The description relates generally to optical devices, more particularly to methods and apparatus related to mitigation of defects in optical devices, for example, flat panel displays, electrochromic windows and the like.
Optical devices include photovoltaics, electrochromic devices, thermochromic devices, flat panel displays and the like. Advancements in optical device technology have increased dramatically in recent years including ever lower levels of defectivity in the thin film device that generates the desired optical and/or electrical properties. This is particularly important in devices where visual perception of the device is important, because defects often manifest themselves as visually discernible, and thus unattractive, phenomenon to the end user. Still, even with improved manufacturing methods, optical devices have some level of defectivity. Moreover, even if an optical device is manufactured with no visible defects, such visible defects may manifest during testing and/or deployment of the optical device. One particularly troublesome defect is an electrical short circuiting defect in an optical device.
Various methods herein can be applied to virtually any optical device that includes a material that can be isolable locally or where the defect is stationary; e.g., all solid state electrochromic devices are well suited for methods described herein. Herein are described methods for circumscribing defects in optical devices, e.g., in switchable electrochromic windows. For convenience, methods are described in terms of application to electrochromic devices; however, this is only meant as a means to simplify the description. Methods described herein may be performed on an electrochromic device of an electrochromic lite prior to incorporation into an insulated glass unit (IGU), after incorporation into an IGU (or laminate), or both.
Certain aspects pertain to a method of forming a laser ablation perimeter surrounding a defect in an optical device, the method including: a) starting application of a laser at a first fluence level in a first region of the laser ablation perimeter; b) translating the laser from the first region to a second region of the laser ablation perimeter, while increasing the fluence level of the laser as it transitions from the first region to the second region; and c) returning the laser to the first region in order to close the perimeter while decreasing the fluence level of the laser; wherein the energy about the laser ablation perimeter is substantially uniform and the overlap of the laser in the first region is at least about 25%. Decreasing the fluence level may include defocusing the laser.
Certain aspects pertain to a method of forming a laser ablation perimeter surrounding a defect in an optical device, the method including forming the laser ablation perimeter by overlapping a starting and a stopping laser ablation position, wherein the overlap of the starting and the stopping positions is less than about 25%.
Certain aspects pertain to a method of forming a laser ablation perimeter surrounding a defect in an optical device, the method including: a) starting application of a laser at a first position within an area that will be surrounded by the laser ablation perimeter; b) translating the laser from the first position to a second position, the second position being a part of the laser ablation perimeter; c) translating the laser about the defect until the laser focus is proximate the second position; d) closing the laser ablation perimeter by overlapping the second position with the laser focus; and e) returning the laser to the area surrounded by the laser ablation perimeter. In one embodiment, e) includes returning the laser to the first position.
In embodiments where overlapping laser lines or points do not include overlap between start and stop positions of a laser, the overlap can be between about 10% and about 100% of the laser line or point, or between about 25% and about 90% of the laser line or point, or between about 50% and about 90% of the laser line or point.
Certain aspects pertain to a method of forming a laser ablation perimeter surrounding a defect in an optical device, the method including: a) starting application of a laser at a first position, within the line that will define the laser ablation perimeter; b) translating the laser about the defect until the laser focus is proximate the first position; c) closing the laser ablation perimeter by overlapping the laser focus with the first position; and d) moving the laser to the area surrounded by the laser ablation perimeter. In one embodiment, d) includes moving the laser to the center of the perimeter. In one embodiment, d) includes moving the laser inside the first position in a spiral pattern, at least some overlap occurring in the spiral pattern.
Certain aspects pertain to a method of forming a laser ablation perimeter surrounding a defect in an optical device, the method including: a) starting application of a laser at a first position, within the area that will be surrounded by the laser ablation perimeter; b) translating the laser from the first position to a second position, the second position being a part of the laser ablation perimeter; c) translating the laser about the defect until the laser focus is proximate the second position; and d) closing the laser ablation perimeter by overlapping the second position with the laser focus, wherein the closure position is also the stopping position of the laser.
Certain aspects pertain to a method of forming a substantially circular laser ablation perimeter surrounding a defect in an optical device, the method including: a) starting application of a laser at a first position, the first position located at what will be the center of the substantially circular laser ablation perimeter; b) translating the laser from the first position to a second position, the second position being a part of the laser ablation perimeter; c) translating the laser about the defect in a substantially circular pattern until the laser focus is proximate the second position; d) closing the laser ablation perimeter by overlapping the second position with the laser focus; and e) returning the laser to the first position where the laser ablation is ceased.
Certain aspects pertain to a method of forming a laser ablation perimeter surrounding a defect in an optical device, the method comprising: a) energizing a laser while the laser beam is shuttered; b) allowing the laser to reach a steady state energy level; and c) circumscribing the defect with the laser.
Certain aspects pertain to a method of forming a laser ablation perimeter surrounding a defect in an optical device, the method including: a) starting application of a laser at a starting position, within the area that will be surrounded by the laser ablation perimeter; b) translating the laser from the first position and about the defect until the laser focus crosses its own path, but not at the starting position. The laser may be stopped at the crossing point or once past the crossing point.
Certain aspects pertain to a method of forming a laser ablation perimeter surrounding a defect in an optical device, the method including: a) starting application of a laser at a first position, within the area that will be surrounded by the laser ablation perimeter; b) translating the laser from the first position to a second position, the second position being a part of the laser ablation perimeter; and c) translating the laser about the defect until the laser focus crosses its own path, between the first and second position. The laser may be stopped at the crossing point or once past the crossing point.
Certain aspects pertain to a method of forming a laser ablation perimeter about a defect in an optical device. The method includes starting application of a laser with a laser focus at a first position located proximate the defect and at least partially mitigating the defect. The method moves the laser focus from the first position to a second position at the laser ablation perimeter. The method also moves the laser focus along the laser ablation perimeter until the laser focus is proximate the second position and then closes the laser ablation perimeter. There may be an overlap at the second position.
Certain aspects pertain to a method of ablating a defect in an optical device. The method includes starting application of a laser with a laser focus at a first position at or near the defect and moving the laser focus to cover one or more regions around the defect. The laser focus can be moved to cover the regions by, for example, rasterizing the laser focus over the one or more regions. There may be overlap of the laser focus during rasterizing, or not. A regular or irregular area of laser ablation may result.
Certain aspects pertain to a method of determining a polygon ablation pattern for mitigating one or more defects in an optical device. The method includes (a) identifying spatial coordinates of one or more defect areas in a first image of the optical device taken when tinted, (b) defining a region of interest around at least one defect area of the one or more defect areas, and (c) determining a polygon boundary around the at least one defect area in the region of interest to define the polygon ablation pattern. In one aspect, the method also includes directing, or causing the direction of, one or more laser spots to (i) follow the polygon boundary and/or (ii) scan over a region within the polygon boundary.
Certain aspects pertain to a method of mitigating one or more defects in an optical device. The method includes: (a) identifying spatial coordinates of one or more defect areas in an image of the optical device taken when tinted, (b) determining a polygon boundary around the one or more defect areas, and (c) directing, or causing the direction of, one or more laser spots to follow along the polygon boundary to mitigate the one or more defects in the optical device. In one aspect, the one or more laser spots are configured to start and stop within the polygon boundary. In one aspect, the one or more laser spots follow a path that overlaps, e.g., by 10%. In one aspect, the depth of laser ablation is at least through one layer of the optical device.
These and other features and advantages will be described in further detail below, with reference to the associated drawings.
The following detailed description can be more fully understood when considered in conjunction with the drawings in which:
For the purposes of brevity, embodiments described below are described in terms of an electrochromic lite. One of ordinary skill in the art would appreciate that methods and apparatus described herein can be used for virtually any optical device having shorting type defects. Optical devices include electrochromic devices, thermochromic devices, flat panel displays, photovoltaic devices, and the like. Also, various embodiments are described in terms of forming a laser ablation perimeter about a defect. Typically, these perimeters are drawn or described as being circular. This is not necessary, and the perimeters can be of any shape, whether regular or irregular. Lasers are particularly useful in forming the perimeters, but other focused energy sources can be substituted for any embodiment described herein; this is particularly so when the focused energy source has associated transient energy flux associated with powering up or turning off the focused energy applied to perform the process. Other focused energy sources may include ion beams, electron beams, and electromagnetic beams having different frequencies/wavelengths, for example.
For context, a description of electrochromic devices and defectivity in electrochromic devices is presented below. For convenience, solid state and inorganic electrochromic devices are described, however, the embodiments are not limited in this way, i.e., the embodiments apply to any device where a defect, e.g., an electrical shorting defect, can be excised by circumscription with a laser or other suitable energy source.
Certain devices employ electrochromic and counter electrode (ion storage) layers that are complementarily coloring. For example, the ion storage layer 110 may be anodically coloring and the electrochromic layer cathodically coloring. For device 100 in the bleached state as depicted in
Electrochromic devices, e.g., those having distinct layers as described above, can be fabricated as all solid state and inorganic devices with low defectivity. Such all solid-state and inorganic electrochromic devices, and methods of fabricating them, are described in more detail in U.S. patent application Ser. No. 12/645,111, entitled, “Fabrication of Low-Defectivity Electrochromic Devices,” filed on Dec. 22, 2009 and naming Mark Kozlowski et al. as inventors, and in U.S. patent application Ser. No. 12/645,159 (now U.S. Pat. No. 8,432,603), entitled, “Electrochromic Devices,” filed on Dec. 22, 2009 and naming Zhongchun Wang et al. as inventors, both of which are incorporated by reference herein for all purposes.
It should be understood that the reference to a transition between a bleached state and colored state is non-limiting and suggests only one example, among many, of an electrochromic transition that may be implemented. Unless otherwise specified herein, whenever reference is made to a bleached-colored transition, the corresponding device or process encompasses other optical state transitions, such as non-reflective-reflective, transparent-opaque, etc. Further, the term “bleached” refers to an optically neutral state, for example, uncolored, transparent or translucent. Still further, unless specified otherwise herein, the “color” of an electrochromic transition is not limited to any particular wavelength or range of wavelengths. As understood by those of skill in the art, the choice of appropriate electrochromic and counter electrode materials governs the relevant optical transition.
Any material having suitable optical, electrical, thermal, and mechanical properties may be used as substrate 102. Such substrates include, for example, glass, plastic, and mirror materials. Suitable plastic substrates include, for example, acrylic, polystyrene, polycarbonate, allyl diglycol carbonate, SAN (styrene acrylonitrile copolymer), poly(4-methyl-1-pentene), polyester, polyamide, etc. If a plastic substrate is used, it is preferably barrier protected and abrasion protected using a hard coat of, for example, a diamond-like protection coating, a silica/silicone anti-abrasion coating, or the like, such as is well known in the plastic glazing art. Suitable glasses include either clear or tinted soda lime glass, including soda lime float glass. The glass may be untempered, strengthened (heat or chemically) or tempered. An electrochromic device with glass, for example, soda lime glass, used as a substrate may include a sodium diffusion barrier layer between the soda glass and the device to prevent diffusion of sodium ions from the glass into the device. Both glass and plastic substrates are compatible with embodiments described herein, so long as their properties are accounted for in the described methods. This is explained in further detail below.
Certain electrochromic devices may include reflective materials in one or both electrodes in the device. For example, an electrochromic device may have one electrode that colors anodically and one electrode that becomes reflective cathodically. Such devices are compatible with embodiments described herein so long as the reflective nature of the device is taken into account. This is explained in more detail below.
The all solid state and inorganic electrochromic devices described above have low defectivity and high reliability, and thus are well suited for electrochromic windows, particularly those with large format architectural glass substrates.
Not all electrochromic devices have a distinct ion conductor layer as depicted in
Quite surprisingly, it has been discovered that high quality electrochromic devices can be fabricated without depositing an ionically conducting electrically insulating layer. In accordance with certain embodiments, the counter electrode and electrochromic layers are formed immediately adjacent one another, often in direct contact, without separately depositing an ionically conducting layer. It is believed that various fabrication processes and/or physical or chemical mechanisms produce an interfacial region between contacting electrochromic and counter electrode layers, and that this interfacial region serves at least some functions of an ionically conductive electronically insulating layer as in devices having such a distinct layer. Such devices, and methods of fabricating them, are described in U.S. patent applications, Ser. No. 12/772,055 (now U.S. Pat. No. 8,300,298) and Ser. No. 12/772,075, each filed on Apr. 30, 2010, and in U.S. patent application Ser. Nos. 12/814,277 and 12/814,279, each filed on Jun. 11, 2010—each of the four applications is entitled “Electrochromic Devices,” each names Zhongchun Wang et al. as inventors, and each is incorporated by reference herein for all purposes. A brief description of these devices follows.
The all solid state and inorganic electrochromic devices described above have low defectivity and high reliability. However, defects can still occur. For context, visually discernible defects in electrochromic devices are described below in relation to conventional layered stack type electrochromic devices so as to more fully understand the nature of the disclosed embodiments.
As used herein, the term “defect” refers to a defective point or region of an electrochromic device. Defects may be characterized as visible or non-visible. Often a defect will be manifest as a visually discernible anomaly in the electrochromic window or other device. Such defects are referred to herein as “visible” defects. Typically, these defects are visible when the electrochromic device is transitioned to the tinted state due to the contrast between the normally operating device area and an area that is not functioning properly, e.g., there is more light coming through the device in the area of the defect. Other defects are so small that they are not visually noticeable to the observer in normal use. For example, such defects do not produce a noticeable light point when the device is in the colored state during daytime. A “short” is a localized electronically conductive pathway spanning the ion conductor layer or region (supra), for example, an electronically conductive pathway between the two transparent conductive oxide layers.
In some cases, an electrical short is created by an electrically-conductive particle spanning the ion conductor layer, thereby causing an electronic path between the counter electrode and the electrochromic layer or the TCO associated with either one of them. In some other cases, a defect is caused by a particle on the substrate (on which the electrochromic stack is fabricated) and such a particle causes layer delamination (sometimes called “pop-off”) where the layers do not adhere properly to the substrate. Delamination of layers can also occur without association with a particle contaminant and may be associated with an electrical short, and thus a halo. A delamination or pop-off defect can lead to a short if it occurs before a TCO or associated EC or CE is deposited. In such cases, the subsequently deposited TCO or EC/CE layer will directly contact an underlying TCO or CE/EC layer providing direct electronic conductive pathway. Particle related defects are illustrated below in
Referring to
Referring to
A typical defect causing a visible short may have a physical dimension of about 3 micrometers (sometimes smaller or larger, however) which is a relatively small defect from a visual perspective. However, these relatively small defects result in a visual anomaly, the halo, in the colored electrochromic window that are, for example, about 1 cm in diameter, and sometimes larger. Halos can be reduced significantly by isolating the defect, for example circumscribing the defect via laser scribe or by ablating the material directly without circumscribing it. For example, a circular, oval, triangular, rectangular, or other shaped perimeter is ablated around the shorting defect thus electrically isolating it from the rest of the functioning device (see also
One problem with ablating a defect directly is that there is a chance that there will be further shorting issues, e.g., a metallic particle could be melted, with its size increased relative its size to prior to ablation. This could cause further shorting. For this reason, it is often useful to circumscribe defects, leaving a “buffer zone” of non-defective device around the defect (see
A pinhole is a region where one or more layers of the electrochromic device are missing or damaged so that electrochromism is not exhibited. Pinholes are not electrical shorts, and, as described above, they may be the result of mitigating an electrical short in the device. A pinhole may have a defect dimension of between about 25 micrometers and about 300 micrometers, typically between about 50 micrometers and about 150 micrometers, and thus is much harder to discern visually than a halo. In order to reduce the visible perception of pinholes resulting from the mitigation of halos, in certain embodiments the size of a purposely-created pinhole is minimized. In one embodiment, a laser ablation circumscription has an average diameter of about 400 micrometers or less, in another embodiment about 300 micrometers or less, in another embodiment about 200 micrometers or less, and in yet another embodiment about 100 micrometers or less. Depending upon the end user, pinholes on the larger side of this size regime tend not to be noticeable. If possible, laser ablation circumscriptions are made on the smaller side of this size regime, e.g., about 200 micrometers or less.
The left-hand portion of
Laser isolation need not penetrate all the layers of the device stack, e.g., as depicted in
Referring to
This type of closed pattern, where the start and end point overlap each other and are part of the perimeter thus formed, creates further problems. Although it isolates the defect within it, perimeters formed in this way have problems in the region where the ablation start and end overlap each other. That is, for any particular device, a particular fluence (energy delivered per unit area) is chosen such that it is enough to ablate the device layers and effectively electrically isolate one area of the device from another. This is effective for the majority of the perimeter region when a defect is circumscribed, but in the area where the laser starts, and where the start and finish overlap each other, there is often excessive energy which results in stack melting and electrical shorting of the film stack in that area. This is particularly true of the point where the laser starts. There is a transient energy flux created when the laser is energized. This excess energy is imparted to the device when the laser first strikes the device. This is depicted in a micrograph in
One method to overcome the above-described problem of excess energy due to the transient flux during laser energizing is to shutter the laser beam until it reaches steady state energy level and then to apply the laser to the circumscription pattern. In this way excess energy can be avoided. One embodiment is a method of forming a laser ablation perimeter surrounding a defect in an optical device, the method including: a) energizing a laser while the laser beam is shuttered; b) allowing the laser to reach a steady state energy level; and c) circumscribing the defect with the laser. This method may be used with any circumscription pattern described herein, because the issue of excessive energy is avoided by use of the shutter. For example, a conventional closed pattern as described in relation to
Another method to overcome the above-described problem of excess energy is to make a conventional perimeter, but to overlap the starting and ending positions of the laser beam only enough so as to close the perimeter but not create excess energy (e.g., to minimize melting and shorting created thereby); the smaller the overlap, the smaller the portion of the device that may have shorting due to excess energy. Because the overlap is minimized, high precision is necessary to ensure both complete closure of the perimeter (to ensure electrical isolation) as well as minimum damage due to excess energy in the overlap region (thus causing electrical shorts). One embodiment is a method of forming a laser ablation perimeter surrounding a defect in an optical device, the method including forming the laser ablation perimeter without complete overlap of both the starting and the stopping the laser beam positions, wherein the overlap of the starting and stopping positions is less than about 25%. In one embodiment the overlap of the starting and stopping positions is less than about 10%, and in another embodiment, less than about 5%. However, this method may need more adjustments than other methods described below, as excess energy may occur with the transient energy flux at laser startup; e.g., overlapping of the start and finish points may be irrelevant because the start point itself may cause excessive fluence. Other embodiments compensate for this, as described below.
In one embodiment, laser circumscription is performed in a closed pattern as in a conventional sense described above, with greater than about 25% overlap of starting and stopping positions, but where a process window is chosen such that lower fluence is used at the beginning and end of the circumscription (e.g., during the transient fluence conditions associated with starting and stopping the laser) than over the remainder of the circumscription. That is, the laser circumscription employs a two phase process window, including a transient process condition (at the beginning and/or end of the scribe) and a steady state process condition during the remainder of the laser scribe process. In this embodiment, excessive energy is avoided by lowering the energy delivered at the start and end of the perimeter thus formed, that is, during the transient process condition. One embodiment is a method of forming a laser ablation perimeter surrounding a defect in an optical device, the method including: a) starting application of a laser at a first fluence level in a first region of the laser ablation perimeter; b) translating the laser from the first region to a second region of the laser ablation perimeter, while increasing the fluence level of the laser as it transitions from the first region to the second region: and c) returning the laser to the first region in order to close the perimeter while decreasing the fluence level of the laser, wherein the energy about the laser ablation perimeter is substantially uniform and the overlap of the laser in the first region is at least 25%. By attenuating the fluence at the start and ending positions of the laser, during which otherwise excess energy would result, an ablation perimeter of substantially uniform energy is achieved. Decreasing the fluence level can be achieved, for example, by defocusing the laser, while increasing the fluence can be achieved by focusing the laser. One of ordinary skill in the art would appreciate that other ways of increasing and decreasing the fluence are possible. In other embodiments, laser perimeters are formed without having to change the fluence at any point during formation of the perimeter. These embodiments are described in more detail below.
In certain embodiments, a laser perimeter is formed by starting and/or stopping the scribing process within the perimeter, that is, within the area surrounded by the perimeter. The distance within the perimeter that the starting and/or stopping point is located is chosen so that it is sufficiently far away from the perimeter scribe so there is no excessive energy that would occur otherwise at the perimeter. The starting and stopping point need not be at the same location, but can be. For example, in one embodiment, the scribe starts and ends within the perimeter formed at the center of a circular perimeter. This is depicted in
The top portion of
The bottom portion of
By using patterns such as described in relation to
In some embodiments, the starting point of the laser focus is located near or at the defect (e.g., a pinhole defect). By starting the laser focus at this location, the laser can at least partially, if not entirely, mitigate the defect by vaporize the materials in a region at or near the defect before the laser focus is moved to another location along the ablation perimeter. Vaporizing the materials in this region may diffuse light better than if the defect were only circumscribed. An exemplary method of forming a laser ablation perimeter about a defect in an optical device includes: a) starting application of a laser with a laser focus at a first position located proximate the defect; b) at least partially mitigating the defect; c) moving the laser focus from the first position to a second position that is part of the laser ablation perimeter; d) moving the laser focus along the laser ablation perimeter until the laser focus is proximate the second position; and e) closing the laser ablation perimeter. In some cases, closing the laser ablation perimeter includes overlapping the laser focus at the second position. The overlapping of the second position is as described above in relation to
One embodiment is a method of forming a laser ablation perimeter about a defect in an optical device including: a) starting application of a laser at a first position, within an area that will be surrounded by the laser ablation perimeter; b) translating the laser focus from the first position to a second position, the second position being a part of the laser ablation perimeter; c) translating the laser about the defect until the laser focus is proximate the second position; d) closing the laser ablation perimeter by overlapping the second position with the laser focus; and e) returning the laser to a position within the area surrounded by the laser ablation perimeter. The laser is stopped after e). The overlapping of the second position is as described above in relation to
One embodiment is a method of forming a laser ablation perimeter about a defect in an optical device including: a) starting application of a laser at a first position, within the area that will be surrounded by the laser ablation perimeter; b) translating the laser from the first position to a second position, the second position being a part of the laser ablation perimeter; c) translating the laser about the defect until the laser focus is proximate the second position; and d) closing the laser ablation perimeter by overlapping the second position with the laser focus, wherein the closure position is also the stopping position of the laser. The overlap is as described above with respect to
One embodiment is a method of forming a laser ablation perimeter about a defect in an optical device including: a) starting application of a laser at a first position, within the line that will define the laser ablation perimeter; b) translating the laser about the defect until the laser focus is proximate the first position; c) closing the laser ablation perimeter by overlapping the laser focus with the first position; and d) moving the laser to within the area surrounded by the laser ablation perimeter. The overlap is as described above with respect to
One embodiment is a method of forming a laser ablation perimeter surrounding a defect in an optical device, the method including: a) starting application of a laser at a starting position, within the area that will be surrounded by the laser ablation perimeter; b) translating the laser from the first position and about the defect until the laser focus crosses its own path, but not at the starting position. The laser may be stopped at the crossing point or once past the crossing point.
One embodiment is a method of forming a laser ablation perimeter surrounding a defect in an optical device, the method including: a) starting application of a laser at a first position, within the area that will be surrounded by the laser ablation perimeter; b) translating the laser from the first position to a second position, the second position being a part of the laser ablation perimeter; c) translating the laser about the defect until the laser focus crosses its own path, between the first and second position. The laser may be stopped at the crossing point or once past the crossing point.
Laser ablation perimeters were formed in an electrochromic device using the pattern described in relation to
One embodiment is a method of ablating a defect (e.g., pinhole or short-related defect) with a laser focus spot that first locates the focus spot at or near the defect and then moves the focus spot to ablate over an ablation area that includes the defect area. This may be conveniently done by first focusing the laser at a location at or near the center of the defect, but the method does not necessarily need to do so. In some cases, the focus spot may be moved in such a way to cover one or more regions. These regions may overlap each other in some cases. A rasterizer may be used to move the focus spot over the one or more regions. The ablated area need not be a regular shape. The ablated area can be in the form of, for example, a circle, a rectangle, sawtooth pattern, a cross shape, or other shape.
Certain circumscription techniques are designed to mitigate a defect in an optical device by completely encapsulating and isolating the defect from the surrounding area using a circular laser ablation pattern to circumscribe around the defect. These circumscription techniques may be limited with respect to how small the circular pattern used to encapsulate the affected area can be. For example, if there is an elongated defect in the device, these circumscription techniques may scribe a circular area with a diameter based on the longest dimension of the defect. For instance, if an elongated defect is 600 μm in length and 10 μm in width, the circumscription procedure may scribe using a 650 μm radius circular pattern around the defect based on its length. A pinhole created using a 650 μm circular pattern could potentially be visible from 10 inches away from the tinted optical device lite, which might be considered objectionable if this pinhole were visible in the viewable area of the lite. In this instance, mitigation of this elongated defect using these circumscription techniques might result in the lite being unusable even though 99.9% of the visible surface area is defect free. Another example where circumscription techniques may have limitations as to the size of the circular pattern is with respect to a debris field of particles or other group of defects spread across the viewable area. To mitigate multiple defects in the device either a single, circular pattern is used to circumscribe all the defects or multiple circular patterns are used to circumscribe around individual defects respectively leaving multiple pinholes. Where multiple circular pattern scribes are used to de-activate individual defects, e.g., caused by particles, a larger deactivated area is created than the area covered by the particles themselves, resulting in unnecessary yield loss in the functional optical device. Moreover, ASTM standards have restrictions on the number of permissible pinholes within a certain distance of each other in the viewable area of an optical device lite (e.g., electrochromic lite).
Certain embodiments described herein are directed to methods of mitigating one or more defects (e.g., electrical shorts or any other aesthetically unpleasing defects) that includes a technique for generating a polygon ablation pattern based on a polygon boundary defined around one or more defect areas in an image of a tinted optical device lite. The polygon boundary is a map of co-ordinates for use in directing the laser spot to ablate one or more defects in the optical device lite, e.g., in the viewable area of the lite. The co-ordinates of the polygon boundary may be defined, e.g., to minimize the deactivated area from mitigation using the polygon ablation pattern. This technique for generating the polygon ablation pattern may enable a way of mitigating different types of defect shapes without having to use circumscription to create a large pinhole or multiple pinholes in the optical device that might be objectionable otherwise. The polygon boundary is adapted to the shape of a defect or a cluster of defects. The polygon boundary may be, for example, a triangle, a four-segment strip (e.g., rectangular or parallelogram), or a polygon with four or more segments in directions adapted to the shape of the defect or a cluster of defects. The polygon ablation pattern technique may enable the repair of a multitude of different defect types such as, e.g., scratches, scattered particle debris field, elongated clusters of particles, etc.
In certain aspects, the polygon ablation pattern technique employs imaging processing techniques. One or more images may be taken of the lite while the optical device is in a darkened tint state, for example. In some cases, back lit illumination (also referred to herein as “back light illumination”) is provided from the opposite side of the lite to provide background light transmitted through any areas (i.e. areas where the optical device is not tinting or is less than fully tinting to the darkened tint state) to increase the intensity of the bright areas in the image. The image may be captured using a microscopic camera or other image capturing device, e.g., mounted to an x-y stage to enable movement of the device to image different regions of the lite. In another example a non-optical image such as an infrared camera image can be taken of the lite. In the case of an infrared image, the “brightest spot” on the infrared image will correspond to the “hottest spot.”
In one aspect, imaging processing techniques are used to determine a polygon boundary for a polygon ablation pattern that would allow for the smallest deactivated area. The one or more defects may be mitigated using the polygon ablation pattern by directing a laser spot to follow a path along the polygon boundary and/or scan the laser spot across a region within the polygon boundary. For example, a laser controller may be programmed with instructions that cause the laser spot to follow the path along the polygon boundary determined by one or more imaging processing techniques. The laser spot may scan over a region within the polygon boundary by means of raster scanning or other coordinated movements, e.g., of an x-y stage or x-y stages upon which the optical device lite and/or the laser is mounted.
Certain embodiments pertain to methods of determining a polygon laser ablation pattern that can be used to mitigate one or more defects in an optical device lite. These methods employ imaging processing techniques to analyze one or more images of the optical device (e.g., electrochromic device) while tinted. Some examples of image processing techniques that can be used include image intensity gradient determination, image filtering, image thresholding, image cleaning, and morphological operations.
In certain aspects, a method of determining a polygon ablation pattern includes: (1) identifying spatial coordinates (e.g., coordinates of any spatial co-ordinate system including, e.g., cartesian, polar, or other coordinates) of a source or sources of one or more defects (e.g., electrical short or other aesthetically unpleasing defect) in an optical device lite; (2) defining a region of interest (ROI) around a center of one of the defect areas; and (3) determining a polygon ablation pattern by defining a polygon boundary (mapping of coordinates) based on a boundary around one defect area or a combined boundary around a cluster of defect areas in the ROI. The polygon boundary may be defined to minimize the area within to reduce the deactivated area that will result from laser scribing along the polygon boundary and/or scanning a laser spot across the area within the polygon boundary. In one aspect, the method includes identifying a region of the one or more defects by analyzing a first image taken of the entire viewable area of the optical device lite while the optical device is tinted and then taking a second image focused on the local region with the one or more defects. The second image may be of higher resolution than the first image. Alternatively, the tinted optical device lite may be visually inspected to locate the local region with visually-discernable bright areas or areas that are darker than the tint state.
Current leakage from an electrical short defect can prevent an optical device from tinting locally which may appear as a bright area in an image taken of an optical device lite in a darkened tint state. The bright area is typically surrounded by a darker portion (sometimes referred to as a “halo”). In one aspect, the method locates the source or sources of one or more defects in the optical device by analyzing the bright areas in an image (e.g., image of local region or image of viewable area) taken of a lite while the optical device is in a darkened tint state. The method may, for example, identify a center and a boundary of each of one or more defect areas in the optical device by analyzing an image (e.g., image of local region or image of viewable area) taken of the lite while the optical device is in a darkened tint state. For example, a defect area may be determined by identifying neighboring pixels in an image that have intensities above a threshold intensity.
One technique for identifying spatial coordinates of a source of a defect determines a pixel in the image or the background image with a peak (highest) or nearly peak intensity. A nearly peak intensity can refer to an intensity within a certain percentage (e.g., 2%, 3%, 4%, or 5%) of a maximum pixel intensity in the image. Alternatively, the spatial coordinates of the source of a defect or sources of defects may be determined by visually inspecting the image for bright areas and manually marks a defect region center on the image. The co-ordinates may be defined in any type of spatial coordinate system (e.g., cartesian, polar, etc.). The laser controller can use or transform these co-ordinates during mitigation.
In certain aspects, a defect area is identified by determining a grouping of neighboring image pixels (pixels adjacent each other) having intensities within a particular intensity range. In these cases, the spatial coordinates of the defect area may be a geometric center of the grouping of neighboring image pixels or the location of a pixel with the highest intensity in the grouping. For example, a defect area may be identified as a grouping of neighboring pixels having intensities within a range of the maximum intensity in the image or other maximum intensity value, e.g., neighboring pixels having intensities within 2% of the maximum intensity value.
To help identify defect areas in an image from other objects in the image, a background image may be generated from the defect image (image taken from the camera or other imaging device) to remove objects in the image and/or to smooth the image, e.g., by filtering and cleaning image processing techniques. For example, the image may be convolved with a low-pass filter (e.g., normalized box filter, Gaussian filter, median filter, or bilateral filter, or matched filter) to remove all image objects from the image. In one aspect, the spatial coordinates of one or more defect areas in a region of interest may be determined using a background image or other enhanced image.
The background image can be created using different approaches. In one implementation, a combination of simple thresholding and sharpening is used to locate all objects with sharp edges and intensity different than the background. These objects are then removed to get a ‘smooth’ the background image without noise from objects (defect and non-defect objects). In another implementation, a first image is captured and de-focused to get a blurry image. This will be considered the background to the image. Next, a second in-focus image is captured of the same location and is further processed to combined with the first image to generate the background image. In a third implementation, a rolling ball algorithm is used to calculate and subtract the background image. In a fourth implementation, the image is re-sampled at a lower resolution to get a background image.
In certain methods of determining a polygon laser ablation pattern, the polygon ablation pattern includes data establishing one or more polygon boundaries that enclose all detectable defect areas (i.e. all defect areas distinguishable by imaging processing techniques discussed herein) to be repaired within a region of interest. The region of interest (ROI) may be defined as a region in the image around the spatial coordinates of one of the defect areas in the image. For example, the region of interest may be defined as a circular region centered around a defect area center. In one aspect, the radius of the circular region is a preset value or an operator-defined value that is not determined from image data. For example, the radius may be assigned a fixed value such as 1 μm, 2 μm, 3 μm, etc. In another aspect, the radius is determined by analyzing the image data. For example, the radius may be calculated by evaluating intensities of pixels at different locations in the image or by evaluating intensity gradients of pixels around the defect area center. In one case, the radius is defined as the distance between the defect area center and an outermost pixel in a single defect area. In another case, the radius is defined as the distance between the defect area center and an outermost pixel in a cluster of defect areas in order to generate a polygon boundary that encloses all defect areas in the cluster.
In certain aspects of the polygon ablation pattern method, defect areas within the region of interest are identified and boundaries around individual image objects (also referred to as “defect areas” in an image) are determined. Defect areas in an image may be identified using image processing techniques such as one or more of image filtering, background subtraction, image segmentation, thresholding, and morphological operations. If there are multiple defect areas in the region of interest, the method may determine whether any of these defect areas can be grouped in a cluster of defect areas. For example, defect areas determined to be within a certain distance of one another may be considered as forming a cluster of defect areas. In this case, the boundaries of individual defect areas in the cluster are combined to define a combined boundary that encloses the entire region around the defect areas in the cluster. Alternatively, the defect areas may be identified by visually inspecting the image for objects in image and manually marking the centers of objects.
In certain aspects, the spatial coordinates of the boundary pixels along the border of each individual defect area in the region of interest are determined. For example, image data (original or enhanced image such as a background image or processed image such as a filtered or background subtracted image) may be analyzed to determine areas of high intensity gradients to identify image pixels at the borders of defect areas. In some cases, the image used in this determination is enhanced to increase intensity gradients at the boundaries of the defect areas to better distinguish boundary pixels from the surrounding pixels. For example, the image may be enhanced using thresholding or filtering to assign pixels above a threshold intensity value to a first intensity (e.g., maximum intensity value in the image) and assign other pixels in the image to a second intensity (e.g., minimum intensity value such as to enhance the intensity contrast (increase intensity gradients) at the boundaries of the defect regions in the region of interest to the surrounding pixels. In this case, the boundary of a defect area may be defined by the spatial coordinates of the outermost pixels of the region of the image with pixels having the first intensity. Another method for determining the boundaries of a defect area is to first sharpen the image using one or more filters such as a log filter (Laplacian or gaussian filter) and then apply thresholding. Alternatively, one or more edge filters, such as a sobel filter and/or a canny filter, can be used to locate the edges of individual defect areas.
In certain aspects, a combined boundary is computationally generated around a cluster of defect areas in the region of interest. In some cases, image processing techniques may be used to determine if there is a cluster of defects in the image and to combine the boundaries. For example, dilation and/or erosion may be used to determine the relative distances between defect areas in the region of interest to determine if there is a cluster of defect areas and to also determine the order of combining the boundaries of the defect areas in the cluster. Dilation adds pixels to the boundaries of objects in an image, while erosion removes pixels on object boundaries. For example, dilation may be used to determine the distance between defect areas, e.g., based on when and where the expanding boundaries of the defect areas meet neighboring defect areas during dilation. The distance between neighboring defect areas may be used to determine the sequence for combining the boundaries of defect areas, e.g., in order of closest neighboring defect area to furthest neighboring defect area. In addition or alternatively, the distance between neighboring defects may be used to determine which defects areas to exclude from or include in the cluster of defect areas within a connected boundary. For example, defect areas within a certain distance of each other may be in one cluster. As another example, a cluster may be determined by counting the number of objects found in the ROI. Dilation and erosion functions (or a combination of them like closing and opening functions) can be used to combine boundaries of neighboring regions within pre-determined proximity.
In one aspect, morphological operations are used to connect the boundaries of a cluster of defect areas to combine into a connected boundary. In another aspect, dilation followed by erosion (also referred to as “closing”) can be used to combine neighboring regions into one. Additionally, skeletonizing a binary image and combining that with the original will result in a combined region while minimizing area affected.
In one aspect, the spatial coordinates of the pixels at the boundary of a defect area or the pixels at the connected boundary around a cluster of defect areas may be used to define a map of co-ordinates (polygon boundary) in the polygon ablation pattern. The co-ordinates define the path of the laser spot of a polygon boundary and/or scan across the region enclosed within the polygon boundary to repair the one or more defects in the optical device.
In one aspect, the method also includes one or more laser ablation operations that implement the polygon ablation pattern defined in operation 1730 to mitigate the one or more defects in the optical device. The laser ablation operations need not penetrate all the layers of the optical device stack (e.g., electrochromic device stack of layers 104, 106, 108, 110, and 114 shown in
In certain implementations, the one or more laser ablation operations include a scribing process that causes one or more laser spots to follow a path along at least a portion of a polygon boundary of the polygon ablation pattern to enclose the one or more defect areas. An example of a laser path that follows along a polygon boundary 2372 of a polygon ablation pattern to surround a cluster of defects 2212 is shown in
In one aspect, the imaging device takes a first image of the entire viewable area of the optical device lite, and after a local region of the lite with one or more defects being mitigated is located, the imaging device takes a second image that is focused on the local region.
Returning to
At operation 1726, the spatial coordinates of the one or more defect areas in the background image are determined. For example, the spatial coordinates of a source of a defect may be determined by identifying a pixel or group of pixels in the background image having a peak (highest) or nearly peak intensity. A peak (highest) intensity can refer to a maximum pixel intensity value in the image or another maximum value. A near peak intensity can refer to any pixel intensity value that is within a certain percentage % (e.g., 2%, 3%, 4%, or 5%) of the maximum intensity value. If multiple neighboring pixels have the peak or near peak intensities, the spatial coordinates of the geometric center of the multiple neighboring pixels may be used.
In another embodiment, operation 1726 includes sub-operations 1722, 1726 and 1728 (omitting sub-operation 1724) and sub-operations 1726 and 1728 are performed by analyzing data from the first image of the tinted optical device received in sub-operation 1722.
In certain methods of determining a polygon laser ablation pattern, the polygon ablation pattern includes data establishing one or more polygon boundaries that enclose all detectable defect areas (i.e. all defect areas distinguishable by imaging processing techniques discussed herein) within a region of interest.
Returning to
At operation 1732, either the an image from the imaging device or an enhanced image (e.g., a background image) of one or more of the images from the imaging device is analyzed to identify all detectable defect areas in the region of interest to be repaired. The method may identify, for example, a defect area in an image by determining a grouping of neighboring image pixels (pixels adjacent each other) having peak or nearly peak intensity values. For example, a defect area may be identified as a grouping of neighboring pixels having intensities within a range of a maximum intensity value of all pixel intensity values in the image. In addition or alternatively, the method may identify a defect area in the region of interest by defining a boundary around the defect area. A boundary around a defect area may be determined by identifying boundary pixels at regions of high intensity gradient in the image. In some cases, the image is enhanced to increase intensity gradients at the boundaries to help distinguish boundary pixels from pixels surrounding the defect areas. For example, the image may be enhanced using thresholding or filtering to assign pixels above a threshold intensity value to a first intensity (e.g., maximum intensity) and assign other pixels in the image to a second intensity (e.g., minimum intensity value such as 0) to enhance the intensity contrast (increase intensity gradients) at the boundaries of the defect regions. In this example, the boundary of a defect area is defined by the spatial coordinates of the outermost boundary pixels in the region of the image with neighboring pixels having the first intensity.
At operation 1734, a mapping of spatial coordinates of one or more boundaries defined around all detectable defect areas in the region of interest. If there is a single detectable defect area in the region of interest, the mapping of spatial coordinates is one boundary around the one detectable defect area. If there is a cluster of defect areas in the region of interest, a combined boundary is defined around the cluster of defect areas based on the boundaries of the individual defect areas in the cluster. In some cases, morphological operations may be used to “connect” the boundaries of the defect areas in the cluster to combine the boundaries into a single connected region. Dilation and/or erosion techniques may be used, e.g., to determine the relative distances between defect areas in the region of interest to determine if there is a cluster of defect areas in the region of interest and/or the order of combining the boundaries of the defect areas in the cluster. For example, dilation may be used to incrementally add pixels to the boundaries of the defect areas to determine the relative distance between neighboring defect areas in the region of interest. The relative distance between neighboring defects may be used to determine which defect areas are in a cluster. For example, all defect areas within a certain distance from a neighboring defect area may be determined to be part of a single cluster. The distance between neighboring defect areas in a cluster may be used to determine the sequence for combining the boundaries of the defect areas. For example, the two closest defect areas may be combined first. The boundaries of defect areas in the cluster are combined to define a combined boundary that encloses the entire region around the defect areas in the cluster. The spatial coordinates of the pixels at the boundary of a single defect area or of the pixels at the connected boundary around a cluster of defect areas may be mapped to co-ordinates on the lite defining a polygon boundary in the polygon ablation pattern.
At operation 1736, the polygon ablation pattern for mitigating one or more defects in the optical device lite is defined based on the mapping of the spatial coordinates of the one or more boundaries. In one aspect, the mapping of co-ordinates is used to define a path of a laser spot along a polygon boundary around the one or more defects in the optical device lite. In addition or alternatively, the mapping of co-ordinates may be used to define a scanning (e.g., raster scanning) of a laser spot across a region enclosed within the polygon boundary.
In certain aspects, the polygon boundary used in the polygon ablation pattern may be defined by enlarging a boundary around one or more defect areas. In one aspect, the polygon boundary may be defined at spatial coordinates that are at a distance, e.g., 5 μm, 10 μm, etc., outward from the boundary. In another aspect, the polygon boundary may be defined at spatial coordinates that are based on dilating the boundary by a certain percentage 5%, 10%. For example, dilation may be used to add one or more pixels outward from the border of a combined region of a cluster of defects and the dilated region used to determine the polygon boundary for the ablation pattern.
Although the foregoing embodiments have been described in some detail to facilitate understanding, the described embodiments are to be considered illustrative and not limiting. It will be apparent to one of ordinary skill in the art that certain changes and modifications can be practiced without avoiding the scope of the following claims.
This application claims benefit of and priority to U.S. Provisional Application 62/970,581, filed on Feb. 5, 2020 and titled “MITIGATING DEFECTS USING POLYGON ABLATION PATTERN;” this application is a continuation-in-part of U.S. patent application Ser. No. 16/748,638, titled “CIRCUMSCRIBING DEFECTS IN OPTICAL DEVICES” and filed on Jan. 21, 2020, which is a continuation of U.S. patent application Ser. No. 14/398,117, filed on Oct. 30, 2014 and titled “CIRCUMSCRIBING DEFECTS IN OPTICAL DEVICES,” which is a national phase application under 35 U.S.C. § 371 of International PCT application PCT/US2013/041365 (designating the United States), filed on May 16, 2013 and titled “CIRCUMSCRIBING DEFECTS IN OPTICAL DEVICES,” which claims benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/649,184, filed on May 18, 2012, titled “CIRCUMSCRIBING DEFECTS IN OPTICAL DEVICES;” each of these applications is hereby incorporated by reference in its entirety and for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/016937 | 2/5/2021 | WO |
Number | Date | Country | |
---|---|---|---|
62970581 | Feb 2020 | US | |
61649184 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14398117 | Oct 2014 | US |
Child | 16748638 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16748638 | Jan 2020 | US |
Child | 17760289 | US |