The present invention relates generally to pumping and spraying systems and, more particularly, to pressure relief valves suitable for use in such pumping and spraying systems.
Peristaltic pumps, piston pumps and double-diaphragm pumps are commonly used to pump highly viscous materials. The pumps transport and inject under pressure various materials ranging from fluid slurries to heavy sanded grouts, such as cement slurries, sanded cement mixes, bentonite mixes (with or without sand), repair mortars, high strength non-shrink grouts and self-leveling products. Common characteristics of these materials are that they are often fluid or semi-fluid, have a relatively high specific gravity and are often granular in composition (all these types of materials are referenced herein as a “fluid” or as “fluids”). Generally, such highly viscous materials can be considered to be materials that would be resistant to pouring from a pail. When the material is moving freely out of the pump and through hoses, the material generally maintains its integrity. However, under pressure the materials tend to settle out of suspension and agglomerate within the hose and the discharge portion of the pump. When this occurs, the pressure within the entire discharge system can increase to the maximum pump capacity.
In order to clear the agglomerated material, an operator will customarily actuate a manually operated pressure relief valve to relieve system pressure so the hoses can safely be disconnected and cleaned. Unfortunately, due to the geometry of these types of valves, typically lever-actuated butterfly or ball valves, there is usually a considerable distance between the flow line and the actual valve mechanism that forms a dead space. The dead space can become plugged with the agglomerated material rendering the valve inoperable. In some circumstances the material can cure or harden, or otherwise generally solidify, within the dead space rendering the valve useless and frequently necessitating its replacement. A ball-type relief valve has been designed to reduce dead space, as is described in U.S. Pat. No. 7,644,904.
A relief valve comprises a housing and a valve member moveable relative to an opening into the housing to allow or prevent flow from a flow path adjacent the relief valve into and through the housing. The relief valve is configured to minimize, and in many examples, essentially eliminate, a cavity between the housing opening and the adjacent flow path. In some example configurations, the relief valve includes a cap which couples to the housing. In many examples, the moveable valve member is longitudinally moveable, such as in the form of a plunger configured to reciprocate within the housing. In one such example configuration, the housing extends between an inlet end and an outlet end, and includes a valve seat disposed proximate the inlet end, and a port disposed between the inlet end and the outlet end. The cap is connected to the housing at or near the outlet end. In some embodiments, the plunger extends through the cap and into the housing to the inlet end to selectively engage the valve seat.
In this description, references to “one embodiment” or “an embodiment,” or to “one example” or “an example” in this description are not intended necessarily to refer to the same embodiment or example; however, neither are such embodiments mutually exclusive, unless so stated or as will be readily apparent to those of ordinary skill in the art having the benefit of this disclosure. Thus, a variety of combinations and/or integrations of the embodiments and examples described herein may be included, as well as further embodiments and examples as defined within the scope of all claims based on this disclosure, as well as all legal equivalents of such claims.
In order to reduce dead space within the T-fitting of the type depicted in
In the depicted example, relief valve 100 is connected to flow line 104 through a “T” fitting 120. In some embodiments, relief valve 100 will be configured to engage and be retained by a conventional industry standard, “off-the-shelf,” T-fitting, as opposed to, for example, a special function T-fitting configured specifically for housing the relief valve. Use of such special function T-fittings may in some cases complicate assembly and/or maintenance of the systems incorporating such fittings. By way of example only, for some systems that can benefit from use of the relief valve assemblies as described herein, female branch NPT fittings in accordance SAE standard SAE J514, are recognized as industry standard fillings; as are fittings further in accordance with SAE standards SAE 140427, SAE 140438, and SAE 140424. Additional recognized standards may be applicable to T-fittings for various applications, as will be apparent to persons skilled in the art.
As noted relative to
Thus, housing 106 is configured to place the valve seat 126, which defines an inlet to housing 106, immediately adjacent the primary flow path 130 through flow line 104. In one preferred example, housing 106 is configured to place the lowermost end of the housing, at which valve seat 126 is located, within +/− 0.15 inch of the adjacent surfaces 132, 134 defining primary flow path 130 immediately adjacent aperture 136 within neck 124, in which relief valve 102 is mounted.
Housing 106 may be connected to neck 124 by any suitable manner, such as through a threaded connection, as shown at 138, or a metallurgical connection (welding or brazing). A releasable connection, such as threaded coupling 138, is preferred for many applications. Housing 106 extends between an inlet end, at which valve seat 126 is disposed, and a second end. In the depicted embodiment, the second end is coupled with a cap 108, which accommodates a portion of longitudinally movable valve mechanism 102. Housing 106 includes an outlet port 128 between the inlet and second ends. Outlet port 128 may be coupled to an appropriate fitting to facilitate attachment to a return line (as indicated at 24 in the system drawing of
In the depicted example, the valve mechanism 102, in the form of plunger 110, extends through and mechanically engages cap 108. As shown, plunger 110 is threaded into cap 108 at a threaded engagement 140, such that a first end extends to selectively engage valve seat 126 at valve head 118, and a second end extends out of housing 106 and through cap 108. Thus, the second end of plunger 110 facilitates control of the position of plunger 110 (and thus control of the valve opening or closing) from outside of the housing 106. Seal 114 is positioned around plunger 110 to prevent material within relief valve 100 from bypassing plunger 110, and exiting from cap 108. In one embodiment, seal 114 comprises one or more U-cup seals disposed within a counter bore 142 around a bore 136 for plunger 110.
A lever 112 is connected to the second end of plunger 110 to provide a mechanical advantage in rotating plunger 110 in the threaded engagement with cap 108 to cause longitudinal movement of valve head 118 relative to housing 106. In one embodiment, lever 112 is inserted into a through-bore in plunger 110. As plunger 110 is rotated, valve head 118 translates longitudinally relative to valve seat 126. Valve head 118 and valve seat 126 are shaped to mate with each other in a closed state to form a seal that prevents material from within conduit portion 122 from entering housing 106. In an open state, material flows into housing 106 and exits at port 128 to relieve pressure in the pumping and spraying system.
In other configurations, the relief valve will not include a separate cap, and the valve member will directly engage housing 106. Such engagement may again be through a threaded coupling, as discussed relative to the depicted example. In other examples, the valve mechanism such that only a portion rotates relative to the housing (to achieve the longitudinal translation), while another part, such as the valve seat, will be restrained from rotating, and will move only longitudinally.
Relief valves relieve pressure from the pumping and spraying system if the system becomes blocked, or “packs out” material. Thus, without proper functioning of a relief valve, the whole system may become inoperable. Typically, relief valves are only flushed when they are actually operated or opened. If the relief valve is not flushed after each use, as is often the case when an operator does not remember to do so, it will become fouled and plugged and cannot be used the next time the system is operated.
Minimum cavity relief valve 100 prevents materials from agglomerating and/or curing within the pressure relief valve itself, thereby eliminating or substantially reducing the operability of the relief valve. Valve seat 126 is positioned in close proximity to conduit portion 122 to substantially eliminate any dead spaces between the primary flow path 130 of conduit portion 122 and valve seat 126. Thus, in selected embodiments, housing 106 is configured such that it extends through neck 124 to support valve seat 126 adjacent conduit portion 122. As such, there is no space for a problematic volume of material to remain in neck 124 below valve seat 126 when valve mechanism 102 is in a closed state.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
This application claims priority to U.S. Provisional Patent Application No. 61/890,229, entitled “ZERO CAVITY RELIEF VALVE,” filed on Oct. 12, 2013, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/060024 | 10/10/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61890229 | Oct 2013 | US |