This invention relates to a mining machine and method whereby a mining machine can be controlled to move across a seam containing product to be mined. The invention has particular, although not exclusive application, in the longwall mining of coal.
In the mining of coal, processes have been developed which are referred to as longwall mining processes. In these processes a movable rail is placed to span across a coal seam. A mining machine is provided with a shearing head and the mining machine is moved to traverse along the rail from side-to-side of the seam, and the shearing head is manipulated upwardly and downwardly to shear coal from the face of the seam. Throughout each pass, the rail is moved forwardly toward the seam behind the path of the mining machine. The mining machine is then caused to traverse the seam in the opposite direction whilst the shearing head is manipulated upwardly and downwardly to remove further coal from the seam. The process is repeated until all coal in the planned extraction panel is completed.
Thus, by advancing the rail means forwardly towards the seam by a suitable distance after each pass, it is possible to progressively move into the seam with an approximate equal depth of cut with each pass.
In practice, inaccuracies develop with each subsequent pass due to slippage of a powered roof support advance system which moves the rail, resulting in the depth of cut varying across the face of the seam. This, in turn, leads to reduced production yields and unnecessary mechanical loading and stresses on the rail and powered roof support advance system. Such inaccuracies are attributable, in large part to the fact that the powered roof support advance system moves the rail forwardly by a set incremental amount at each pass. Thus, because of the slippage of the powered roof support advance system, the inaccuracies accumulate after many passes of the machine. Desirably, the rail is expected to extend in a straight line, but, because of the slippage, the rail is progressively moved so that it eventually has a curvilinear or snake like path. This, in turn, results in down time in attempting to reposition the rail to correct these accumulated inaccuracies.
Many systems have been developed for repositioning and maintaining the rail means on a desired straight line across the face of the seam. Simple systems use a string line. Other systems use optical means which produce light beams which reflect off reflectors strategically placed at the sides of the seams. Radar systems have also been proposed. None have proved satisfactory as they each require time to set-up, and manual adjustment of some or all of the support powered roof supports.
In addition to the above, a coal seam follows contours and folds in the strata structure and therefore the coal seam is not a predictable shape. This, in turn, has led to difficulties in causing the shearing head to accurately follow the seam on a predictable basis at each pass. If the shearing head attempts to shear into the coal seam boundary into the much harder roof and floor stone material this produces unnecessary and undesirable loadings on the drive motors of the shearing head and results in inefficient yields and production dilution.
It is therefore desirable to know the absolute position of the mining machine at sufficient points across the face of the seam for each successive shear so that the vertical contour (ie horizon) can be predicted and the vertical up and down movement of the shearing head can be controlled and dynamically adjusted to cause the mining machine to follow the undulating coal seam (horizon control). Existing methods of horizon control include a reactive method based on detecting and reacting to the increased load on the cutting drum motors when the shearing head is raised or lowered beyond the coal seam. This reactive technique results in mechanical stress and product dilution due to the inclusion of non-coal material. Another method referred to as “mimic cut” uses sensors to record the vertical limits of the shearer head under manual control throughout a complete pass across the coal face. The system then attempts to automatically replicate this shearing pattern through a next pass. This approach does not take into account the undulation in the seam in the direction of longwall progression. Radar and natural gamma sensors have also been proposed as a means of detecting the coal seam boundary. However, these systems are not always suitable and in any case require human intervention.
It is therefore an object of examples of the present invention to attempt to overcome one or more problems of the prior art machines.
Therefore, according to a first broad aspect of the present invention there may be provided a mining machine having a shearing head mounted on a moveable carriage, said shearing head being for mining product from a seam as said moveable carriage traverses from side-to-side across a mining face of said seam on rail means which extend from side-to-side across the seam,
said machine having co-ordinate position determining means for determining the co-ordinate position of the machine at each of a plurality of locations along the rail means, the co-ordinate position at each of the plurality of locations being at least 2D co-ordinate position information, and means for providing data signals representative thereof,
processing means connected to receive the data signals representative of the 2D co-ordinate position information and to generate output signals processed therefrom and useable to control rail moving means associated with said machine, so said rail moving means will attempt to displace a trailing part of said rail means a distance towards said seam based on the current co-ordinate position of that part of the rail means, to assume a co-ordinate position of an intended profile for the next pass, said processing means operating with said rail moving means at various locations along the length of the rail means, so that on the next pass of said moveable carriage, said shearing head will attempt to cut to the intended profile.
Most preferably the intended profile is a straight line in a generally horizontally extending plane.
Most preferably said processing means includes memory means for storing electrical signals of the 2D co-ordinates provided by said co-ordinate position determining means at each of said plurality of locations.
Most preferably said signals are useable by said processing means to calculate the required distance of movement of the rail means at various locations.
Most preferably said co-ordinate position determining means provides 3D co-ordinate position signals in each of the X,Y and Z planes.
Most preferably said processing means stores a horizon profile of either the up or down or both locations of the shearing head at locations along the rail means, so that on a next pass said shearing head can be predictably controlled by shearing head position control means to be moved to positions which cause said shearing head to traverse a predicted horizon profile determined from the previous pass, whereby the shearing head can move to predicted folds or contours of the seam.
A method of controlling a mining machine having a moveable carriage carrying a shearing head so said shearing head will cut to an intended profile,
said method including mounting said carriage on rail means which traverse from side-to-side across a seam to be mined,
providing position signals of the 2D co-ordinate position of said machine at each of a plurality of locations along the rail means to processing means as said machine passes from side-to-side across the seam,
generating output signals processed from said position signals to control rail-moving means, effecting operation of said rail moving means so a trailing part of said rail means will be displaced a distance forwardly toward said seam based on the current co-ordinate position of the rail means, operating said rail moving means at various positions along the length of the rail means so said rail means will attempt to be in said intended profile so that on a next pass of said moveable carriage said shearing head will attempt to cut the intended profile.
Most preferably said rail moving means is a series of independently moveable moving means spaced apart along the length of said rail means and wherein each is connected at one end to a respective mine roof support means, each roof support means providing fixed positions for the one ends of each moving means when supporting a mine roof, and wherein the other ends of said moving means are connected to said rail means, so that when the other ends of said moving means are moved away from said roof support means the rail means can be moved forwardly towards said seam.
Most preferably each of said moving means is independently moveably so that when said rail means has been moved forwardly by said moving means, and a respective mine roof support means released from supporting said mine roof, the respective roof support means can be displaced forwardly towards said rail means by said moving means and wherein said rail means then provides fixed positions for the other ends of each moving means.
Most preferably said processing means determines the amount of forward movement of said roof support means so that at completion of a pass of said mining machine along said rail means there is a substantially straight line wall across the seam, and so all the roof support means will then be inline with said line being substantially parallel with said rail means.
In order that the invention can be more clearly ascertained examples of preferred embodiments will now be described with reference to the accompanying drawings wherein:
a-4h are plan views, in diagrammatic form, showing a prior art mining machine during several passes;
a-5c are a series of plan views, looking onto a horizontal plane, of a mining machine of a preferred example of the invention, mining into a coal seam;
d-5f are diagrammatic views showing profiles and movements of the rail means on which the mining machine moves;
g is a diagram showing angle θn between a current rail means position and a new position at two points;
Referring firstly to
When mining the seam 1, a mining machine attempts to make a series of side-to-side cuts across the seam. Each cut is represented by the narrow line markings across the seam 1. In other words, the longwall face 3 is exposed progressively with each succeeding side-to-side cut. It can be seen that as the side-to-side cuts progress in a direction generally orthogonal to the longwall face 3 (ie in the Z direction) the horizon aspect changes upwardly. This is merely exemplary as in other examples, the horizon aspect may extend downwardly. In addition, the seam 1 is shown as having a generally horizontal aspect along the X axis. The seam may have an inclination along the X axis. In other words,
Referring now to
Referring now to
Reference will now be made to
Rail means 19 extend across the longwall face 3, and the mining machine 7 traverses the rail means 19. Each of the views in
a shows the seam 1 with a longwall face 3 prior to commencement of mining using the mining machine 7. It can be seen that the rail means 19 extends in front of the longwall face 3. Typically, the profile of the rail means 19 is to be a straight line. The mining machine 7 is shown at the extreme left hand side of the seam 1 prior to making a pass to the right hand side of the seam 1. It can be seen that the coal longwall face 3 has a profile which is different to the profile of the rail means 19.
b shows the arrangement after a first pass of the mining machine 7. Here it can be seen that the profile of the longwall face 3 now replicates the profile of the rail means 19.
c shows that the profile of the rail means 19 has been adjusted to a desired profile, in this case a straight line, by appropriately moving the rail means 19 at various locations behind the mining machine 7. It is possible to assume a desired profile of the rail means 19, and a corresponding profile of the longwall face 3, by knowing the co-ordinate positions of the mining machine 7 at various locations along the rail means 19. This is because the mining machine is carried by the rail means, and the co-ordinate positions of the mining machine are directly related to the position of the rail means at those locations. Thus, the co-ordinate positions are preferably determined from a fixed point on the mining machine and the current position of the rail means is related to the fixing point. In a variation the co-ordinate positions may be determined using co-ordinate determining means mounted on the rail means directly and not on the moveable mining machine. Those locations may correspond exactly with the positions where powered roof support means connect with the rail means 19 or there may be many intermediate locations. In other words, the number of locations along the rail means 19 where the co-ordinate positions of the mining machine 7 are determined, may be far greater in number than the number of powered roof support means. Accordingly, it is assumed that the mining machine 7 will traverse the rail means 19 and the shearing head 9 will cut into the seam 1 so that the longwall face 3 replicates the profile of the rail means 19. In other words, the distance from the rail means 19 to the coal face 3 will be an equal distance across the seam 1. As the position of the rail means 19 is known by the co-ordinate positions at the various locations, it is possible to calculate the required movement forward required of the rail means 19 to place the rail means 19 in a position to assume a required profile. Typically, this required profile is a straight line. It is also assumed that the distance of each roof support means to be moved forwardly, so that the rail means assumes the required profile, is the required distance without any slippage of the roof support means. In practice, some slippage may occur however, the system is such that it will always be able to determine the current position of the mining machine (ie the rail means 19) at the various locations and thus any calculation of the required distance of movement to assume the required profile will always be based on the current position and not the expected position. Thus, using the techniques of the present invention the problems of the rail means 19 assuming a non desired curvilinear path or snake path after many passes can be minimised. Moreover, it is now not necessary to shutdown the mining machine 7 to attempt to straighten the rail means 19 after many passes as has been the case in the prior art systems as the profile of the rail means is either the same as the desired profile or approximately so. In addition, because it is now possible to attempt to place the rail means 19 to assume a desired profile, small adjustments can be purposely made with the system to incline the rail means 19 relative to the coal face 3 to attempt to move the whole rail means 19 and mining machine 7 either upwardly or downwardly in a tilt type arrangement to compensate for any gradual creepage of the mining machine 7 and rail means 19 to one side or the other of the seam 1 as would occur if the machine were attempting to mine in the seam 1 shown in
In
It may also require several passes and corresponding movements of the rail means to reach a desired profile, as the roof support means 23 have only a limited movement capability each time they are activated.
d shows the profile of the rail means 19 (similar to that shown in
e shows the desired profile 19− of the rail means 19 and shows a corresponding number of locations Y1 Y2 Y3 . . . Yn at the same incremental locations as X1 X2 etc, in
Xn=Xn−1+ΔX∠θn
Where ΔX∠θn is a vector expressed in polar form having magnitude ΔX and angle θn where θn is a suitable constant valued representation of the heading of the machine throughout the actual path between locations Xn−1 and Xn. Preferably the coordinates are determined as Easting and Northing. The length of displacement A1 A2 A3 . . . An can then be determined to place the track 19 at the required position so that the desired profile will be obtained. This is shown in FIG. 5(f) and in FIG. 5(g)
An at any given point can be expressed by the following:
An=|Yn−Xn|
Where |X| denotes the magnitude of the vector X.
The above simple system can then be expanded to a 3D co-ordinate system where the altitude of the machine 7 is determine at each of the various locations X1 X2 X3 . . . Xn. Thus, in this system, the co-ordinates are preferably determined using Northing, Easting, and altitude and define positions of the machine (and the rail means 19) and each of the position vectors Xn is three dimensional. By knowing the 3 dimensional co-ordinates at each of the positions X1 X2 X3 . . . Xn it is possible to store a three dimensional profile of the coal seam.
Referring now to
In addition the storing of the co-ordinates at all positions, or selected positions along the rail means over a series of side-to-side passes, will provide a store of the profile of the seam itself.
In the example of the present invention, an inertial navigation system is used which determines position and orientation in three dimensions. Preferably, each of the three dimensions is based on X, Y, and Z co-ordinates. Typically, gyroscopic means is provided to measure the angular velocity in each of the three co-ordinates. The gyroscopic means may, in turn, be associated with accelerometers which are used to measure the 3D acceleration (linear) in the same co-ordinate dimensions. The accuracy and stability of the inertial navigation system can be further improved by incorporating information about the linear displacement of the system which can be obtained from the odometer attached to the mining machine. The signals provided for each of these dimensions are then processed to extract the linear position and angular rotation. This, in turn, uniquely defines the exact position of the machine 7 and rail means in space. It also defines the “attitude” of the machine 7. The “attitude” is representative of the azimuth, pitch, and roll of the machine 7 and therefore the corresponding position of the rail means 19.
Thus, when the concepts of precisely determining the position by 3D positioning means as outlined above are implemented, then processing means can be invoked to determine required distances of movement of the rail means 19 and shearing head 9. In a typical example, required movement in the X direction ie side-to-side across the seam 1 is controlled by linear transverse drive motor means mounted to the mining machine 7. The required movement in the Y direction (vertically) can only be controlled by adjusting the lower limit of the shearer head. The lower limit produces the floor upon which the rail will subsequently sit, so this determines the profile of the rail in the Y direction. The upper limit is important only from a maximum extraction perspective.
Determination of the lower limit can be achieved by various means, e.g. motor torque, gamma detection, mimic cut, visual reference etc. In this respect the inertial navigation system can be used to improve the accuracy, stability and overall effectiveness of these techniques. Once the lower limit is determined, appropriate drive means such as hydraulic motors may be employed to swing the arms 21, in subsequent side to side passes of the machine 7, so that the shearing heads 9 remove all possible relevant material from the seam 1 during each pass without unduly mining strata 11 or 13. Measurement of movement in the Z direction—ie in the direction of progression of mining—is determined from the inertial movement sensor. Thus, knowing the desired 3D absolute position of the mining machine 7 and knowing the distance of travel along the rail means 19 and the upper and lower limits of the seam in the Y direction, processing means can be employed based on those position signals to appropriately move the mining machine 7 relative to the rail means 19, and the shearing heads 9 relative to the mining machine 7, so that precise control of mining can be effected. Further, once knowing the precise position of the machine 7 and the displacement of the rail means 19 for a particular roof support means 23, the roof support means 23 can be then advanced forwardly a determined distance based on the current co-ordinate position so that each of the roof support means 23 is in line at completion of a pass of the mining machine along the rail means 19. In other words, the processing means can position the rail means 19 so that it is in a substantially straight line across the seam 1, and the processing means can also control positioning of the shearing heads 9 to maximise the mining process. In addition, the processing means can cause each of the roof support means 23 to be moved so that they are substantially in line with that line being substantially parallel with the rail means 19.
Thus, the processing means can provide output signals to effect forward movement to a preselected absolute position of the rail means. In addition, the output signals to the roof support means 23 can be provided to cause the mining machine to cut at a preselected absolute geodetic heading or angle relative to the shearing heads so they will cut at a preselected absolute geodetic heading or angle relative to the forward progression of the rail means into the seam.
In a modification of the example, the processing means may include memory means for storing information concerning the electrical signals provided by the position determining means at various points throughout the length of the pass of the machine 7. Thus, that information can then be used by the processing means as a datum from which to calculate the required rail means movement.
In a further example of a preferred embodiment of the present invention, the determining means provides signals in each of the X, Y, and Z planes, and stores a profile of the positions during each pass of the shearing head 9 along the rail means 7 so that on subsequent passes the shearing head 9 can be controlled by shearing head position control means (hydraulic motors or the like) to be moved upwardly or downwardly to positions which cause the shearing head 9 to traverse a similar profile as during the last pass but at a shearing depth determined from the forward position of the rail means. This enables a prediction to be made as to the likely or expected position of the shearing heads 9 during any subsequent pass so that the shearing heads 9 can follow pre-found folds or contours of the seam 1. As each pass occurs the profile will most likely change, however, the change can be predicted for the next cut or series of cuts. Thus, tighter control over mining can be achieved than with known prior art systems.
The position determining means outlined above are merely exemplary forms of typical position determining means which can be used and should not be considered limiting.
Output signals from the inertial navigation system and the odometer are then passed to a data processing unit located on the mining machine 7. That data processing unit processes the input signals to permit them to be stored in memory and recalled for subsequent processing as to the distance the rail means 19 is to be moved.
The distance outputs from the data processing unit on the mining machine 7 are then fed to a data processing unit at a fixed location off the mining machine 7 so that the signals for a required roof support means 23 to be moved can be processed independent of the processor on the mining machine 7. Electrical signal outputs are then provided to each of the moving means 25 associated with each of the roof support means 23 so as to move the rail means 19, and then subsequently the roof support means 23. Individual control circuits for effecting movement of the roof support means 23 to support the roof and the strata 13 above the seam 1 are appropriately interfaced into this data processing means.
Whilst the mining machine has been described in the preferred example in relation to a longwall mining machine for mining coal, it should be understood that the concepts of the invention are applicable to other mining applications and not limited to longwall mining itself or to mining of coal itself.
The longwall mining process shown in the preferred examples, is known in the industry as Bi-di. Other modes are also known being Uni-di and Half-web. No doubt other modes will be developed in the future. The invention is universally adopted to all such modes and is not to be considered as applicable to only the Bi-di mode. Thus, whatever mode is adopted, the invention is applicable to moving the rail means to assume a desired geometry within the available void in the mine. Further, whilst it has been described that the rail means extends completely across the seam from side-to-side, the rail means may extend only a part way across the seam, and be moved at some subsequent stage to mine from a different part of the seam width. All such modifications are deemed to be within the scope of the invention and the appended claims.
Modifications may be made to the invention which as would be apparent to persons skilled in the art of mining and/or electronic/hydraulic circuit controls. These and other modifications may be made without departing from the end bit of the invention the nature of which is to be determined from the foregoing description.
Number | Date | Country | Kind |
---|---|---|---|
PQ7131 | Apr 2000 | AU | national |
This application is based on and claims the benefit of the filing date of U.S. provisional application No. 60/203,901 filed May 12, 2000, and Australian application PQ7131 filed Apr. 26, 2000.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTAU01/00463 | 4/23/2001 | WO | 00 | 10/21/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0181726 | 11/1/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4111487 | Mullins | Sep 1978 | A |
4134270 | Small et al. | Jan 1979 | A |
4412700 | Zitz et al. | Nov 1983 | A |
4643482 | Wolfenden | Feb 1987 | A |
4822105 | Yamada et al. | Apr 1989 | A |
4887935 | Koppers et al. | Dec 1989 | A |
5020860 | Bessinger et al. | Jun 1991 | A |
5275469 | Geuns et al. | Jan 1994 | A |
6481802 | Kussel | Nov 2002 | B1 |
Number | Date | Country |
---|---|---|
41 42 165 | Apr 1993 | DE |
Number | Date | Country | |
---|---|---|---|
20030075970 A1 | Apr 2003 | US |
Number | Date | Country | |
---|---|---|---|
60203901 | May 2000 | US |