The present invention relates generally to a superabrasive compact and its method of making, and more particularly, to a mining pick and method of brazing mining pick to cemented tungsten carbide body.
In one embodiment, a tool may comprise a sleeve having a proximal end, a distal end, a central axis, and a bore extending from about the proximal end to about the distal end, the bore having an inner wall; and a compact having a base end and an impact surface spaced opposite to the base end, wherein the compact is substantially disposed within the bore of the sleeve, wherein the proximal end of the sleeve is disposed proximate to the base end of the compact.
In another embodiment, a method comprises providing a sleeve having a proximal end, a distal end, a first central axis, and a bore; positioning the proximal end of the sleeve above the distal end of the sleeve; inserting a compact into the bore of the sleeve in such a way that a second central axis of the compact coincides with the first central axis of the sleeve; and brazing a plug into the compact and the sleeve.
In yet another embodiment, a tool comprises a sleeve having a proximal end, a distal end, a first central axis, and a bore; and a compact substantially brazed within the bore of the sleeve, wherein the compact has a second central axis, wherein the first and the second central axis coincide.
The foregoing summary, as well as the following detailed description of the embodiments, will be better understood when read in conjunction with the appended drawings. It should be understood that the embodiments depicted are not limited to the precise arrangements and instrumentalities shown.
a is a schematic front view of a compact with a sleeve and a plug according to an embodiment;
b is a schematic front view of a compact with a sleeve and a plug according to another embodiment;
a is a schematic front view of a sleeve and a plug according to an according to an embodiment;
b is a schematic front view of a sleeve and a plug according to another embodiment;
a is a schematic top view of a sleeve according to an embodiment;
b is a schematic front view of a compact according to an embodiment;
Polycrystalline diamond composite (or “PDC”, as used hereafter) may represent a volume of crystalline diamond grains with embedded foreign material filling the inter-grain space. In one particular case, polycrystalline diamond composite comprises crystalline diamond grains, bonded to each other by strong diamond-to-diamond bonds and forming a rigid polycrystalline diamond body, and the inter-grain regions, disposed between the bonded grains and filled with a catalyst material (e.g. cobalt or its alloys), which was used to promote diamond bonding during fabrication. Suitable metal solvent catalysts may include the metal in Group VIII of the Periodic table. PDC cutting element (or “PDC cutter”, as is used hereafter) comprises an above mentioned polycrystalline diamond body attached to a suitable support substrate, e.g., cobalt cemented tungsten carbide (WC-Co), by the virtue of the presence of cobalt metal. In another particular case, polycrystalline diamond composite comprises a plurality of crystalline diamond grains, which are not bonded to each other, but instead are bound together by foreign bonding materials such as borides, nitrides, carbides, e.g. SiC.
Polycrystalline diamond composites and PDC cutters may be fabricated in different ways and PDC cutters may be coated via different methods. In one example, PDC cutters are formed by placing a mixture of diamond polycrystalline powder with a suitable solvent catalyst material (e.g. cobalt) on the top of WC-Co substrate, whose assembly is subjected to processing conditions of extremely high pressure and high temperature (HPHT), where the solvent catalyst promotes desired inter-crystalline diamond-to-diamond bonding and, also, provides a binding between polycrystalline diamond body and substrate support.
In another example, PDC cutter is formed by placing diamond powder without a catalyst material on the top of substrate containing a catalyst material (e.g. WC-Co substrate or an additional thin cobalt disk in contact with the diamond powder). In this example, necessary cobalt catalyst material is supplied from the substrate and melted cobalt is swept through the diamond powder during the HPHT process.
In still another example, a hard polycrystalline diamond composite is fabricated by forming a mixture of diamond powder with silicon powder and mixture is subjected to HPHT process. Under HPHT conditions, the silicon melts and reacts with diamond to form SiC, thus forming a dense polycrystalline cutter where diamond particles are bound together by newly formed SiC material. Diamond composites made using this method are often called “silicon carbide bonded diamond composites”.
Mining picks made from silicon carbide bonded diamond composites, such as Versimax (produced by Diamond Innovations, Inc., Worthington, Ohio), have been lab tested and shown to have superior performance to WC materials. In order to make tools, diamond inserts may be brazed into WC holders. Mining picks may be centered in WC holders to maintain an even braze joint around the entire circumference of the insert. Vacuum brazing, induction brazing, or furnace brazing may be used. PDC may be coated by metals, metal carbides, or mixtures of metal and metal carbides, or uncoated, depending on the needs of the chosen brazing method and brazing alloy.
In one embodiment, polycrystalline diamond composite may be encapsulated in a sleeve like a shell, such as a tungsten carbide sleeve, that is brazeable. The WC sleeve may have an angled part at the tip and a plug in the bottom holding the polycrystalline diamond securely in place. The tungsten carbide sleeve may have a bore, inside which there are a plurality of ridges to surround the polycrystalline diamond composite. The WC sleeve may have a cylindrical body. The diameter and angle of the WC sleeve may match the corresponding geometry of the polycrystalline diamond composite insert.
The WC sleeve may be placed on a support with the angled part down. The polycrystalline diamond composite may be inserted into the WC sleeve together with a braze metal and a plug. In another embodiment, the tungsten carbide sleeve may have a slit so that the polycrystalline diamond composite may be brazed into place as the tungsten carbide sleeve is compressed circumferentially, thus locking the sleeve onto the pick.
In yet another embodiment, a straight walled hollow WC sleeve with no angled part may be used. Various parts with machined holes or rings with angled part may be used as a method of aligning the polycrystalline diamond composite in the tungsten carbide. Such machined holes or rings may include drilled holes, for example. The various parts may be made of graphite, for example.
An assembly of the polycrystalline diamond composite, WC sleeve, braze metal, and WC plug may be placed in a furnace and heated to the braze temperature to melt the braze. When the braze is liquid, it may flow between all gaps between the polycrystalline diamond composite, WC sleeve, and the plug. The weight or pressure applied to the polycrystalline diamond composite and the angled portion of the WC sleeve maintain central alignment and equal braze joint thickness between the polycrystalline diamond composite and the WC sleeve.
As shown in
The impact surface 116 may comprise a radiused tip 118. The radiused tip 118 may be substantially disposed outside of the bore 140 of the sleeve 102 when the compact 104 was inserted into the bore 140 of the sleeve 102. The sleeve 102 may have an angled part 108, angled toward the first central axis 120. The angled part 108 may help to hold the compact 104 from slipping out of the sleeve 102 when the sleeve 102 is put upside down with the angled part 108 pointing downward. The plug 114 may have same width as the sleeve 102 in one embodiment. In another embodiment, the plug 114 may have the same width as the compact 104 as shown in
As shown in
As shown in
Referring to
Referring to
Referring to
As shown in
As shown in
The hole 902 under the sleeve 102 may allow the sleeve 102 to sink onto the compact 104 during braze melting and flowing.
Referring to
The method 1000 of making a tool further include steps providing a plug on top of the braze metal; adding a weight on top of the plug; providing a support for the sleeve; heating an assembly including the sleeve, the compact, the support and the braze metal. Before the compact is inserted into the bore of the sleeve, the compact may be coated at least a layer of a metal or metal carbide, such as chromium or chromium carbide, or a mixture of metal and metal carbide. The metal coating may be useful for achieving wetting between the braze metal and compact surface. The metal coating may be deposited by chemical vapor deposition (CVD), physical vapor deposition (PVD), thermal diffusion, electroplating, electroless plating, etc.
While reference has been made to specific embodiments, it is apparent that other embodiments and variations can be devised by others skilled in the art without departing from their spirit and scope. The appended claims are intended to be construed to include all such embodiments and equivalent variations.
A prototype mining tool was produced using the following method. A mining tool tip was produced from VERSIMAX® silicon carbide bonded diamond composite. The tip had an overall height of 0.710 inches, a cone angle of 74.5 deg., and a diameter of 0.4675 inches. Before brazing the VERSIMAX® tip, a less than 1 micron thick Cr coating was applied using a CVD process. The coated tip had a diameter of 0.468 inches. A WC sleeve similar to the one pictured in
This application claims the benefit of U.S. Provisional application No. 61/828,225, filed May 29, 2013.
Number | Date | Country | |
---|---|---|---|
61828225 | May 2013 | US |