The present invention relates to rotating blades in a turbomachine, and in particular, to a row of turbine blades with one or more internal cavities having a defined frequency mistuning for improved flutter resistance.
Turbomachines, such as gas turbine engines, include multiple stages of flow directing elements along a hot gas path in a turbine section of the gas turbine engine. Each turbine stage comprises a circumferential row of stationary vanes and a circumferential row of rotating blades arranged along an axial direction of the turbine section. Each row of blades may be mounted on a respective rotor disc, with the blades extending radially outward from the rotor disc into the hot gas path. A blade includes an airfoil extending span-wise along the radial direction from a root portion to a tip of the airfoil.
Typical turbine blades at each stage are designed to be identical aerodynamically and mechanically. These identical blades are assembled together into the rotor disc to form a bladed rotor system. During engine operation, the bladed rotor system vibrates in system modes. The blade displacement amplitudes caused by this vibration may be more severe in large blades, such as in low pressure turbine stages. For mechanically and aerodynamically identical blades, the aeroelastic modes are patterns of blade vibration with a constant phase angle between adjacent blades which affects the unsteady flow and aerodynamic work done on the blades. In most cases this serves to damp the vibration of adjacent blades. However, under certain conditions, the aerodynamic damping in some of the modes may become negative, which may cause the blades to vibrate in a self-excited manner, called flutter. When this happens, the vibratory response of the system tends to grow exponentially until the blades either reach a limit cycle or break. Even if the blades achieve a limit cycle, their amplitudes can still be large enough to cause the blades to fail from high cycle fatigue.
Frequency mistuning can cause system modes to be distorted by changing the phase angles of adjacent blades, so that the resulting new, mistuned system modes are stable, i.e., they all have positive aerodynamic damping. It may be desirable in some cases to be able to design blades with a certain amount of defined mistuning. Mistuning may be realized by varying the blade frequencies along the rotor disc in a defined manner. Defined mistuning can be a challenge in cooled turbine blades due to casting variation and core movement during the casting process.
Conventionally, mistuning has been implemented on solid blades by removing material on the blade tip, for example, by grinding, to change the frequency of some blades.
Briefly, aspects of the present invention are directed to an improved technique for implementing defined mistuning in a row of turbine blades with one or more internal cavities.
According to a first aspect of the invention, a bladed rotor system for a turbomachine is provided, which comprises a circumferential row of blades mounted on a rotor disc. Each blade comprises an airfoil having an outer wall delimiting an airfoil interior. The airfoil interior comprises one or more internal cavities. The row of blades comprises a first set of blades and a second set of blades. The airfoils of both the first and second sets of blades have identical outer shapes defined by an outer surface of the outer wall of the respective airfoils. The airfoils of the first set of blades are distinguished from the airfoils of the second set of blades by a geometry and/or position of at least one internal cavity, which is unique to blades of a given set. Thereby, the natural frequency of a blade of the first set differs from the natural frequency of a blade of the second set by a predetermined amount. Blades of the first set and the second set are alternately arranged in a periodic fashion in said circumferential row, to provide a frequency mistuning to stabilize flutter of the blades.
According to a second aspect of the invention a method is provided for producing a bladed rotor system. The method comprises forming a plurality of blades, each blade being formed, at least partially, by a casting process. Each blade comprises an airfoil having one or more internal cavities produced by respective core elements during the casting process. The plurality of blades includes a first set of blades and a second set of blades. The airfoils of both the first and second sets of blades have identical outer shapes defined by an outer surface of the outer wall of the respective airfoils. The casting process for forming the first set of blades differs from the casting process for forming the second set of blades, in that, the respective core element for producing at least one internal cavity has a different geometry and/or position during casting of a blade belonging to the first set, in relation to a blade belong to the second set. The geometry and/or position of the respective core element is kept substantially identical for forming blades of a given set. Thereby, the natural frequency of a blade of the first set differs from the natural frequency of a blade of the second set by a predetermined amount.
The invention is shown in more detail by help of figures. The figures show preferred configurations and do not limit the scope of the invention.
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration, and not by way of limitation, a specific embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and that changes may be made without departing from the spirit and scope of the present invention.
Referring now
The airfoils 10 extend radially outward into the flow path and extract energy from the working fluid, which causes the blades 2 to rotate about a rotation axis 7. As the airfoils 10 extract energy from the working fluid, the working fluid exerts a loading force on the airfoils 10. Variations in the loading force cause the blades 2 to deflect and vibrate. This vibration has a broad spectrum of frequency components, with the greatest amplitude at the natural resonant frequency of the blades 2. The vibration may have components in the tangential and axial directions.
An underlying idea of the illustrated embodiments involves designing the bladed rotor system 1 to have alternate mistuning of blade frequencies by modifying an internal geometry while keeping the external shape of the airfoils 10 uniform. In the illustrated examples, the bladed rotor system 1 is comprises two sets of blades 2, namely a first of blades 2 denoted by H, and a second set of blades 2 denoted by L. The airfoils 10 of both sets of blades H and L have identical outer shapes. The outer shape may be defined by a three-dimensional shape of the outer surface 12a of the respective airfoil outer wall 12 (see
To implement a defined mistuning to mitigate flutter of the blades 2, the blades of the first set H and the second set L may be alternately mounted around the rotor disc 3 in a periodic fashion, as shown in
In one embodiment, as illustrated herein, a bladed rotor system in accordance with the present inventive concepts may be formed, at least partially, by a casting process. In other embodiments, such a bladed rotor may be formed by other manufacturing methods, including but not limited to additive manufacturing processes.
Example embodiments of the present invention are now described referring to
Referring to
In one embodiment, the blades 10 may be manufactured by a casting process, such as an investment casting process, the basic principle of which is known to one skilled in the art and will not be further described. During casting, the internal cavities in the blades 2, such as the cavities 22, 24 and 26 are produced by a respective core element, which is subsequently removed after the casting process to produce these cavities. The final geometry of the internal cavities 22, 24, 26 thereby correspond to the geometry of the respective core elements. The casting process may sometimes be followed by an outer machining process to arrive at a final outer shape of the airfoil 10 as defined by the outer surface 12a of the outer wall 12. The outer shapes of the airfoils 10 of the first set H may be substantially identical to that of the airfoils 10 of the second set L, i.e., subject to standard manufacturing tolerances.
According to the present embodiment, the airfoils 10 belonging to the first set H are distinguished from the airfoils 10 belonging to the second set L by a geometry of one or more of the internal cavities 22, 24, 26, said geometry being unique for a given set H or L. In one embodiment, as shown, the geometry of only one of the internal cavities 26 is different for airfoils 10 belonging to the first set H, in relation to that of airfoils 10 belonging to the second set L. In this case, the geometries of the internal cavities 22 and 24 of the airfoils 10 of the first set H are substantially identical to the corresponding geometries of the internal cavities 22 and 24 of the airfoils 10 of the second set L, subject to manufacturing tolerances. The casting process for producing the blades 2 of the first set H and the blades 2 of the second set L are thereby different, in that they involve the use of different core geometries for producing at least one of the internal cavities. In this case, the respective core element for producing at least one internal cavity 26 during casting has a different geometry for blades 2 of the first set H, in relation to blades 2 of the second set L. The geometry of the respective core element for producing the internal cavity 26 is substantially identical for blades belonging to a given set H or L.
On account of the variation of casting core geometry, the airfoils 10 belonging to the first set H may have a different outer wall thickness or thickness distribution than that of the airfoils 10 belonging to the second set L. The outer wall thickness, as measured at a given point on the outer surface 12a of the outer wall 12 of the airfoil 10, may be defined as the shortest distance from said point on the outer surface 12a to any point on the inner surface 12b of the outer wall 12. The outer wall thickness may be uniform for all points on the outer surface 12a of the outer wall 12, or may vary along a span-wise and/or chord-wise extent of the outer wall 12. In the example shown in
In the embodiment illustrated in
The above-described embodiments are based on the recognition that the stiffness of the blades 2 may be impacted more by modifying a geometry at the trailing edge and tip portions of the airfoils 10 in relation to other locations. By limiting casting core variations to these specific locations, it may be possible to achieve a desired frequency mistuning with minimum variation in mass between the mistuned blades. In other embodiments, the difference in outer wall thickness may be provided along the entire extent of the outer wall 12, or to other portions having different chord-wise and/or span-wise extents than that illustrated above.
In one embodiment, the difference between the outer wall thickness tH of the airfoils 10 belonging to the first set H and the corresponding outer wall thickness tL of the airfoils 10 belonging to the second set L is not constant but varies along chord-wise and/or span-wise directions within the designated portion mentioned above. In an exemplary embodiment, a maximum difference between the outer wall thickness 44 of the airfoils 10 belonging to the first set H and the corresponding outer wall thickness tL of the airfoils 10 belonging to the second set L is equal to or less than 20% of a corresponding nominal outer wall thickness of the airfoils 10.
Referring to
According to the present embodiment, the airfoils 10 of the first set H are distinguished from the airfoils 10 of the second set L by a position of one or more of the internal cavities 22, 24, 26, said position being unique to blades 2 of a given set H or L. In one embodiment, as shown, the position of only one of the internal cavities 26 is different for airfoils 10 belonging to the first set H, in relation to that of airfoils 10 belonging to the second set L. In this case, the positions of the internal cavities 22 and 24 of the airfoils 10 belonging to the first set H are substantially identical to the corresponding positions of the internal cavities 22 and 24 of the airfoils 10 belonging to the second set L, subject to casting tolerances. The casting process for producing the blades 2 of the first set H and the blades 2 of the second set L are thereby different, in that they involve different core positions for producing at least one of the internal cavities. In this case, the respective core element for producing at least one internal cavity 26 has a different position during casting in case of the blades 2 of the first set H, in relation to blades 2 of the second set L. The position of the respective core element for producing the internal cavity 26 may be substantially identical for blades of a given set H or L.
In the example shown in
In one embodiment, the geometries of each of the internal cavities 22, 24, 26 of an airfoil 10 of the first set H (and the respective core elements for producing them) may be substantially identical to the geometries of the corresponding internal cavities 22, 24, 26 of an airfoil 10 of the second set L (and the respective core elements for producing them). In such a case, it may be possible to provide a desired frequency mistuning based on a defined variation in core position, resulting in different blade stiffnesses but with essentially no variation in mass between the mistuned blades. As illustrated herein, a required difference in blade stiffness may be achieved by limiting the variation in core position to only the trailing edge cooling passage 26. In various embodiments, a variation in core position may be applied for any one or more or all of the internal cavities 22, 24 and 26.
While specific embodiments have been described in detail, those with ordinary skill in the art will appreciate that various modifications and alternative to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention, which is to be given the full breadth of the appended claims, and any and all equivalents thereof.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/027502 | 4/13/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/199320 | 10/17/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2862686 | Bartlett | Dec 1958 | A |
2916258 | Klint | Dec 1959 | A |
4097192 | Kulina | Jun 1978 | A |
5281084 | Noe | Jan 1994 | A |
6042338 | Brafford | Mar 2000 | A |
9546552 | Schoenenborn | Jan 2017 | B2 |
9932840 | Fulayter | Apr 2018 | B2 |
20040208741 | Barb | Oct 2004 | A1 |
20130236326 | Duong et al. | Sep 2013 | A1 |
20150110604 | Calza et al. | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
2725193 | Apr 2014 | EP |
2942481 | Nov 2015 | EP |
H0861002 | Mar 1996 | JP |
2012117436 | Jun 2012 | JP |
2015520321 | Jul 2015 | JP |
Entry |
---|
PCT International Search Report and Written Opinion of International Searching Authority dated Oct. 1, 2018 corresponding to PCT International Application No. PCT/US2018/027502 filed Apr. 13, 2018. |
Number | Date | Country | |
---|---|---|---|
20210010375 A1 | Jan 2021 | US |