This invention relates to wireless communication and, more particularly, to techniques for effective wireless communication in the presence of fading, co-channel interference, and other degradations.
Rapid growth in mobile computing and other wireless data services is inspiring many proposals for high speed data services in the range of 64-144 kbps for micro cellular wide area and high mobility applications and up to 2 Mbps for indoor applications. Research challenges include the development of efficient coding and modulation, and signal processing techniques to improve the quality and spectral efficiency of wireless communications and better techniques for sharing the limited spectrum among different high capacity users.
The physical limitation of the wireless channel presents a fundamental technical challenge for reliable communications. The channel is susceptible to time-varying noise, interference, and multipaths. Power and size limitations of the communications and computing device in a mobile handset constitute another major design consideration. Most personal communications and wireless services portables are meant to be carried in a briefcase and/or pocket and must, therefore, be small and lightweight. This translates to a low power requirement since small batteries must be used. However, many of the signal processing techniques which may be used for reliable communications and efficient spectral utilization demand significant processing power, precluding the use of low power devices. Continuing advances in VLSI and integrated circuit technology for low power applications will provide a partial solution to this problem. Still, placing most of the signal processing burden on fixed locations (base stations) with relatively larger power resources than the mobile units will, likely, continue to be the trend in wireless systems design.
Perhaps the single most important parameter in providing reliable communications over wireless channels is diversity. Diversity techniques which may be used include time, frequency, and space diversity
Previous work on transmit diversity can be classified into three broad categories: schemes using feedback, schemes with feedforward or training information but no feedback, and blind schemes. The third category (blind schemes) relies primarily on multiple transmit antennas combined with channel coding to provide diversity. An example of this approach is disclosed in the aforementioned copending application Ser. No. 09/074,224, 1998, titled “Transmitter Diversity Technique for Wireless Communications,” filed May 7.
Improved performance is attained in an illustrative arrangement where K synchronized terminal units that transmit on N antennas to a base station having M≧K antennas, by combining interference cancellation (IC) and maximum likelihood (ML) decoding. More specifically, space-time block coding is employed in transmitters that employ N transmit antennas each, and the signals are received in a receiver that employs M receiving antennas. In accordance with the processing disclosed herein, by exploiting the structure of the space-time block code, K−1 interfering transmitting units are cancelled at the receiver, regardless of the number of transmitting antennas, N, when decoding the signals transmitted by a given terminal unit. In another embodiment of the principles of this invention, signals of a first terminal unit are decoded first, and the resulting decoded signals are employed to cancel their contribution to the signals received at the base station antennas while decoding the signals of the remaining K−1 terminal units. The process is repeated among the remaining K−1 terminal units. That is, among the remaining K−1, signals of a first terminal unit is decoded first and the resulting decoded signals are employed to cancel their contribution to the signals received at the base station antennas while decoding the signals of the remaining K−2 terminal units, and so on. This procedure is repeated K times, each time starting with decoding signals of a particular terminal unit. This successive procedure will yield additional performance improvement.
Both zero-forcing (ZF) and minimum mean-squared error (MMSE) interference cancellation (IC) and maximum likelihood (ML) techniques are disclosed.
Single Transmitting Unit
Transmitting unit 10 may correspond to the transmitting circuitry in a terminal unit, while receiving unit 20 may correspond to the receiving circuitry in a base station. Terminal unit 30 is shown identical to terminal unit 10. It should be understood, of course, that each terminal unit has a receiving circuit, and the base station has a transmitting circuit. The terminal units are shown to have two antennas each. Receiving unit 20 is also shown to have two receiving antennas. Here, too, it should be kept in mind that, generally, any number, M≧2, of receiving antennas can be had. Particular advantage is realized when M≧K. Since the mathematical treatment below is couched in general matrix notations, the expressions are valid for any number K and/or M.
Considering terminal unit 10, the information source provides input symbols to element 13 which develops a block code. The symbols are divided into groups of two symbols each, and at a given symbol period, the two symbols in each group {c1,c2} are transmitted simultaneously from the two antennas. The signal transmitted from antenna 11 is c1 and the signal transmitted from antenna 12 is c2. In the next symbol period, the signal −c2* is transmitted from antenna 11 and the signal c1* is transmitted from antenna 12. The symbols are modulated prior to transmission with constellation mappers 14 and 15, followed by pulse shapers 16 and 17, respectively, in a conventional manner.
In receiver 20, signals are received by antennas 21 and 22 and are applied to detector 25.
In the mathematical development of the algorithms disclosed herein, it is assumed that the channel from each of the two transmit antennas remains fixed over two consecutive symbol periods. That is,
hi(nT)=hi((n+1)T), i=1,2. (1)
To ascertain the channel characteristics, the transmitter carries out a calibration session, during which pilot signals or tones are transmitted. The signals received during the calibration session are applied to channel estimator circuits 23 and 24, which are well known circuits, and the channel characteristics are thus obtained.
When only transmitter 10 is considered, the received signals at antenna 21 can be expressed as
r11=h11c1+h12c2+η1 (2)
r12=−h11c2*+h12c1*+η2 (3)
where r11 and r12 are the received signals over two consecutive symbol periods, h11 denotes the fading channel between transmit antenna 11 and receive antenna 21, h12 denotes channel between transmit antenna 12 and receive antenna 21, and η1 and η2 are noise terms, which are assumed to be complex Gaussian random variables with zero mean and power spectral density N0/2 per dimension. Defining the vectors r=[r11r12*]T, c=[c1c2]T, and η=[η1η2*]T, equations (2) and (3) can be rewritten in a matrix form as
r=H·c+η (4)
where the channel matrix H is defined as
The vector η is a complex Gaussian random vector with zero mean and covariance N0·I. Defining C as the set of all possible symbol-pairs c={c1,c2}, and assuming that all symbol pairs are equi-probable, it can be easily shown that the optimum maximum likelihood (ML) decoder selects from C the symbol-pair ĉ that minimizes the expression ∥r−H·ĉ∥2. This can be written as
It was shown by S. Alamouti in “Space Block Coding: A simple Transmitter Diversity Scheme for wireless Communications,” submitted to IEEE JSAC, September 1997 that the diversity order of the above space-time block code is equivalent to that of a two branch maximal ratio receive combining (MRRC). Because of the orthogonality of the matrix H, Alamouti also showed that this decoding rule decomposed into two separate decoding rules for c1 and c2. The uncertainty, Δc, of the decoded symbols ĉ is defined as
Δc=∥r−H·ĉ∥2. (7)
It should be noted that the above analysis addresses only receive antenna 21. When receiver 20 uses both antennas, i.e., antennas 21 and 22, two received signal vectors r1 and r2 can be defined for antenna 21 and 22, respectively, as
r1=H1·c+η1 (8)
r2=H2·c+η2 (9)
where H1 and H2 are the channel matrices to receive antennas 21 and 22, respectively, and η1 and η2 are the corresponding noise vectors. That is,
where h21 denotes the channel between transmit antenna 12 and receive antenna 22, and h22 denotes the channel between transmit antenna 11 and receive antenna 22. In this case, the ML decoding rule is
and the uncertainty of the decoded symbols is defined as
Δc=∥r1−H1·ĉ∥2+∥r2−H2·ĉ∥2. (11)
As before, both the matrices H1 and H2 are orthogonal matrices and hence the above decoding rule also decomposes to two separate decoding rules for c1 and c2. Note that the rate of transmission (of information symbols) in the space-time block coding scheme is 1
Interference Cancellation and ML Decoding: BASIC CASE
In the notation below, g11 denotes the fading channel between transmit antenna 31 and receive antenna 21, g12 denotes the channel between antenna 31 and antenna 21, g21 denotes the channel between antenna 32 and antenna 22, and g22 denotes the channel between antenna 32 and antenna 22. Also, {c1,c2} and {s1,s2} denote the two symbols transmitted from terminal units 10 and 30, respectively.
At receiver 20, the received signals over two consecutive symbol periods at receive antenna 21, r11 and r12, are
r11=h11c1+h12c2+g11s1+g12s2+η11 (12)
r12=−h11c2*+h12c1*−g11s2*+g12s1*+η12 (13)
Defining r1=[r11r12*]T, c=[c1c2]T, s=[s1s2]T, and n1=[η11η12]T equations (12) and (13) can be rewritten in matrix form as
r1=H1·c+G1·s+n1 (14)
where the channel matrices H1 and G1 between the transmitter units 10 and 30 and receive antenna 21 are given by
The vector n1 is a complex Gaussian random vector with zero mean and covariance N0·I. Similarly, the received signals over two consecutive symbol periods at receive antenna 22, r21 and r22 are
r21=h21c1+h22c2+g21s1+g22s2+η21 (16)
r22=−h21c2*+h22c1*−g21s2*+g22s1*+η22 (17)
In a similar fashion, defining r2=[r21r22*]T and n2=[η21η22*]T equations (16) and (17) can be rewritten as
r2=H2·c+G2·s+n2 (18)
where the channel matrices H2 and G2 between transmitter units 10 and 30 and antenna 22 are given by
Equations (14) and (18) can be combined to yield the matrix form
Zero-Forcing IC and ML Decoding Scheme: In this case, a matrix W is chosen such that
We can find an appropriate matrix W by realizing that
where
A1=H1−G1G2−1H2 and A2=G2−H2H1−1G1 (23)
Hence, if we select W as
we will have
where
{tilde over (H)}=H1−G1G2−1H2
{tilde over (G)}=G2−H2H1−1G1
ñ1=n1−G1G2−1n2
ñ2=n2−H2H1−1n1 (26)
From equation (25) it can be easily observed that the modified received signal vector {tilde over (r)}1 contains signals only from transmitter 10 (i.e. signals from transmitter 30 have been canceled or removed) and, correspondingly, the modified received signal vector {tilde over (r)}2 contains signals only from transmitter 30 (i.e. signals from transmitter 10 have been canceled or removed). A number of other attributes can be shown from the above to be true.
where Dg1=|g11|2+|g12|2 and Dg2=|g21|2+|g22|2. Hence, the modified noise vector in is also white.
where Dh1=|h11|2+|h12|2 and Dh2=|h21|2+|h22|2, and hence it is also white.
Considering the modified received signal vector {tilde over (r)}1, which contains signals only from transmitter 10, i.e.,
{tilde over (r)}1={tilde over (H)}·c+ñ1, (30)
it is noted that this expression resembles the expression in equation (4). Hence, in accordance with the principles disclosed therein, the optimum ML decoder for the symbols transmitted by terminal unit 10 evaluates an equation that is similar to the expression of equation (6), and is given by
The corresponding decoder uncertainty is given by
Δc=∥{tilde over (r)}1−{tilde over (H)}·ĉ∥2. (32)
Moreover, since the channel Matrix {tilde over (H)} is orthogonal, the ML decoder will also decompose into two separate rules for c1 and c2.
In a similar fashion, considering the modified received signal vector {tilde over (r)}2, which contains signals only from transmitter 10, i.e.,
{tilde over (r)}2={tilde over (H)}·c+ñ2, (33)
it is noted that this expression resembles the expression in equation (4). Hence, the optimum ML decoder for the symbols transmitted by terminal unit 30 evaluates an equation that is similar to the expression of equation (6), and is given by
The corresponding decoder uncertainty is given by
Δs=∥{tilde over (r)}2−{tilde over (G)}·ŝ∥2. (35)
Moreover, since the channel Matrix {tilde over (G)} is also orthogonal, the ML decoder will also decompose into two separate rules for s1 and s2.
The above-disclosed technique can be easily implemented within a detector 25 that comprises a stored program general purpose processor. Specifically, a subroutine (ĉ,Δ)=ZF.DECODE(r1, r2, H1, H2, G1, G2) can be installed which returns the values ĉ,Δ in response to submitted inputs r1,r2,H1,H2,G1, and G2, as shown below:
With such a subroutine, both ŝ and ĉ can be estimated, as follows:
({circumflex over (c)},Δ)=ZF.DECODE(r1,r2,H1,H2,G1,G2) (36)
({circumflex over (s)},Δ)=ZF.DECODE(r2,r1,G2,G1,H2,H1). (37)
It may be noted that knowledge of the noise power N0 is not required. Simulation results reveal that the performance of the
The discussion above centered on describing the technique for canceling out the signal of transmitter 10 when detecting the signal of transmitter 30, and for canceling out the signal of transmitter 30 when detecting the signal of transmitter 10. Effectively, detector 25 of receiver 20 can either comprise two processors, with one making the subroutine call of equation (31) and the other making the subroutine call of equation (32). Alternatively, the signals can be stored within detector 25 and the subroutine calls of equations 31 and 32 can be made seriatim.
Minimum Mean-Squared Error IC and ML Decoding Scheme: The above-disclosed approach for canceling the contribution of an interfering terminal unit is known as the zero-forcing (ZF) as a minimum mean-squared error technique (MMSE).
Recalling equation (20), the vector r can also be written as
To simplify notations, the vector r is also defined as r=[r1r2r3r4]T.
When seeking to detect and decode signals {c1,c2} by minimizing a mean-squared error criterion, the goal is find a linear combination of the received signals such that the mean-squared error in detecting the signals {c1,c2} is minimized. In general terms, this can be expressed by an error cost function that is to be minimized, such as the function
One may note that a minimum is certainly reached when both α and β are equal to 0, but that, of course, is not desired. Therefore, either β1 or β2 is set to 1. When β2 is set to 1, we get the following minimization criterion from equation (40)
where {tilde over (α)}1=[α11,α12,α13,α14,−β1]=[α1−β1] and {tilde over (r)}1=[rTc1]T. From this it can be seen that
where 0=[0 0 0 0].
What is needed is to select {tilde over (α)}1 so that the expected value of the expression in equation (41) is minimized. That is, select {tilde over (α)}1 to minimize
E{J1({tilde over (α)}1)}=E{({tilde over (α)}1{tilde over (r)}1−c2)({tilde over (α)}1{tilde over (r)}1−c2)*} (43)
Taking the partial derivative with respect to {tilde over (α)}1 and setting it to zero, what results is
Γ is the signal to noise ratio, I is the 4 by 4 identity matrix, h1 is the first column of H, and h2 is the second column of H. It follows that
α1*=(M−h1h1*)−1h2 and β1*=h1*(M−h1h1*)−1h2. (45)
It can be shown that
which yields
From the structure of the matrix H we can easily verify that h1 and h2 are orthogonal. Using this fact and the structure of the matrix M, it can be shown that
β1=0 (48)
α1*=M−1h2. (49)
The value of Γ and the values of hij and gij, and consequently the values of H and M are obtained from a training sequence in a conventional manner by elements 23 and 24. Since, as indicated earlier, this is quite conventional and does not form a part of this invention, for sake of conciseness additional details are not presented. Hence, the MMSE IC solution given in equations (45) and (46) will minimize the mean-squared error in c2 without any regard to c1. Considering the alternative cost function when β1 is set to 1, a similar analysis leads to the conclusion that
β2=0 (47)
α2*=M−1h1 (48)
In this case, the MMSE IC solution given in equations (45) and (46) will minimize the mean-squared error in c1 without any regard to c2. Therefore, from equations (45)-(48), we can easily see that the MMSE interference canceller for signals from terminal unit 10 will consist of two different sets of weights α1 and α2 for c2 and c1, respectively. The weights for decoding signals from terminal 30 can be obtained in a similar fashion, as expected. Thus, the decoding of signals from terminal units 10 and 30 can be performed with a single subroutine MMSE.DECODE in decoder 25 as follows:
With such a subroutine, both ŝ and ĉ can be estimated, as follows:
({circumflex over (c)},Δ)=MMSE.DECODE(r1,r2,H1,H2,G1,G2,Γ) (49)
({circumflex over (s)},Δ)=MMSE.DECODE(r2,r1,G1,G2,H1,H2,Γ) (50)
Similar to the zero-forcing case, simulation results reveal that the performance of the disclosed technique MMSE.DECODE is equivalent to that when only one terminal unit exists and the base station uses a single receive antenna which is equivalent to the performance of two branch MRRC diversity. However, this technique is also able to support two co-channel terminal units. In addition, when the SIR (signal-to-interference ratio, which is a ratio between the desired terminal power to the interfering terminal power) increases, the MMSE approach will have a better performance as compared to the ZF case (the ZF performance is almost the same as the performance of the MMSE approach at 0 dB SIR).
Two-Step Interference Cancellation: Actually, additional improvement can be realized by employing a two-step interference cancellation approach using either the zero-forcing or the MMSE interference cancellation techniques disclosed above. Below, we will describe this approach based on the MMSE technique. However, as one might expect there a similar approach based on the zero-forcing technique. In this two-step approach, the receiver decodes signals from both terminals using the subroutine MMSE.DECODE disclosed above. Assuming that symbols from the terminal unit 10, ĉ0, have been decoded correctly, the receiver can, then, perfectly cancel the contribution of the terminal unit 10 in the received signal vectors r1 and r2. The receiver then uses x1 and x2, the received signal vectors after canceling signals from terminal unit 10, to re-decode symbols from terminal unit 30 ŝ0 using the optimum ML decoding rule in equation (10). Assuming that the symbols from terminal unit 10 has been decoded correctly, we can easily see that, the performance for terminal unit 30 will be equivalent to that with 2 transmit and 2 receive antennas (which is equivalent to 4 branch MRC diversity). If we let Δ0=Δc
Interference Cancellation and ML Decoding: GENERAL CASE
In the above basic case, we focused on the basic case where we assumed two co-channel terminals (K=2) each uses two transmit antennas (N=2). Both terminals communicate with a base station that is equipped with two transmit antennas (M=2). In this section we will consider the more general case of K≧2 co-channel terminals each is equipped with N≧2 transmitting antennas, both terminals communicate with a base that has receive M≧K antennas. We will develop similar interference cancellation and ML decoding scheme for this case.
In a paper submitted to IEEE Transactions on Information Theory, Vahid Tarokh et al. extended the above space-time block coding scheme to the case when more than two antennas are used for transmission (N≧2). There, a technique for constructing space-time block codes (with similar properties to the simple scheme described above) was developed. It was also shown that for real constellations space-time block codes with transmission rate 1 can be constructed. However, for a general complex constellation the rate of transmission for these codes will be less than 1.
In general, let us assume that the input information symbols to the transmitter are grouped into groups of Q symbols c1, c2, . . . , cQ. A space-time block code in this case will map the symbols c1, c2, . . . , cQ into an N×L array C whose entries are made ±c1, ±c2, . . . , ±cQ and ±c1*, ±c2*, . . . , cQ*. At time t, where 1≦t≦L, the t-th column of C is transmitted from the N antennas. In this case, the transmission rate of such code will be Q/L. In general, for a rate Q/L space-time block code (as constructed by V. Tarokh et al.) designed for N transmit antenna, let r1, r2, . . . , rL be the received signals at time t=1, 2, . . . , L. As before, we define the received signal vector as
r=[r1 r2 . . . rL/2 rL/2+1 rL/2+2 . . . rL*]T (51)
where the L×1 vector r can be written as
r=H·c+η (52)
and H is the L×Q channel matrix whose entries are from ±h1, ±h2, . . . , ±hN, ±h1*, ±h2*, . . . , ±hN*, and it is an orthogonal matrix, c=[c1 c2 . . . cQ]T, and η is an L×1 zero-mean complex Gaussian random vector with covariance N0·I which models the noise. The ML decoder in this case is similar to that in equation (6), that is
and the uncertainty, Δc, of the decoded symbols ĉ is given by
Δc=∥r−H·ĉ∥2 (54)
As before, since the channel matrix H is orthogonal, the decoding rule in (53) decomposes into Q separate decoding rules for c1, c2, . . . , cQ For example, assuming that the terminal unit uses 4 transmit antenna, a rate 4/8 (i.e. it is a rate 1/2) space-time block code is given by
In this case, at time t−1 c1, c2, c3, c4 are transmitted from antenna 1 through 4, respectively. At time t=2, −c2, c1, −c4, c3 are transmitted from antenna 1 through 4, respectively, and so on. For this example, let r1, r2, . . . , r8 be the received signals at time t=1, 2, . . . , 8. Define the received signal vector r=[r1r2r3r4r5*r6*r7*r8*]T. In this case, we can write the received signal vector r can be written as
r=H·c+η (55)
where η is the 8×1 AWGN noise vector and H is the 8×4 channel matrix given by:
We can immediately notice that the matrix H is orthogonal, that is H*H=Dh·I where
and I is a 4×4 identity matrix.
Let us now assume a multi-user environment with K co-channel synchronized terminals. Each terminal uses a rate Q/L space-time block code with N transmit antenna (as constructed by V. Tarokh et al). The base station uses M≧K antennas for reception. We can write the received signal vector at the m-th receive antenna as
where Hkm is the L×Q k-th user channel matrix to antenna m, ck=[ck1 ck2 . . . ckQ]T is the Q×1 information symbols vector for k-th user, and ηm is the L×1 noise vector. The entries of the k-th user channel matrix Hkm are from ±hk,m,1, ±hk,m,2, . . . , ±hk,m,N and ±hk,m,1*, ±hk,m,2*, . . . , ±hk,m,N*, where hk,m,n is the complex channel gain between transmit antenna n of the k-th user and receive antenna m. As we stated earlier, the matrix Hkm is orthogonal.
Zero-Forcing IC and ML Decoding: Without loss of generality, let us assume that we are interested in suppressing signals from co-channel terminals 2, 3, . . . , K while decoding signals from the first terminal. This can be done in a successive manner as follows.
First, let us define rm(0)=rm. Let us assume that we start by canceling out the contributions of the K-th terminal. We can use the M-th antenna received signal vector rM to cancel out the contribution of the K-th terminal in the remaining M−1 received signal vectors by forming the modified received signal vectors rm(1), m=1, . . . , M−1 as follows:
rm(1)=rm(0)−HKmHKM+rM(0) m=1, 2, . . . M−1 (58)
where Hkm+ is the generalized inverse of the channel matrix Hkm and is given by
Hkm+=(Hkm*Hkm)−1Hkm* (59)
We can easily verify that Hkm+Hkm=I, where I is the Q×Q identity matrix. We can easily verify that the modified received signal vectors rm(1), m=1, . . . , M−1, do not contain any signal contribution due to the K-th user. Moreover, we can easily verify that rm(1) can be written as
where Hkm(1) and ηm(1) are given by
Hkm(1)=Hkm(0)−HKm(0)(HKM(0))+HkM(0), m=1, 2, . . . , M−1 (61)
ηm(1)=ηm(0)−HKm(0)(HKM(0))+ηM(0), m=1, 2, . . . , M−1 (62)
Moreover, it can be shown that for codes constructed by V. Tarokh et al, the modified channel matrix Hkm(1) will have exactly the same structure as that of Hkm. That is, the entries of the k-th user modified channel matrix Hkm(1) are from ±hk,m,1(1), ±hk,m,2(1), . . . , hk,m,N(1) and ±hk,m,1(1)*, ±hk,m,2(1)*, . . . , hk,m,N(1)*, where hk,m,n(1) is the modified complex channel gain between transmit antenna n of the k-th user and receive antenna m, m=1, . . . , M−1. Hence, the modified channel matrix Hkm(1) will be orthogonal as well.
It can then be observed that the expression for the M−1 modified received signal vector rm(1) in equation (60) is the same as that in equation (57) except that we now have one less interfering terminal. In a similar fashion, we can cancel out the contributions of terminal K−1 and obtain M−2 modified received signal vectors rm(2), m=1, . . . , M−2 that do not contain any contributions from terminals K-th and K−1. In general, after stage j, where j=1, 2, . . . , K−1 contributions from terminals K, K−1, . . . , K−j+1 are canceled out and we are left with M−j modified received signal vectors rm(j), m=1, . . . , M−j, j=1, 2, . . . , K−1 that contain signals due to terminals 1, 2, . . . , K−j only. In this case, we will have
where Hk,m(j) and ηm(j) are given by
rm(j)=rm(j−1)−HK−j,m(j−1)(HK−j,M−j(j−1))+rM−j(j−1) m=1, 2, . . . M−j (64)
Hk,m(j)=Hk,m(j−1)−HK−j,m(j−1)(HK−j,M−j(j−1))+Hk,M−j(j−1) 1≦m≦M−j, 1≦k≦K−j (65)
ηm(j)=ηm(j−1)−HK−j,m(j−1)(HK−j,M−j(j−1))+ηM−j(j−1), m=1, 2, . . . , M−j (66)
This process is repeated until we are left with M−K+1 modified received signal vectors rm(K−1), m=1, . . . , M−K+1 that contain only contributions due to the first terminal. In this case we will have
rm(K−1)=H1,m(K−1)·c1+ηm(K−1), m=1, 2, . . . , M−K+1 (67)
which contains signals due to the first terminal only. Similarly, the modified channel matrix H1,m(K−1), m=1, 2, . . . , M−K+1, will have a similar structure and is also orthogonal. Hence, it is straight forward to see that the ML decoder for signals from the first terminal is given by
and the corresponding uncertainty will be given by
Similarly, since the modified channel matrices H1,m(K−1), 1≦m≦M−K+1 are orthogonal, as before, the decoding rule in (68) will decompose into Q separate rules for decoding c11, c12, . . . , c1Q. We may observe that the basic case for zero-forcing IC and ML decoding that we discussed in detail earlier is a special case of the above approach.
The above-disclosed technique can be easily implemented within a detector 25 that comprises a stored program general purpose processor. Specifically, a subroutine (c,Δ)=G_ZFDECODE({rm}1≦m≦M,{Hkm}1≦k≦K,1≦m≦M) can be installed which returns the values c,Δ in response to submitted inputs {rm}1≦m≦M and {Hkm}1≦k≦K,1≦m≦M, as shown above.
Minimum Mean-Squared Error IC and ML Decoding Scheme: The MMSE IC and ML decoding in the general case can be developed in a similar fashion as follows. We recall the received signal vector at the m-th receive antenna in equation (57)
This can be written in a matrix form as in equation (38)
r=H·{tilde over (c)}+n (71)
where r=[r1T r2T . . . rMT]T is a ML×1 vector, {tilde over (c)}=[c1T c2T . . . cKT]T is QK×1 a vector, n=[η1T η2T . . . ηMT]T is a ML×1 vector, and
is the ML×QK channel matrix. As before, we redefine the vector r as r=[r1 r2 . . . rML]T. As before, we assume that we are interested in decoding the symbols transmitted from terminal 1 c11, c12, . . . , c1Q. As before, when seeking to detect and decode signals c11, c12, . . . , c1Q by minimizing a mean-squared error criterion, the goal is find a linear combination of the received signals such that the mean-squared error in detecting the signals c11, c12, . . . , c1Q is minimized. In general terms, this can be expressed by an error cost function that is to be minimized, such as the function
Similarly, as before we can see that one of the βj, 1≦j≦Q must be set to 1 or else we get an all zero solution for α and β. Consider the case where we set βj=1. Hence, in this case, the criteria to be minimized is
where
αj=[αj1, αj2, . . . , αjLM, −β1, . . . , −βj−1, −βj+1, . . . , −βQ]=[αj−βj] (75)
{tilde over (r)}j=[rjT c11 . . . c1j−1 c1j+1 . . . c1Q]T (76)
If we follow the same steps as in the basic case, we arrive at the conclusion that
βi(j)=0 i=1, . . . Q, i≠j=1 i=j (77)
αj*=M−1hj, 1≦j≦Q (78)
where hj is the j-th column of the channel matrix H, and
is an ML×ML matrix, Γ is the signal to noise ratio, and I is the ML×ML identity matrix.
In this case, as before, the error in decoding the j-th symbol c1j will be minimized without any regard to the other symbols. Hence, the MMSE-IC and ML decoder will consist of Q different combiners, one for each symbol. It should be clear now that the MMSI-IC solution for the general case is a straight forward extension to the basic case shown earlier. The MMSE-IC solution for the general case can be implemented using the subroutine G_MMSE.DECODE shown below.
This is a continuation of U.S. patent application Ser. No. 10/778,589 filed Feb. 13, 2004, now U.S. Pat. No. 7,620,128, which is a continuation Ser. No. 09/167,380 filed Oct. 6, 1998 of U.S. Pat. No. 6,693,982, issued Feb. 27, 2004, which claims the benefit of U.S. Provisional Application No. 60/061,145, filed Oct. 6, 1997. This application is also related to U.S. application Ser. No. 09/074,224, filed May 7, 1998, titled “Transmitter Diversity Technique for Wireless Communications”. This application is also related to U.S. Pat. No. 6,178,196, issued Jan. 23, 2001.
Number | Name | Date | Kind |
---|---|---|---|
4057758 | Hattori et al. | Nov 1977 | A |
4715048 | Masamura | Dec 1987 | A |
5263033 | Seshadri | Nov 1993 | A |
5566209 | Forssen et al. | Oct 1996 | A |
5615409 | Forssen et al. | Mar 1997 | A |
5790606 | Dent | Aug 1998 | A |
5796788 | Bottomley | Aug 1998 | A |
5822380 | Bottomley | Oct 1998 | A |
6088408 | Calderbank et al. | Jul 2000 | A |
6148041 | Dent | Nov 2000 | A |
6151484 | Ramesh | Nov 2000 | A |
6178196 | Naguib et al. | Jan 2001 | B1 |
6185258 | Alamouti et al. | Feb 2001 | B1 |
6188736 | Lo et al. | Feb 2001 | B1 |
6240099 | Lim et al. | May 2001 | B1 |
7120200 | Alamouti | Oct 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20100014565 A1 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
60061145 | Oct 1997 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10778589 | Feb 2004 | US |
Child | 12568863 | US | |
Parent | 09167380 | Oct 1998 | US |
Child | 10778589 | US |