) (8 pages). |
Light, E.D., Progress in Two Dimensional Arrays for Real Time Volumetric Imaging, 1998 (17 pages). |
Casper et al., Realtime Control of Multiple-focus Phased Array Heating Patterns Based on Noninvasive Ultrasound Thermography, IEEE Trans Biomed Eng. Jan. 2012; 59(1): 95-105. |
Hoshi, T., Touchable Holography, SIGGRAPH 2009, New Orleans, Louisiana, Aug. 3-7, 2009. (1 page). |
Sylvia Gebhardt, Ultrasonic Transducer Arrays for Particle Manipulation (date unknown) (2 pages). |
Search report and Written Opinion of ISA for PCT/GB2015/050417 dated Jul. 8, 2016 (20 pages). |
Search report and Written Opinion of ISA for PCT/GB2015/050421 dated Jul. 8, 2016 (15 pages). |
Search report and Written Opinion of ISA for PCT/GB2017/050012 dated Jun. 8, 2017. |
Oscar Martínez-Graullera et al, “2D array design based on Fermat spiral for ultrasound imaging”, Ultrasonics, (Feb. 1, 2010), vol. 50, No. 2, ISSN 0041-624X, pp. 280-289, XP055210119. |
Search Report for PCT/GB2017/052332 dated Oct. 10, 2017 (12 pages). |
A. Sand, Head-Mounted Display with Mid-Air Tactile Feedback, Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology, Nov. 13-15, 2015 (8 pages). |
E. Bok, Metasurface for Water-to-Air Sound Transmission, Physical Review Letters 120, 044302 (2018) (6 pages). |
K. Jia, Dynamic properties of micro-particles in ultrasonic transportation using phase-controlled standing waves, J. Applied Physics 116, n. 16 (2014) (12 pages). |
Marco A B Andrade et al, “Matrix method for acoustic levitation simulation”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, IEEE, US, (Aug. 1, 2011), vol. 58, No. 8, ISSN 0885-3010, pp. 1674-1683. |
M. Barmatz et al, “Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields”, The Journal of the Acoustical Society of America, New York, NY, US, (Mar. 1, 1985), vol. 77, No. 3, pp. 928-945, XP055389249. |
M. Toda, New Type of Matching Layer for Air-Coupled Ultrasonic Transducers, IEEE Transactions on Ultrasonics, Ferroelecthcs, and Frequency Control, vol. 49, No. 7, Jul. 2002 (8 pages). |
Search Report for PCT/GB/2017/053729 dated Mar. 15, 2018 (16 pages). |
Search Report for PCT/GB/2017/053880 dated Mar. 21, 2018. (13 pages). |
Xin Cheng et al, “Computation of the acoustic radiation force on a sphere based on the 3-D FDTD method”, Piezoelectricity, Acoustic Waves and Device Applications (Spawda), 2010 Symposium on, IEEE, (Dec. 10, 2010), ISBN 978-1-4244-9822-2, pp. 236-239. |
Yang Ling et al, “Phase-coded approach for controllable generation of acoustical vortices”, Journal of Applied Physics, American Institute of Physics, US, vol. 113, No. 15, ISSN 0021-8979, (Apr. 21, 2013), pp. 154904-154904. |
International Preliminary Report on Patentability and Written Opinion issued in corresponding PCT/US2017/035009, dated Dec. 4, 2018, 8 pages. |
Xu Hongyi et al, “6-DoF Haptic Rendering Using Continuous Collision Detection between Points and Signed Distance Fields”, IEEE Transactions on Haptics, IEEE, USA, vol. 10, No. 2, ISSN 1939-1412, (Sep. 27, 2016), pp. 151-161, (Jun. 16, 2017). |
Péter Tamás Kovács et al, “Tangible Holographic 3D Objects with Virtual Touch”, Interactive Tabletops & Surfaces, ACM, 2 Penn Plaza, Suite 701 New York NY 10121-0701 USA, (Nov. 15, 2015), ISBN 978-1-4503-3899-8, pp. 319-324. |
Search report for PCT/US2018/028966 dated Jul. 13, 2018 (43 pages). |
Search report for PCT/GB2018/051061 dated Sep. 26, 2018 (17 pages). |
EPO Office Action for EP16708440.9 dated Sep. 12, 2018 (7 pages). |
Notice of Allowance dated Dec. 19, 2018 for U.S. Appl. No. 15/665,629 (pp. 1-9). |
Notice of Allowance dated Dec. 21, 2018 for U.S. Appl. No. 15/983,864 (pp. 1-7). |
Ex Parte Quayle Action dated Dec. 28, 2018 for U.S. Appl. No. 15/966,213 (pp. 1-7). |
Notice of Allowance dated Feb. 7, 2019 for U.S. Appl. No. 15/851,214 (pp. 1-7). |
Office Action dated Feb. 20, 2019 for U.S. Appl. No. 15/623,516 (pp. 1-8). |
Lang, Robert, “3D Time-of-Flight Distance Measurement with Custom Solid-State Image Sensors in CMOS/CCD—Technology”, A dissertation submitted to Department of EE and CS at Univ. of Siegen, dated Jun. 28, 2000, 223 pages. |
Gokturk, et al., “A Time-of-Flight Depth Sensor-System Description, Issues and Solutions,” Published in: 2004 Conference on Computer Vision and Pattern Recognition Workshop, Date of Conference: Jun. 27-Jul. 2, 2004, 9 pages. |
Li, Larry, “Time-of-Flight Camera—An Introduction,” Texas Instruments, Technical White Paper, SLOA190B—Jan. 2014 Revised May 2014, 10 pages. |
Teixeira, et al., “A brief introduction to Microsoft's Kinect Sensor,” Kinect, 26 pages., retrieved Nov. 2018. |
Zeng, Wejun, “Microsoft Kinect Sensor and Its Effect,” IEEE Multimedia, Apr.-Jun. 2012, 7 pages. |
Kolb, et al., “Time-of-Flight Cameras in Computer Graphics,” Computer Graphics forum, vol. 29 (2010), No. 1, pp. 141-159. |
Iddan, et al., “3D Imaging in the Studio (And Elsewhwere . . . ” Apr. 2001, 3DV systems Ltd., Yokneam, Isreal, www.3dvsystems.com.il, 9 pages. |
Krim, et al., “Two Decades of Array Signal Processing Research—The Parametric Approach”, IEEE Signal Processing Magazine, Jul. 1996, pp. 67-94. |
Schmidt, Ralph, “Multiple Emitter Location and Signal Parameter Estimation” IEEE Transactions of Antenna and Propagation, vol. AP-34, No. 3, Mar. 1986, pp. 276-280. |
Meijster, A., et al., “A General Algorithm for Computing Distance Transforms in Linear Time,” Mathematical Morphology and its Applications to Image and Signal Processing, 2002, pp. 331-340. |
Colgan, A., “How Does the Leap Motion Controller Work?” Leap Motion, Aug. 9, 2014, 10 pages. |
Definition of “Interferometry” according to Wikipedia, 25 pages., Retrieved Nov. 2018. |
Definition of “Multilateration” according to Wikipedia, 7 pages., Retrieved Nov. 2018. |
Definition of “Trilateration” according to Wikipedia, 2 pages., Retrieved Nov. 2018. |
Takahashi Dean: “Ultrahaptics shows off sense of touch in virtual reality”, Dec. 10, 2016 (Dec. 10, 2016), XP055556416, Retrieved from the Internet: URL: https://venturebeat.com/2016/12/10/ultrahaptics-shows-off-sense-of-touch-in-virtual-reality/ [retrieved on Feb. 13, 2019] 4 pages. |
PCT Partial International Search Report for Application No. PCT/GB2018/053404 dated Feb. 25, 2019, 13 pages. |
Aoki et al., Sound location of stero reproduction with parametric loudspeakers, Applied Acoustics 73 (2012) 1289-1295 (7 pages). |
Bajard et al., BKM: A New Hardware Algorithm for Complex Elementary Functions, 8092 IEEE Transactions on Computers 43 (1994) (9 pages). |
Bajard et al., Evaluation of Complex Elementary Functions / A New Version of BKM, SPIE Conference on Advanced Signal Processing, Jul. 1999 (8 pages). |
Bortoff et al., Pseudolinearization of the Acrobot using Spline Functions, IEEE Proceedings of the 31st Conference on Decision and Control, Sep. 10, 1992 (6 pages). |
Corrected Notice of Allowability dated Jan. 14, 2021 for U.S. Appl. No. 15/897,804 (pp. 1-2). |
ISR and WO for PCT/GB2020/052544 (Dec. 18, 2020) (14 pages). |
ISR and WO for PCT/GB2020/052545 (Jan. 27, 2021) (14 pages). |
ISR and WO for PCT/GB2020/052829 (Feb. 1, 2021) (15 pages). |
Office Action dated Dec. 7, 2020 for U.S. Appl. No. 16/563,608 (pp. 1-8). |
Office Action dated Mar. 11, 2021 for U.S. Appl. No. 16/228,767 (pp. 1-23). |
Search Report by EPO for EP 17748466 dated Jan. 13, 2021 (16 pages). |
Wang et al., Device-Free Gesture Tracking Using Acoustic Signals, ACM MobiCom '16, pp. 82-94 (13 pages). |
EPO Communication for Application 18 811 906.9 (dated Nov. 29, 2021) (15 pages). |
EPO Examination Report 17 748 4656.4 (dated Jan. 12, 2021) (16 pages). |
Gareth Young et al.. Designing Mid-Air Haptic Gesture Controlled User Interfaces for Cars, PACM on Human-Computer Interactions, Jun. 2020 (24 pages). |
ISR and WO for PCT/GB2020/052829 (dated Feb. 10, 2021) (15 pages). |
ISR and WO for PCT/GB2021/052415 (dated Dec. 22, 2021) (16 pages). |
Mohamed Yacine Tsalamlal, Non-Intrusive Haptic Interfaces: State-of-the Art Survey, HAID 2013, LNCS 7989, pp. 1-9, 2013. |
Office Action (Non-Final Rejection) dated Jan. 21, 2022 for U.S. Appl. No. 17/068,834 (pp. 1-12). |
Office Action (Non-Final Rejection) dated Jan. 24, 2022 for U.S. Appl. No. 16/228,767 (pp. 1-22). |
Office Action (Non-Final Rejection) dated Mar. 4, 2022 for U.S. Appl. No. 16/404,660 (pp. 1-5). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Jan. 18, 2022 for U.S. Appl. No. 16/899,720 (pp. 1-2). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Feb. 11, 2022 for U.S. Appl. No. 16/228,760 (pp. 1-8). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Feb. 28, 2022 for U.S. Appl. No. 17/068,825 (pp. 1-7). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Mar. 7, 2022 for U.S. Appl. No. 16/600,496 (pp. 1-5). |
Corrected Notice of Allowability dated Oct. 31, 2019 for U.S. Appl. No. 15/623,516 (pp. 1-2). |
Extended European Search Report for Application No. EP19169929.7, dated Aug. 6, 2019, 7 pages. |
International Search Report and Written Opinion for Application No. PCT/GB2019/050969, dated Jun. 13, 2019, 15 pages. |
Office Action dated Aug. 22, 2019 for U.S. Appl. No. 16/160,862 (pp. 1-5). |
Office Action dated Oct. 17, 2019 for U.S. Appl. No. 15/897,804 (pp. 1-10). |
Office Action dated Oct. 31, 2019 for U.S. Appl. No. 15/671,107 (pp. 1-6). |
Office Action dated Oct. 7, 2019 for U.S. Appl. No. 15/396,851 (pp. 1-9). |
Bożena Smagowska & Małgorzata Pawlaczyk-Łuszczyńska (2013) Effects of Ultrasonic Noise on the Human Body—A Bibliographic Review, International Journal of Occupational Safety and Ergonomics, 19:2, 195-202. |
Georgiou et al., Haptic In-Vehicle Gesture Controls, Adjunct Proceedings of the 9th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI '17), Sep. 24-27, 2017 (6 pages). |
Imaginary Phone: Learning Imaginary Interfaces by Transferring Spatial Memory From a Familiar Device Sean Gustafson, Christian Holz and Patrick Baudisch. UIST 2011. (10 pages). |
ISR and WO for PCT/GB2020/050013 (dated Jul. 13, 2020) (20 pages). |
ISR and WO for PCT/GB2020/050926 (dated Jun. 2, 2020) (16 pages). |
Large et al.,Feel the noise: Mid-air ultrasound haptics as a novel human-vehicle interaction paradigm, Applied Ergonomics (2019) (10 pages). |
Mueller, GANerated Hands for Real-Time 3D Hand Tracking from Monocular RGB, Eye in-Painting with Exemplar Generative Adverserial Networks, pp. 49-59 (Jun. 1, 2018). |
Notice of Allowance dated Oct. 16, 2020 for U.S. Appl. No. 16/159,695 (pp. 1-7). |
Notice of Allowance dated Oct. 30, 2020 for U.S. Appl. No. 15/839,184 (pp. 1-9). |
Notice of Allowance dated Oct. 6, 2020 for U.S. Appl. No. 16/699,629 (pp. 1-8). |
Notice of Allowance dated Sep. 30, 2020 for U.S. Appl. No. 16/401,148 (pp. 1-10). |
Notice of Allowances dated Oct. 1, 2020 for U.S. Appl. No. 15/897,804 (pp. 1-9). |
Office Action dated Jul. 9, 2020 for U.S. Appl. No. 16/228,760 (pp. 1-17). |
Office Action dated Jun. 19, 2020 for U.S. Appl. No. 16/699,629 (pp. 1-12). |
Office Action dated Jun. 25, 2020 for U.S. Appl. No. 16/228,767 (pp. 1-27). |
Office Action dated Sep. 18, 2020 for U.S. Appl. No. 15/396,851 (pp. 1-14). |
Office Action dated Sep. 21, 2020 for U.S. Appl. No. 16/198,959 (pp. 1-17). |
Rocchesso et al.,Accessing and Selecting Menu Items by In-Air Touch, ACM CHItaly'19, Sep. 23-25, 2019, Padova, Italy (9 pages). |
Seungryul, Pushing the Envelope for RGB-based Dense 3D Hand Pose Estimation for RGB-based Desne 3D Hand Pose Estimation via Neural Rendering, arXiv:1904.04196v2 [cs.CV] Apr. 9, 2019 (5 pages). |
Shakeri, G., Williamson, J. H. and Brewster, S. (2018) May the Force Be with You: Ultrasound Haptic Feedback for Mid-Air Gesture Interaction in Cars. In: 10th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI 2018) (11 pages). |
Anonymous: “How does Ultrahaptics technology work?—Ultrahaptics Developer Information”, Jul. 31, 2018 (Jul. 31, 2018), XP055839320, Retrieved from the Internet: URL:https://developer.ultrahaptics.com/knowledgebase/haptics-overview/ [retrieved on Sep. 8, 2021]. |
Corrected Notice of Allowability dated Nov. 24, 2021 for U.S. Appl. No. 16/600,500 (pp. 1-5). |
EPO 21186570.4 Extended Search Report dated Oct. 29, 2021. |
EPO Application 18 725 358.8 Examination Report dated Sep. 22, 2021. |
EPO Examination Search Report 17 702 910.5 (dated Jun. 23, 2021). |
International Search Report and Written Opinion for App. No. PCT/GB2021/051590, dated Nov. 11, 2021, 20 pages. |
Notice of Allowance dated Nov. 5, 2021 for U.S. Appl. No. 16/899,720 (pp. 1-9). |
Office Action (Non-Final Rejection) dated Dec. 20, 2021 for U.S. Appl. No. 17/195,795 (pp. 1-7). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Dec. 14, 2021 for U.S. Appl. No. 17/170,841 (pp. 1-8). |
Office Action dated Oct. 29, 2021 for U.S. Appl. No. 16/198,959 (pp. 1-7). |
International Preliminary Report on Patentability for Application No. PCT/EP2017/069569 dated Feb. 5, 2019, 11 pages. |
Japanese Office Action (with English language translation) for Application No. 2017-514569, dated Mar. 31, 3019, 10 pages. |
Notice of Allowance dated May 30, 2019 for U.S. Appl. No. 15/966,213 (pp. 1-9). |
Office Action dated Apr. 18, 2019 for U.S. Appl. No. 16/296,127 (pp. 1-6). |
Office Action dated Apr. 4, 2019 for U.S. Appl. No. 15/897,804 (pp. 1-10). |
Office Action dated May 16, 2019 for U.S. Appl. No. 15/396,851 (pp. 1-7). |
Steve Guest et al., “Audiotactile interactions in roughness perception”, Exp. Brain Res (2002) 146:161-171, DOI 10.1007/s00221-002-1164-z, Accepted: May 16, 2002/Published online: Jul. 26, 2002, Springer-Verlag 2002, (11 pages). |
Written Opinion for Application No. PCT/GB2017/052332, 4 pages. |
A. B. Vallbo, Receptive field characteristics of tactile units with myelinated afferents in hairy skin of human subjects, Journal of Physiology (1995), 483.3, pp. 783-795. |
Amanda Zimmerman, The gentle touch receptors of mammalian skin, Science, Nov. 21, 2014, vol. 346 Issue 6212, p. 950. |
Corrected Notice of Allowability dated Aug. 9, 2021 for U.S. Appl. No. 15/396,851 (pp. 1-6). |
Henrik Bruus, Acoustofluidics 2: Perturbation theory and ultrasound resonance modes, Lab Chip, 2012, 12, 20-28. |
Hyunjae Gil, Whiskers: Exploring the Use of Ultrasonic Haptic Cues on the Face, CHI 2018, Apr. 21-26, 2018, Montréal, QC, Canada. |
India Morrison, The skin as a social organ, Exp Brain Res (2010) 204:305-314. |
JonasChatel-Goldman, Touch increases autonomic coupling between romantic partners, Frontiers in Behavioral Neuroscience Mar. 2014, vol. 8, Article 95. |
Kai Tsumoto, Presentation of Tactile Pleasantness Using Airborne Ultrasound, 2021 IEEE World Haptics Conference (WHC) Jul. 6-9, 2021. Montreal, Canada. |
Keisuke Hasegawa, Electronically steerable ultrasound-driven long narrow airstream, Applied Physics Letters 111, 064104 (2017). |
Keisuke Hasegawa, Midair Ultrasound Fragrance Rendering, IEEE Transactions on Visualization and Computer Graphics, vol. 24, No. 4, Apr. 2018 1477. |
Keisuke Hasegawa,,Curved acceleration path of ultrasound-driven airflow, J. Appl. Phys. 125, 054902 (2019). |
Line S Loken, Coding of pleasant touch by unmyelinated afferents in humans, Nature Neuroscience vol. 12 [ No. 5 [ May 2009 547. |
Mariana von Mohr, The soothing function of touch: affective touch reduces feelings of social exclusion, Scientific Reports, 7: 13516, Oct. 18, 2017. |
Mitsuru Nakajima, Remotely Displaying Cooling Sensation via Ultrasound-Driven Air Flow, Haptics Symposium 2018, San Francisco, USA p. 340. |
Mohamed Yacine Tsalamlal, Affective Communication through Air Jet Stimulation: Evidence from Event-Related Potentials, International Journal of Human-Computer Interaction 2018. |
Notice of Allowance dated Jul. 22, 2021 for U.S. Appl. No. 16/600,500 (pp. 1-9). |
Office Action dated Aug. 10, 2021 for U.S. Appl. No. 16/564,016 (pp. 1-14). |
Office Action dated Aug. 19, 2021 for U.S. Appl. No. 17/170,841 (pp. 1-9). |
Office Action dated Aug. 9, 2021 for U.S. Appl. No. 17/068,825 (pp. 1-9). |
Office Action dated Sep. 16, 2021 for U.S. Appl. No. 16/600,496 (pp. 1-8). |
Office Action dated Sep. 24, 2021 for U.S. Appl. No. 17/080,840 (pp. 1-9). |
Rochelle Ackerley, Human C-Tactile Afferents Are Tuned to the Temperature of a Skin-Stroking Caress, J. Neurosci., Feb. 19, 2014, 34(8):2879-2883. |
Ryoko Takahashi, Tactile Stimulation by Repetitive Lateral Movement of Midair Ultrasound Focus, Journal of Latex Class Files, vol. 14, No. 8, Aug. 2015. |
Stanley J. Bolanowski, Hairy Skin: Psychophysical Channels and Their Physiological Substrates, Somatosensory and Motor Research, vol. 11. No. 3, 1994, pp. 279-290. |
Stefan G. Lechner, Hairy Sensation, Physiology 28: 142-150, 2013. |
Supplemental Notice of Allowability dated Jul. 28, 2021 for U.S. Appl. No. 16/563,608 (pp. 1-2). |
Supplemental Notice of Allowability dated Jul. 28, 2021 for U.S. Appl. No. 17/092,333 (pp. 1-2). |
Takaaki Kamigaki, Noncontact Thermal and Vibrotactile Display Using Focused Airborne Ultrasound, EuroHaptics 2020, LNCS 12272, pp. 271-278, 2020. |
Tomoo Kamakura, Acoustic streaming induced in focused Gaussian beams, J. Acoust. Soc. Am. 97(5), Pt. 1, May 1995 p. 2740. |
Uta Sailer, How Sensory and Affective Attributes Describe Touch Targeting C-Tactile Fibers, Experimental Psychology (2020), 67(4), 224-236. |
Office Action (Non-Final Rejection) dated Mar. 15, 2022 for U.S. Appl. No. 16/144,474 (pp. 1-13). |
Office Action (Final Rejection) dated Mar. 14, 2022 for U.S. Appl. No. 16/564,016 (pp. 1-12). |
ISR & WO For PCT/GB2021/052946, 15 pages. |
Communication Pursuant to Article 94(3) EPC for EP 19723179.8 (dated Feb. 15, 2022), 10 pages. |
Office Action (Non-Final Rejection) dated May 2, 2022 for U.S. Appl. No. 17/068,831 (pp. 1-10). |
EPO ISR and WO for PCT/GB2022/050204 (dated Apr. 7, 2022) (15 pages). |
IN 202047026493 Office Action dated Mar. 8, 2022, 6 pages. |
https://radiopaedia.org/articles/physical-principles-of-ultrasound-1?lang=gb (Accessed May 29, 2022). |
Almusawi et al., “A new artificial neural network approach in solving inverse kinematics of robotic arm (denso vp6242).” Computational intelligence and neuroscience 2016 (2016). (Year: 2016). |
Azad et al., Deep domain adaptation under deep label scarcity. arXiv preprint arXiv:1809.08097 (2018) (Year: 2018). |
Beranek, L., & Mellow, T. (2019). Acoustics: Sound Fields, Transducers and Vibration. Academic Press. |
Boureau et al.,“A theoretical analysis of feature pooling in visual recognition.” In Proceedings of the 27th international conference on machine learning (ICML-10), pp. 111-118. 2010. (Year: 2010). |
Bybi, A., Grondel, S., Mzerd, A., Granger, C., Garoum, M., & Assaad, J. (2019). Investigation of cross-coupling in piezoelectric transducer arrays and correction. International Journal of Engineering and Technology Innovation, 9(4), 287. |
Certon, D., Felix, N., Hue, P. T. H., Patat, F., & Lethiecq, M. (Oct. 1999). Evaluation of laser probe performances for measuring cross-coupling in 1-3 piezocomposite arrays. In 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No. 99CH37027) (vol. 2, pp. 1091-1094). |
Certon, D., Felix, N., Lacaze, E., Teston, F., & Patat, F. (2001). Investigation of cross-coupling in 1-3 piezocomposite arrays. ieee transactions on ultrasonics, ferroelectrics, and frequency control, 48(1), 85-92. |
Chang Suk Lee et al., An electrically switchable visible to infra-red dual frequency cholesteric liquid crystal light shutter, J. Mater. Chem. C, 2018, 6, 4243 (7 pages). |
Der et al., Inverse kinematics for reduced deformable models. ACM Transactions on graphics (TOG) 25, No. 3 (2006): 1174-1179 (Year: 2006). |
DeSilets, C. S. (1978). Transducer arrays suitable for acoustic imaging (No. GL-2833). Stanford Univ CA Edward L Ginzton Lab of Physics. |
Duka, “Neural network based inverse kinematics solution for trajectory tracking of a robotic arm.” Procedia Technology 12 (2014) 20-27. (Year: 2014). |
Henneberg, J., Geriach, A., Storck, H., Cebulla, H., & Marburg, S. (2018). Reducing mechanical cross-coupling in phased array transducers using stop band material as backing. Journal of Sound and Vibration, 424, 352-364. |
Office Action (Non-Final Rejection) dated May 25, 2022 for U.S. Appl. No. 16/843,281 (pp. 1-28). |
Office Action (Non-Final Rejection) dated Jun. 9, 2022 for U.S. Appl. No. 17/080,840 (pp. 1-9). |
Office Action (Non-Final Rejection) dated Jun. 27, 2022 for U.S. Appl. No. 16/198,959 (pp. 1-17). |
Office Action (Non-Final Rejection) dated Jun. 27, 2022 for U.S. Appl. No. 16/734,479 (pp. 1-13). |
Oikonomidis et al., “Efficient model-based 3D tracking of hand articulations using Kinect.” In BmVC, vol. 1, No. 2, p. 3. 2011. (Year: 2011). |
Patricio Rodrigues, E., Francisco de Oliveira, T., Yassunori Matuda, M., & Buiochi, F. (Sep. 2019). Design and Construction of a 2-D Phased Array Ultrasonic Transducer for Coupling in Water. In Inter-Noise and Noise-Con Congress and Conference Proceedings (vol. 259, No. 4, pp. 5720-5731). Institute of Noise Control Engineering. |
Seo et al., “Improved numerical inverse kinematics for human pose estimation,” Opt. Eng. 50(3 037001 (Mar. 1, 2011) https://doi.org/10.1117/1.3549255 (Year: 2011). |
Walter, S., Nieweglowski, K., Rebenklau, L., Wolter, K. J., Lamek, B., Schubert, F., . . . & Meyendorf, N. (May 2008). Manufacturing and electrical interconnection of piezoelectric 1-3 composite materials for phased array ultrasonic transducers. In 2008 31st International Spring Seminar on Electronics Technology (pp. 255-260). |
Wang et al., Few-shot adaptive faster r-cnn. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7173-7182. 2019. (Year: 2019). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Aug. 24, 2022 for U.S. Appl. No. 16/198,959 (pp. 1-6). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Aug. 31, 2022 for U.S. Appl. No. 16/198,959 (pp. 1-2). |
Office Action (Non-Final Rejection) dated Aug. 29, 2022 for U.S. Appl. No. 16/995,819 (pp. 1-6). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Sep. 7, 2022 for U.S. Appl. No. 17/068,834 (pp. 1-8). |
ISR & WO for PCT/GB2022/051388 (dated Aug. 30, 2022) (15 pages). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Sep. 12, 2022 for U.S. Appl. No. 16/734,479 (pp. 1-7). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Sep. 8, 2022 for U.S. Appl. No. 17/176,899 (pp. 1-8). |
Office Action (Final Rejection) dated Sep. 16, 2022 for U.S. Appl. No. 16/404,660 (pp. 1-6). |
Office Action (Non-Final Rejection) dated Sep. 21, 2022 for U.S. Appl. No. 17/721,315 (pp. 1-10). |
Number | Date | Country | |
---|---|---|---|
20190197842 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
62777770 | Dec 2018 | US | |
62609429 | Dec 2017 | US |