1. Field of the Invention
The present invention relates to subsea pipelines and connectors and/or fittings used in the pipelines. More particularly, the invention relates to a ball joint used for connecting misaligned pipes in subsea pipelines.
2. Description of Related Art
Misalignment ball joints have been used in pipelines (e.g., subsea pipelines) for decades. Misalignment ball joint use increased dramatically in the 1960's due to a tremendous increase in the number of subsea pipeline tie-ins being used. Misalignment ball joints provide a great degree of tie-in flexibility and allow tie-in connections to be made even with limited diver visibility and/or with difficult or limited manipulation available due to rigid pipes.
Typical misalignment ball joints have an internal profile of the ball portion of the misalignment ball joint assembly that contains a conical funnel. The conical funnel accommodates misalignment of the ball joint in any plane (typically up to as great as 15° of misalignment). In some cases, at full misalignment (for example, about 15° of misalignment), the projection of the bore of the ball produces an apparent obstruction from the exposed spherical surface of the cup.
U.S. Pat. No. 4,045,054 to Arnold (“Arnold”), which is incorporated by reference as if fully set forth herein, used a guide sleeve to overcome problems associated with the apparent obstruction. The guide sleeve concept disclosed by Arnold, however, saw little to no use in the industry. The lack of use of any form of the guide sleeve in misalignment ball joints may have been likely due to the relative low sophistication of pigs during the era of Arnold. In addition, pigging studies from the United States and the United Kingdom indicated that no restriction in articulation was required for pig passage from the cup sphere toward the funnel and that by limiting the articulation of the ball joint to 5°, the cup sphere exposure did not detrimentally impinge on the pig.
In recent years, however, “intelligent” pigs have started gaining use in offshore pipeline inspection and all new pipelines are being reviewed for intelligent pig suitability. These intelligent pigs include, for example, fingers, shoes, wheels, and/or other similar components mounted on relatively fragile, spring-loaded suspension arms to keep sensors in contact with the pipe bore. Thus, these intelligent pigs may require a relatively smooth surface for passage through the misalignment ball joint. Any obstruction (such as the apparent obstruction produced by projection of the bore of the ball) may inhibit passage of an intelligent pig through the misalignment ball joint. The guide sleeve disclosed by Arnold removes the apparent obstruction.
Arnold discloses a sleeve that is truncated to provide clearance between the end of the sleeve and the ball conical funnel as the ball joint components are articulated relative to each other when the pipe bores of the two attached pipes are misaligned during installation and makeup. As the assembly articulates, however, an opening between the sleeve end and ball funnel is exposed in the plane of the articulation. The opening is sufficiently large to allow some sensors to engage the opening and the end of the sleeve, which may result in damage to the pig and subsequent inspection data loss.
Thus, there is a need for a misalignment ball joint that provides a relatively smooth surface to inhibit damage to the sensors of an intelligent pig. The relatively smooth surface may have little to no gaps along the surface for passage of an intelligent pig through the misalignment ball joint.
In certain embodiments, a misalignment ball joint fitting includes a first body portion having a spherical inner surface. A second body portion having a spherical inner surface is coupled to the first body portion. A ball having a passage therein is secured inside the first and second body portions when the body portions are coupled. The passage has a funnel shaped portion in a first end portion of the ball. The ball is allowed to at least partially rotate when secured inside the first and second body portions. A guide sleeve is coupled to the first body portion. The guide sleeve is coaxial with the ball passage. A recess is located in an inner surface of the ball near a center of the ball. An end of the guide sleeve extends into at least a portion of the recess when the ball is in a neutral position with walls of the passage in the ball parallel to walls of the guide sleeve. The end of the guide sleeve that extends into the recess may have a beveled profile.
In some embodiments, the recess is located at an end of the funnel shaped portion of the passage near the center of the ball. The recess may be a spherical or arcuate recess. In some embodiments, the funnel shaped portion of the passage slopes from a smaller diameter at the recess to a larger diameter at the first end of the ball. In certain embodiments, the recess is sized to provide a relatively smooth transition between an inner surface of the guide sleeve and the inner surface of the ball for an object passing through the fitting during use at any angle of rotation of the ball. The end of the sleeve may remain in close association with the recess at any angle of rotation of the ball. There may be little to no gap between the end of the guide sleeve and the inner surface of the ball when the ball is rotated a maximum amount of rotation.
Features and advantages of the methods and apparatus of the present invention will be more fully appreciated by reference to the following detailed description of presently preferred but nonetheless illustrative embodiments in accordance with the present invention when taken in conjunction with the accompanying drawings in which:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. The drawings may not be to scale. It should be understood that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but to the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
In the context of this patent, the term “fitting” means a fitting or connector that may be coupled into a pipeline (e.g., a subsea pipeline). The term “coupled” means either a direct connection or an indirect connection (e.g., one or more intervening connections) between one or more objects or components. The phrase “directly connected” means a direct connection between objects or components such that the objects or components are connected directly to each other so that the objects or components operate in a “point of use” manner. The term “open flow” means that flow is open to both fluid and objects through a passage.
In certain embodiments, fitting 100 includes cup 102, grip 104, and ball 106. Cup 102 and grip 104 may be portions that are coupled together around ball 106 to form a body for fitting 100 and secure the ball inside the fitting. In some embodiments, cup 102 and grip 104 are flange type portions that are coupled together. In certain embodiments, cup 102 and grip 104 have spherical interior profiles (inner surfaces) shaped to accommodate the exterior profile (surface) of ball 106. The spherical profiles allow ball 106 to rotate inside fitting 100. Cup 102, grip 104, and ball 106 are typically made of metals such as, but not limited to, stainless steels or other non-corrosive metals.
Cup 102 and grip 104 may include openings 108. Openings 108 may be used for fasteners (e.g., bolts) or other devices to secure cup 102 to grip 104. In some embodiments, a gasket or other sealing device is used between cup 102 and grip 104 to provide a seal between the cup and the grip and around ball 106.
In certain embodiments, ball 106 has cylindrical end 110 that extends outside fitting 100, as shown in
In certain embodiments, fitting 100 includes sleeve 112. Sleeve 112 may be, for example, a conduit sleeve or guide sleeve. Sleeve 112 may be attached to cup 102. Sleeve 112 may be attached, for example, by welding the sleeve to cup 102 or by providing the sleeve with threads that engage threads on the cup. Sleeve 112 is typically made of metals such as, but not limited to, stainless steels or other non-corrosive metals. In certain embodiments, sleeve 112 and ball 106 are coaxial. For example, sleeve 112 and ball 106 may have a common central axis through the center of fitting 100.
In certain embodiments, an end of sleeve 112 is flush with the face of cup 102, as shown in
In certain embodiments, ball 106 includes opening 107 through the ball. Opening 107 may be a longitudinal or lengthwise opening (passage) through ball 106. Opening 107 may be coaxial with the opening of sleeve 112. In certain embodiments, a portion of opening 107 inside ball 106 includes funnel portion 116. Funnel portion 116 typically slopes from a smaller diameter near the middle of fitting 100 to a larger diameter near the cup end of the fitting. Thus, funnel portion 116 enlarges opening 107 from the middle of fitting 100 to the cup end of the fitting.
Funnel portion 116 provides a range of movement for ball 106 around sleeve 112. For example, funnel portion 116 provides space for ball 106 to rotate up or down, as shown in
The slope of funnel portion 116 may determine the maximum amount of rotation (articulation) of ball 106 inside fitting 100. For example, the maximum amount of rotation of ball 106 may be increased by increasing the slope of funnel portion 116, from the smaller end to the larger end of the funnel. Increasing the slope allows ball 106 to rotate further before the wall of funnel portion 116 contacts the wall of sleeve 112. In certain embodiments, ball 106 is allowed to rotate up to about 15° off normal (e.g., 15° in either direction from the normal or neutral position (zero articulation) of the ball being aligned parallel with sleeve 112 for a total of 30° of rotation). In some embodiments, ball 106 is allowed to rotate up to angles greater than about 15° off normal. The maximum amount of rotation allowed for ball 106 may be varied based on factors such as, but not limited to, angles suitable for intelligent pig passage, the diameter of the pipeline, and/or the dimensions of fitting 100.
In certain embodiments, ball 106 includes recess 118, as shown in
In some embodiments, there is a small gap between the end of sleeve 112 and the inner surface of ball 106 at full articulation (e.g., the end of the sleeve disassociated from the inner surface of the ball). The small gap may be due to the geometry of fitting 100.
In certain embodiments, the end of sleeve 112 that extends into recess 118 has a beveled (sloped or thinning) profile, as shown in
It is to be understood that while fitting 100 depicted in
It is to be understood the invention is not limited to particular systems described which may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification, the singular forms “a”, “an” and “the” include plural referents unless the content clearly indicates otherwise. Thus, for example, reference to “a bolt” includes a combination of two or more bolts and reference to “a fluid” includes mixtures of fluids.
In this patent, certain U.S. patents, U.S. patent applications, and other materials (for example, articles) have been incorporated by reference. The text of such U.S. patents, U.S. patent applications, and other materials is, however, only incorporated by reference to the extent that no conflict exists between such text and the other statements and drawings set forth herein. In the event of such conflict, then any such conflicting text in such incorporated by reference U.S. patents, U.S. patent applications, and other materials is specifically not incorporated by reference in this patent.
Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
664291 | Reniff | Dec 1900 | A |
797547 | Bachelder | Aug 1905 | A |
1425635 | Dod | Aug 1922 | A |
1753989 | Wilhelm | Apr 1930 | A |
1767658 | Fantz | Jun 1930 | A |
2369849 | Phillips | Feb 1945 | A |
2587934 | Volpin | Mar 1952 | A |
2931672 | Merritt et al. | Apr 1960 | A |
3139932 | Johnson | Jul 1964 | A |
3186014 | Herbert | Jun 1965 | A |
3278203 | Snyder | Oct 1966 | A |
3475039 | Ortloff | Oct 1969 | A |
3479061 | Smookler et al. | Nov 1969 | A |
3545489 | Brown et al. | Dec 1970 | A |
3664376 | Watkins | May 1972 | A |
3674123 | Lewis et al. | Jul 1972 | A |
3860271 | Rodgers | Jan 1975 | A |
3955793 | Burkhardt et al. | May 1976 | A |
4045054 | Arnold | Aug 1977 | A |
4224986 | Rothberg | Sep 1980 | A |
4230299 | Pierce, Jr. | Oct 1980 | A |
4291724 | Miller | Sep 1981 | A |
4372337 | Holzenberger | Feb 1983 | A |
4411459 | Ver Nooy | Oct 1983 | A |
4650151 | Mcintyre | Mar 1987 | A |
4800927 | Torichigai et al. | Jan 1989 | A |
4821772 | Anderson, Jr. et al. | Apr 1989 | A |
4865078 | Ensign | Sep 1989 | A |
4964612 | Maggioni et al. | Oct 1990 | A |
4971307 | Killerud et al. | Nov 1990 | A |
5076308 | Cohen | Dec 1991 | A |
5076319 | Salley | Dec 1991 | A |
5082391 | Florida | Jan 1992 | A |
5215112 | Davison | Jun 1993 | A |
5307838 | D'agostino et al. | May 1994 | A |
5368342 | Latham et al. | Nov 1994 | A |
5490660 | Kamezawa | Feb 1996 | A |
5842816 | Cunningham | Dec 1998 | A |
5857715 | Gray et al. | Jan 1999 | A |
5893392 | Spies et al. | Apr 1999 | A |
6142708 | Tarlton et al. | Nov 2000 | A |
6164188 | Miser | Dec 2000 | A |
6260819 | Ovsepyan | Jul 2001 | B1 |
6276662 | Bugatti | Aug 2001 | B1 |
6283152 | Corte, Jr. et al. | Sep 2001 | B1 |
6290207 | Genga et al. | Sep 2001 | B1 |
6311727 | Campau | Nov 2001 | B1 |
6340148 | Sung | Jan 2002 | B1 |
6578881 | Lynn et al. | Jun 2003 | B2 |
6851478 | Cornelssen et al. | Feb 2005 | B2 |
6886805 | Mccarty | May 2005 | B2 |
6935615 | Mccarty | Aug 2005 | B2 |
7891377 | Morris | Feb 2011 | B2 |
8038177 | Gutierrez-Lemini et al. | Oct 2011 | B2 |
8151394 | Morris et al. | Apr 2012 | B2 |
8151825 | Morris | Apr 2012 | B2 |
8360155 | Avery et al. | Jan 2013 | B2 |
8360391 | Morris | Jan 2013 | B2 |
20030020034 | Newport et al. | Jan 2003 | A1 |
20040149951 | Gethmann | Aug 2004 | A1 |
20090212558 | Gutierrez-Lemini et al. | Aug 2009 | A1 |
20100065140 | Joynson et al. | Mar 2010 | A1 |
Entry |
---|
Tiratsoo, J.N.H., Pipeline Design for Pigging, Pipeline Pigging Technology, second edition, 1999, pp. 47-53, Butterworth-Heinemann, Woburn, MA. |
Number | Date | Country | |
---|---|---|---|
20130113207 A1 | May 2013 | US |