Missile with remote-controlled warhead

Information

  • Patent Grant
  • 4823700
  • Patent Number
    4,823,700
  • Date Filed
    Friday, October 16, 1987
    37 years ago
  • Date Issued
    Tuesday, April 25, 1989
    35 years ago
Abstract
A seeker head and an associated electronic system are mounted to the front end of a warhead in order to guide the missile to the target and to initiate detonation at the right time. To prevent the seeker head and the electronic system from confusing an impeding the hollow-charge jet produced by the hollow charge, the components arranged in front of the warhead are accelerated away from the warhead by a pyrotechnical charge shortly before hitting the target so that the seeker head and electronic system separate from the warhead and the hollow-charge jet produced by the warhead can thus hit the target without obstacle.
Description
Claims
  • 1. A missile, which comprises a missile case; a remote-controlled hollow charge warhead at the forward end of the case; at least one component arranged in front of the warhead for directing the missile to a target; and means for ejecting the at least one component arranged in front of the warhead in the flight direction upon closely approaching the target, before the warhead is detonated to obtain a piercing effect on said target.
  • 2. A missile according to claim I, wherein the means for ejecting the at least one component arranged in front of the warhead consists of a pyrotechnical charge arranged in a casing containing the at least one component.
  • 3. A missile according to claim 2, wherein the pyrotechnical charge is initiated by a non-contactual distance sensor comprising a proximity sensor.
  • 4. A missile according to claim 2, wherein the warhead and the pyrotechnical charge are initiated simultaneously, and the detonation of the warhead occurs in a retarded fashion by a delay member associated with said warhead.
  • 5. A missile according to claim 1, wherein the warhead is triggered by a mechanical distance sensor upon contact of the sensor with the target.
  • 6. A missile according to claim 5, wherein the mechanical distance sensor is placed into its operative position upon ejection of the at least one component.
  • 7. A missile according to claim 3, wherein the warhead and the pyrotechnical charge are initiated simultaneously, and the detonation of the warhead occurs in a retarded fashion by a delay member associated with said warhead.
  • 8. A missile according to claim 1, wherein the at least one component comprises a seeker head and associated electronic system arranged in a casing mounted on to the forward end of the missile case.
  • 9. A missile according to claim 8, wherein the casing is connected to the missile case by shear pins.
  • 10. A missile according to claim 9, wherein said casing also contains a pyrotechnical charge and said means for ejecting the at least one component including a device for igniting said pyrotechnical charge.
  • 11. A missile according to claim I, wherein said missile is a guided missile and said at least one component comprises a seeker head and associated electronic system arranged in a casing mounted onto the forward end of the missile case.
  • 12. A missile according to claim 1, wherein the at least one component is separated from the missile and is free of any mechanical connection with said missile.
  • 13. A missile which comprises a missile case; a hollow charge warhead at the forward end of the case; a seeker head and associated electronic system arranged in a casing mounted onto the forward end of the missile case for directing the missile to a target; and pyrotechnical charge means for ejecting the seeker head and associated electronic system out of a front end of the missile case, said charge means being arranged in front of the warhead for directing the seeker head and associated electronic system in a flight direction along an axial path of said missile when the missile is closely positioned to the target whereby the seeker head and associated electronic system is separated from the missile before the warhead is detonated to achieve a piercing effect on said target.
  • 14. A missile according to claim 13 wherein the warhead is triggered by a mechanical distance sensor upon contact of the sensor with the target and the pyrotechnical charge means are initiated by a proximity sensor.
  • 15. A guided missile having a missile case, a remote-controlled hollow charge warhead located within the case and at least one component arranged in front of the warhead for directing the missile to a target, the improvement wherein means are provided for ejecting the at least on.RTM.component arranged in front of the warhead in the flight direction upon closely approaching the target, before the warhead is detonated to obtain a piercing effect on said target; said means for ejecting the at least one component arranged in front of the warhead including a pyrotechnical charge arranged in a casing containing the at least one component, said casing being secured to a section of the missile case containing the remote-controlled hollow charge warhead.
  • 16. A guided missile according to claim 15, wherein the hollow charge warhead is triggered by a mechanical distance sensor upon contact of the sensor with the target.
  • 17. A guided missile according to claim 16, wherein the mechanical distance sensor is placed into an operative position upon ejection of the at least one component in the flight direction, said mechanical distance sensor in its operative position extending forwardly of the hollow charge warhead.
Priority Claims (1)
Number Date Country Kind
3414414 Apr 1984 DEX
Parent Case Info

This is a continuation of application Ser. No. 723,155, filed Apr. 15, 1985. This invention relates to a missile especially a guided missile equipped with a remote-controlled warhead such as a hollow charge or a projectile-forming charge and components arranged in front thereof; e.g., a seeker head and an electronic system, and means for ejecting the components in front of the warhead before the warhead is detonated. Missiles for combating armored targets normally exhibit warheads acting according to the hollow-charge principle; i.e., those penetrating the target by means of a high-energy beam (hollow charge; shaped charge) or by means of a projectile (P charge=projectile-forming charge; SFF=self-forging fragment). To obtain optimum effect, the warhead must be made to detonate at a specific distance from the target, amounting to about fourfold to tenfold the caliber in case of hollow charges. In this context, no components that can impede the deployment cf the remote effect are allowed to be present in front of the warhead. This condition is difficult to meet in guided missiles since usually a seeker head and the associated electronic system are arranged at the front end of the warhead. A typical example of such a missile has been disclosed, for example, in "Internationale Wehrrevue" (International Military Technology Review), issue 11/1981, page 1464. It is an object of the invention to provide a missile especially a guided missile wherein the warhead is made to detonate at the prescribed distance before hitting the target without being impeded by otherwise required components. This object has been attained by providing means for ejecting the components arranged in front of the warhead in the flight direction upon approaching the target before the warhead is being detonated. According to the invention, the components arranged in front of the warhead are ejected or separated from the missile closely in the vicinity of the target. Although this may have the consequence that the missile then no longer receives guidance signals, no corrections of the trajectory are normally to be expected any longer within the target distance range under consideration. In an investigated embodiment wherein a missile approaches the target at 100 m/s, the seeker head would have to be separated at a distance of 3 m from the target to be able to detonate the warhead, 24 ms later, at the optimum distance. It is clearly apparent that within this very brief time period no effective course corrections can any longer be performed, or need to be performed. The separation of the components arranged in front of the warhead can take place in various ways. Thus, these elements can be disintegrated by an explosive charge, for example, or the elements can be swung out laterally. However, it is more advantageous to move the elements away from the warhead in the axial, i.e. flight direction, in order to avoid interfering forces and/or moments that can cause rotation of the missile about one of the transverse axes. The ejection of the elements in the flight direction can be effected by mechanical power elements, for example a compression spring. However, since it is desirable to move the elements out of the way with maximum speed, against the aerodynamic forces which are, in part, considerable, a pyrotechnical charge is employed with preference.

US Referenced Citations (6)
Number Name Date Kind
2804823 Jablansky Mar 1957
3070018 Fahl Dec 1962
4284007 Arnell Aug 1981
4430943 Bock et al. Feb 1984
4498393 Fischer et al. Feb 1985
4567829 Ziemba et al. Feb 1986
Foreign Referenced Citations (4)
Number Date Country
127805 May 1984 EPX
2545923 Nov 1984 EPX
3137198 Apr 1983 DEX
1187739 Apr 1970 GBX
Non-Patent Literature Citations (1)
Entry
Maverick Missile Enters New Phase by Philip Geddes, International Defense Review 11/1981, pp. 1463-1468.
Continuations (1)
Number Date Country
Parent 723155 Apr 1985