Misting nozzle

Information

  • Patent Grant
  • 6772967
  • Patent Number
    6,772,967
  • Date Filed
    Monday, April 22, 2002
    22 years ago
  • Date Issued
    Tuesday, August 10, 2004
    20 years ago
  • Inventors
  • Examiners
    • Evans; Robin O.
    Agents
    • Parsons & Goltry
    • Parsons; Robert A.
    • Goltry; Michael W.
Abstract
A misting nozzle includes a nozzle body defining a conduit with a fluid inlet and a fluid outlet end. The nozzle also includes an aperture member having an opening therethrough with an aperture at one end. The opening is designed to receive the fluid outlet end therein. External threads on the nozzle body and mating internal threads in the opening releasably attach the aperture member to the nozzle body. A circumferentially extending surface is formed on the nozzle body adjacent the outlet end so as to abut a mating surface in the opening of the aperture member to prevent fluid flow between the fluid outlet and the aperture. Offset slots extend between the mating surfaces to provide fluid flow and are positioned to impart turbulence to the fluid prior to flowing through the aperture.
Description




FIELD OF THE INVENTION




This invention relates to misting nozzles.




More particularly, the present invention relates to misting nozzles which can be broken down for cleaning.




BACKGROUND OF THE INVENTION




In many geographical areas, such as dry or desert conditions, high air temperatures can be alleviated by creating a mist of water, which cools the air as it evaporates. The water is turned into a mist by passing it through very fine nozzles at relatively high pressures. One problem with this system is that the fine nozzles are easily clogged by foreign particles or by deposits left by evaporating water. Generally, in prior art nozzles the components are press-fit together and once foreign material or deposits from evaporation clog the nozzles, they must be discarded and replaced with entirely new nozzles.




I Also, prior art nozzles were constructed with a floating barrel that is loosely held in the body to direct water from the input to a spray aperture. When water is applied, the floating barrel may not seat properly and will be axially misaligned with the aperture so that water is not directed properly to the aperture and a uniform angular distribution does not occur.




Another problem with this system is the fact that the size of the nozzle aperture dictates the amount of water pressure and flow that must be used to create the mist. Water flow through the nozzle is very difficult to control since the amount of water flowing is directly dependent upon the size of the nozzle aperture. If the nozzles openings or apertures are too large, much of the water is wasted by producing droplets that are too large to efficiently evaporate. However, if the nozzle openings or apertures are too small they clog more often causing undue maintenance. Also, nozzles with very small aperture sizes are more difficult to manufacture.




It would be highly advantageous, therefore, to remedy the foregoing and other deficiencies inherent in the prior art.




Accordingly, it is an object the present invention to provide a new and improved misting nozzle.




Another object of the present invention is to provide a new and improved misting nozzle that can be easily cleaned, generally without removing the nozzle from the misting system.




And another object of the present invention is to provide a new and improved misting nozzle that produces mist more efficiently without requiring excessive water pressure or nozzle aperture sizes.




Still another object of the present invention is to provide a new and improved misting nozzle that is easy to manufacture and install.




SUMMARY OF THE INVENTION




Briefly, to achieve the desired objects of the present invention in accordance with a preferred embodiment thereof, provided is a misting nozzle including a nozzle body defining a conduit with a fluid inlet and a fluid outlet end. An aperture member has an opening therethrough and defining an aperture at one end. Apparatus is provided for detachably attaching the aperture member adjacent the outlet end of the nozzle body so that fluid flows from the conduit into the opening and through the aperture. Selfaligning fluid restricting apparatus is positioned in the fluid flow so as to impart a turbulence to the fluid prior to flowing through the aperture. In the preferred embodiment the fluid restricting apparatus includes a pair of offset slots positioned in the fluid flow.











BRIEF DESCRIPTION OF THE DRAWINGS




The foregoing and further and more specific objects and advantages of the invention will become readily apparent to those skilled in the art from the following detailed description of a preferred embodiment thereof, taken in conjunction with the drawings in which:





FIG. 1

is an exploded isometric view of a misting nozzle in accordance with the present invention;





FIG. 2

is an enlarged isometric view from the emission end of the nozzle body, portions thereof removed;





FIG. 3

is a side view of the emission end of the nozzle body, portions thereof broken away.





FIG. 4

is an end view of the nozzle body, from the emission end;





FIG. 5

is an end view of the misting aperture member from the emission end;





FIG. 6

is a sectional view as seen from the line


6





6


in

FIG. 5

; and





FIG. 7

is a sectional view of the nozzle body.











DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT




Turning now to the drawings in which like reference characters indicate corresponding elements throughout the several views, attention is directed to

FIG. 1

, which illustrates a misting nozzle


10


in accordance with the present invention. Misting nozzle


10


includes a nozzle body


12


and an aperture member


14


. Nozzle body


12


has a water inlet end


15


and an emission end


17


with a water conduit extending longitudinally therebetween. Inlet end


15


is constructed similar to a standard misting nozzle and includes outer threads


18


designed to be engaged in a standard misting system. An O-ring


19


is included to fit between misting nozzle


10


and the misting system to prevent leakage. Nozzle body


12


includes a portion


20


with an enlarged diameter and a knurled surface for easy handling and installation. It will of course be understood that misting nozzle


10


can include other apparatus for attachment to a standard misting system or a water source, such as barbed connectors, etc.




Emission end


17


of nozzle body


12


is tapered inwardly at a portion


22


and ends in a flat transverse surface


24


. A bore is provided radially through emission end


17


in communication with the inner conduit to form openings


25


on either side of emission end


17


(see

FIGS. 4 and 7

) to allow the flow of water from inlet end


15


radially outwardly from emission end


17


. Threads


27


are formed in the outer surface of emission end


17


of nozzle body


12


for receiving aperture member


14


threadedly engaged thereon. It will of course be understood that aperture member


14


is threadedly engaged on nozzle body


12


in this embodiment for convenience and other attachment methods and apparatus (e.g. bayonet connectors, etc.) can be used if desired.




Aperture member


14


has an elongated opening


30


formed therein with internal threads for receiving emission end


17


of nozzle body


12


therein. The inlet end of opening


30


has a radially enlarged portion


32


constructed to receive a longitudinally extending collar


34


on nozzle body


12


. An O-ring


35


is provided to fit between aperture member


14


and collar


34


within portion


32


of opening


30


to prevent leakage of water. Aperture member


14


has an enlarged diameter with a knurled outer circumference for easy handling. With aperture member


14


threadedly engaged on nozzle body


12


, knurled portion


20


and the knurled outer circumference of aperture member


14


form a substantially continuous surface. Here it should be noted that aperture member


14


can be conveniently unthreaded from nozzle body


12


, for cleaning or the like, without removing nozzle body


12


from the misting system.




As can be seen most easily in

FIG. 6

, opening


30


in aperture member


14


includes a conically inwardly tapering portion


38


, adjacent the outlet end of aperture member


14


. Portion


38


ends in an outlet misting aperture


40


through the outlet end of aperture member


14


.




Referring additionally to

FIGS. 2 and 3

, it can be seen that a pair of longitudinally extending slots


42


and


43


are formed in the outer surface of emission end


17


of nozzle body


12


. Slot


42


extends along one side of emission end


17


from a point between openings


25


, across tapered portion


22


, and ends in flat surface


24


. Slot


43


extends along the opposite side of emission end


17


from a point between openings


25


, across tapered portion


22


, and ends in flat surface


24


. The inlet end of slot


42


is positioned closer to one of openings


25


and the inlet end of slot


43


is positioned closer to the other opening


25


so that they are approximately 180 degrees apart but offset from the radius of emission end


17


, as can best be seen in FIG.


4


. Also the outlet ends of slots


42


and


43


are spaced from the longitudinal axis and are offset from the radius.




With aperture member


14


threadedly engaged on nozzle body


12


, collar


34


and O-ring


35


aid in ensuring proper alignment of aperture member


14


on nozzle body


12


so that aperture


40


is axially aligned with emission end


17


. With aperture member


14


properly aligned on nozzle body


12


, outer tapered portion


22


of emission end


17


fits tightly against inner tapered portion


38


of aperture member


14


substantially preventing the flow of water from openings


25


to aperture


40


. However, water can flow from openings


25


through slots


42


and


43


to aperture


40


. Because slots


42


and


43


are offset, the water flowing toward aperture


40


is directed into a clockwise whirl or spin. The spin of the water as it enters aperture


40


from slots


42


and


43


produces a turbulence that greatly enhances the misting action. While slots


42


and


43


are illustrated as extending generally longitudinally in this embodiment, it will be understood that other embodiments may be devised for offset slots that will impart a similar turbulence to fluid flowing into aperture


40


. For example, slots may be provided that follow a helical or partially circular path with the ends discharging water at an angle to aperture


40


. Such slots have the disadvantage, however, that they are somewhat harder to form in the metal surfaces.




Also, slots


42


and


43


provide a convenient apparatus for adjusting the amount of water flowing through misting nozzle


10


. That is, rather than changing the size of aperture


40


to change the amount of water flow, the size of slots


42


and


43


can be changed. Since slots


42


and


43


are internal, they are not as likely to be hampered by evaporation residue. Further, because there are two slots there is less chance of a complete obstruction by foreign particles. It will of course be understood that two slots are illustrated and described in this embodiment for convenience and any desired number of slots can be provided. It should also be noted that various aperture members


14


can be provided with different sized holes to provide different amounts and angles of spray. Thus, by simply changing aperture member


14


different flows and spray patterns can be achieved.




Accordingly, a new and improved misting nozzle has been described which is constructed so that it can be easily cleaned without removing the nozzle from the entire misting system. Further, components of the new and improved misting nozzle are self-aligning so that misaligned components are avoided. The new and improved misting nozzle produces mist more efficiently without requiring excessive water pressure or nozzle aperture sizes and is easy to manufacture and install. Because of the novel aligned components producing the turbulent action within the aperture member, water is more consistently broken into smaller particles of mist as the water exits the aperture. Further, aperture sizes can be easily and conveniently changed by simply changing the aperture member.




Various changes and modifications to the embodiment herein chosen for purposes of illustration will readily occur to those skilled in the art. To the extent that such modifications and variations do not depart from the spirit of the invention, they are intended to be included within the scope thereof which is assessed only by a fair interpretation of the following claims.




Having fully described the invention in such clear and concise terms as to enable those skilled in the art to understand and practice the same, the invention claimed is:



Claims
  • 1. A misting nozzle comprising:a nozzle body defining a conduit with a fluid inlet end and a fluid cutlet end; attachment apparatus carried by the fluid inlet end for detachably attaching the nozzle body into a misting system; an aperture member having an opening therethrough and defining an aperture at one end; apparatus detachably attaching the aperture member adjacent the outlet end of the nozzle body so that fluid flows from the conduit into the opening and through the aperture; the nozzle body includes an enlarged portion with a textured outer surface for gripping and the aperture member includes an enlarged outer surface forming a substantially continuous surface with the enlarged portion of the nozzle body; and self-aligning apparatus positioned in the fluid flow so as to impart a turbulence to the fluid prior to flowing through the aperture.
  • 2. A misting nozzle as claimed in claim 1 wherein the apparatus detachably attaching the aperture member to the nozzle body includes threads.
  • 3. A misting nozzle as claimed in claim 1 wherein the self-aligning apparatus positioned in the fluid flow includes at least one longitudinally extending slot positioned in the fluid flow.
  • 4. A misting nozzle as claimed in claim 3 wherein the longitudinally extending slot is offset to impart a whirling motion to fluid flowing from the conduit to the aperture.
  • 5. A misting nozzle as claimed in claim 4 wherein the nozzle body includes a circumferentially extending surface that abuts a mating surface in the opening of the aperture member to substantially limit fluid flow therebetween, and the slot extends between the surfaces to conduct fluid therethrough, the surfaces being positioned between the conduit fluid outlet end and the aperture in the aperture member.
  • 6. A misting nozzle as claimed in claim 3 wherein the apparatus positioned in the fluid flow includes two longitudinally extending slots positioned approximately 180 degrees apart around the circumference of the conduit fluid outlet end of the nozzle body and offset from a radius of the fluid outlet end.
  • 7. A misting nozzle as claimed in claim 1 further including a seal member carried by the nozzle body proximate the fluid outlet end, sealing the nozzle body to the aperture member.
  • 8. A misting nozzle as claimed in claim 1 further including a sealed member carried by the nozzle body proximate the fluid inlet end for sealing the nozzle body to the misting system.
  • 9. A misting nozzle comprising:a nozzle body defining a conduit with a fluid inlet end and a fluid outlet end, the conduct including a fluid outlet adjacent the fluid outlet end; attachment apparatus carried by the fluid inlet end detachably attaching the nozzle body into a misting system; an aperture member having an opening therethrough and defining an aperture at one end, the opening in the aperture member being designed to receive the fluid outlet end of the nozzle body therein; the nozzle body having external threads on the outer surface and the aperture member having mating internal threads in the opening for detachably attaching the aperture member to the nozzle body so that fluid flows from the fluid outlet in the conduit into the opening; the nozzle body includes an enlarged portion with a textured outer surface for gripping and the aperture member includes an enlarged outer surface forming a substantially continuous surface with the enlarged portion of the nozzle body; a circumferentially extending surface formed on the nozzle body adjacent the outlet end that abuts a mating surface in the opening of the aperture member, the mating surfaces being positioned to substantially limit fluid flow between the fluid outlet of the nozzle body and the aperture; and offset slots extending between the mating surfaces to provide fluid flow between the fluid outlet of the nozzle body and the aperture, the slots being positioned in the fluid flow so as to impart a turbulence to the fluid prior to flowing through the aperture.
  • 10. A misting nozzle as claimed in claim 9 further including a seal member carried by the nozzle body proximate the fluid inlet end, sealing the nozzle body to the misting system.
  • 11. A misting nozzle as claimed in claim 9 further including a seal Member carried by the nozzle body proximate the fluid outlet end, sealing the nozzle body to the aperture member.
US Referenced Citations (11)
Number Name Date Kind
2044694 Huss Jun 1936 A
2044696 Huss Jun 1936 A
2120611 Huss Jun 1938 A
2248728 Strosk Jul 1941 A
2562731 Murphy Jul 1951 A
2762657 Wilson Sep 1956 A
3053462 Schloz Sep 1962 A
3726482 Heinrichs Apr 1973 A
4142682 Bowen Mar 1979 A
4320875 Sutter Mar 1982 A
5934569 Soule et al. Aug 1999 A