The following disclosure relates to the field of printing, and in particular, to inkjet heads used in printing.
Inkjet printing is a type of printing that propels drops of ink (also referred to as droplets) onto a medium, such as paper, a substrate for 3D printing, etc. The core of an inkjet printer includes one or more print heads (referred to herein as inkjet heads) having multiple ink channels arranged in parallel to discharge droplets of ink. A typical ink channel includes a nozzle, a chamber, and a mechanism for ejecting the ink from the chamber and through the nozzle, which is typically a piezoelectric actuator connected to a diaphragm. To discharge a droplet from an ink channel, a drive circuit provides a drive waveform to the piezoelectric actuator of the ink channel that includes a jetting pulse. In response to the jetting pulse, the piezoelectric actuator generates pressure oscillations inside of the ink channel to push the droplet out of the nozzle. The drive waveforms provided to individual piezoelectric actuators control how droplets are ejected from each of the ink channels.
In an attempt to reduce the size of inkjet heads, the ink channels within the inkjet heads are moved closer together. Also, Drop on Demand (DoD) printing is moving towards higher productivity and quality, which requires small droplet sizes ejected at high jetting frequencies. The print quality delivered by an inkjet head depends on ejection or jetting characteristics, such as droplet velocity, droplet mass (or volume/diameter), jetting direction, etc. The performance of inkjet heads may be hindered by residual vibrations and crosstalk within the inkjet head. Crosstalk is a phenomenon where a jetting of a droplet in one ink channel creates an undesired effect in another ink channel. Crosstalk between ink channels may create variations in the jetting characteristics of the ink channels. For example, crosstalk may cause the droplet mass or droplet velocity to be decreased from a normal case (i.e., where there is no crosstalk). It is therefore desirable to mitigate the effects of crosstalk in an inkjet head to achieve high quality printing.
Embodiments described herein mitigate the effects of crosstalk in an inkjet head by modifying the drive waveforms supplied to the ink channels. The drive waveforms are pulse waveforms, where a piezoelectric actuator will actuate or “fire” on a pulse to jet a droplet of ink from its corresponding nozzle. In a scenario of negative crosstalk, for example, the drive waveforms may be modified to overshoot the target firing amplitude on a pulse. A pulse applied to piezoelectric actuators with a higher amplitude increases droplet velocity and weight to mitigate the effects of negative crosstalk. In a scenario of positive crosstalk, the drive waveforms may be modified to be lower than the target firing amplitude on a pulse. A pulse applied to piezoelectric actuators with a lower amplitude decreases droplet velocity and weight to mitigate the effects of positive crosstalk. The modification of the waveforms in this manner acts to mitigate the effects of crosstalk in the inkjet head.
In one embodiment, a system includes an inkjet head comprising a plurality of ink channels that jet droplets of a liquid material onto a medium using piezoelectric actuators. The system also includes a jetting pulse generator that provides drive waveforms to the piezoelectric actuators, where the drive waveforms include jetting pulses that cause activation of the piezoelectric actuators to jet the droplets from the ink channels. The system also includes a compensation controller that, responsive to crosstalk between the ink channels in the inkjet head due to the piezoelectric actuators, modifies an amplitude of the jetting pulses provided to the piezoelectric actuators to mitigate the crosstalk between the ink channels.
In another embodiment, the compensation controller increases the amplitude of the jetting pulses responsive to negative crosstalk between the ink channels.
In another embodiment, the compensation controller adjusts a leading edge of the jetting pulses to exceed a target jetting voltage.
In another embodiment, the compensation controller decreases the amplitude of the jetting pulses responsive to positive crosstalk between the ink channels.
In another embodiment, the compensation controller adjusts a leading edge of the jetting pulses below a target jetting voltage.
In another embodiment, the system includes a droplet analyzer that identifies the crosstalk between the ink channels in the inkjet head. The jetting pulse generator provides the drive waveforms to the piezoelectric actuators in adjacent ink channels, and the droplet analyzer measures jetting characteristics of the droplets jetted from the adjacent ink channels, and compares the jetting characteristics of the droplets to target characteristics to identify the crosstalk.
In another embodiment, the jetting characteristics comprise a velocity of the droplets.
In another embodiment, the jetting characteristics comprise a mass of the droplets.
Another embodiment comprises a method of mitigating crosstalk in an inkjet head. The method comprises providing drive waveforms to the piezoelectric actuators with a jetting pulse generator, where the drive waveforms include jetting pulses that cause activation of the piezoelectric actuators to jet the droplets from the ink channels. Responsive to crosstalk between the ink channels in the inkjet head due to the piezoelectric actuators, the method includes modifying an amplitude of the jetting pulses provided to the piezoelectric actuators to mitigate the crosstalk between the ink channels.
Another embodiment comprises a drive circuit that connects to an inkjet head having a plurality of ink channels that jets droplets of a liquid material onto a medium using piezoelectric actuators. The drive circuit provides drive waveforms to the piezoelectric actuators, where the drive waveforms include jetting pulses that cause activation of the piezoelectric actuators to jet the droplets from the ink channels. The drive circuit, responsive to the existence of crosstalk between the ink channels in the inkjet head due to the piezoelectric actuators, modifies the jetting pulses of the drive waveforms to increase or decrease an amplitude of the jetting pulses to mitigate effects of the crosstalk.
The above summary provides a basic understanding of some aspects of the specification. This summary is not an extensive overview of the specification. It is intended to neither identify key or critical elements of the specification nor delineate any scope particular embodiments of the specification, or any scope of the claims. Its sole purpose is to present some concepts of the specification in a simplified form as a prelude to the more detailed description that is presented later.
Some embodiments of the present disclosure are now described, by way of example only, and with reference to the accompanying drawings. The same reference number represents the same element or the same type of element on all drawings.
The figures and the following description illustrate specific exemplary embodiments. It will thus be appreciated that those skilled in the art will be able to devise various arrangements that, although not explicitly described or shown herein, embody the principles of the embodiments and are included within the scope of the embodiments. Furthermore, any examples described herein are intended to aid in understanding the principles of the embodiments, and are to be construed as being without limitation to such specifically recited examples and conditions. As a result, the inventive concept(s) is not limited to the specific embodiments or examples described below, but by the claims and their equivalents.
In this example, inkjet head 100 includes a housing 202, a series of plates 203-206, and a piezoelectric device 208. Housing 202 is a rigid member to which the plates 203-206 attach to form inkjet head 100. Housing 202 includes an opening 210 for piezoelectric device 208 to pass through and interface with a diaphragm plate 203. Housing 202 further includes one or more grooves 212 on a surface that faces plates 203-206 for supplying ink to the ink channels. Groove 212 includes one or more holes 213 that are in fluid communication with an ink reservoir.
The plates 203-206 of inkjet head 100 are fixed or bonded to one another to form a laminated plate structure, and the laminated plate structure is affixed to housing 202. The laminated plate structure includes the following plates: an orifice plate 206, one or more chamber plates 205, a restrictor plate 204, and diaphragm plate 203. Orifice plate 206 includes a plurality of nozzles 220 that are formed in one or more rows. Chamber plate 205 is formed with a plurality of chambers 221 that correspond with the nozzles 220 of orifice plate 206. The chambers 221 are each able to hold ink that is to be ejected out its corresponding nozzle 220. Restrictor plate 204 is formed with a plurality of restrictors 222. The restrictors 222 fluidly connect chambers 221 to the ink supply, and control the flow of ink into chambers 221. Diaphragm plate 203 is formed with diaphragms 223 and filter sections 224. Diaphragms 223 each comprise a sheet of a semi-flexible material that vibrates in response to actuation by piezoelectric device 208. Filter sections 224 remove foreign matter from ink entering into the ink channels.
Piezoelectric device 208 includes a plurality of piezoelectric actuators 230; one for each of the ink channels. The ends of piezoelectric actuators 230 contact diaphragms 223 in diaphragm plate 203. An external drive circuit (e.g., electronics 104) is able to selectively apply drive waveforms to piezoelectric actuators 230, which vibrate the diaphragm 223 for individual ink chambers. The vibration of diaphragms 223 causes ink to be ejected or jetted from its corresponding nozzle 220. Inkjet head 100 can therefore print desired patterns by selectively “activating” the ink channels to discharge ink out of their respective nozzles.
Piezoelectric actuator 230 is the actuating device for ink channel 302 to jet a droplet. Piezoelectric actuator 230 converts electrical energy directly into linear motion. To jet from ink channel 302, a drive waveform is provided to piezoelectric actuator 230 with one or more jetting pulses. A jetting pulse causes a deformation, physical displacement, or stroke of piezoelectric actuator 230, which in turn acts to deform a wall of chamber 310. Deformation of the chamber wall generates pressure waves inside ink channel 302 that are able to jet a droplet from ink channel 302 (when specific conditions are met). A standard jetting pulse is therefore able to cause a droplet to be jetted from ink channel 302 with the desired properties when ink channel 302 is at rest.
The following provides an example of jetting a droplet from an ink channel using jetting pulse 500, such as from ink channel 302 in
When ink channels 302 are fabricated close together as in
Drive circuit 601 includes a memory 602, a jetting pulse generator 604, and a compensation controller 606. Memory 602 comprises any device that stores data. Jetting pulse generator 604 comprises a circuit, firmware, or component that generates drive waveforms for piezoelectric actuators 630 of an inkjet head 620, where the drive waveforms include jetting pulses. A “jetting pulse” is defined as a pulse that causes a droplet to be jetted from an ink channel 622 with the desired properties. Jetting pulse generator 604 is configured to selectively provide the jetting pulses to ink channels 622 to discharge ink onto a medium. A medium described herein comprises any type of material upon which ink or another liquid is applied by an inkjet head for printing, such as paper, a substrate for 3D printing, cloth, etc.
Compensation controller 606 comprises a circuit, firmware, or component that adjusts, modifies, or changes a drive waveform for piezoelectric actuators of an inkjet head to compensate or mitigate for crosstalk between the ink channels in the inkjet head. Compensation controller 606 is able to modify the drive waveform output by jetting pulse generator 604. For example, compensation controller 606 may include one or more resistors that are added to or removed from a circuit of jetting pulse generator 604 to modify the drive waveform output by jetting pulse generator 604. Compensation controller 606 is able to change the shape of the drive waveform to mitigate for crosstalk in an inkjet head.
Inkjet system 600 may also include a droplet analyzer 610. Droplet analyzer 610 comprises a system that is able to identify crosstalk in an inkjet head based on the jetting characteristics of the droplets from the inkjet head. Droplet analyzer 610 may have different configurations in different embodiments. In one embodiment, droplet analyzer 610 may include a system that uses a visualization technique to analyze actual droplet jetting/ejection of an inkjet head. For example, a stroboscopic visualization technique may be used, which uses a high-resolution camera, a Laser Doppler Velocimetry (LDV) system, and a stroboscope to analyze droplet jetting from nozzles of an inkjet head. A visualization technique such as this may be used to measure the velocity and mass/volume of droplets that are jetted from nozzles of the ink channels. In another example, a modeling technique (e.g., Lumped Element Modeling (LEM)) may be used to simulate droplet jetting/ejection of an inkjet head. Droplet analyzer 610 is able to evaluate the actual performance of an inkjet head or model the performance of an inkjet head to identify crosstalk that exists or may exist within the head.
To begin, compensation controller 606 identifies crosstalk in inkjet head 620 (step 702). The step of “identifying” crosstalk in an inkjet head may be performed in a variety of ways. In one embodiment, a crosstalk value may be pre-provisioned in memory 602 indicating the type of crosstalk (e.g., negative or positive) that occurs in inkjet head 620. Compensation controller 606 may access memory 602, when connected to inkjet head 620, to identify the type of crosstalk that occurs within inkjet head 620.
In another embodiment, compensation controller 606 may actively identify the type of crosstalk that occurs within inkjet head 620 using droplet analyzer 610. To do so, droplet analyzer 610 may measure jetting characteristics of droplets from inkjet head 620 in response to a drive waveform. Drive circuit 601 provides a drive waveform to piezoelectric actuators 630 in adjacent ink channels 622 (step 710), measures jetting characteristics of the droplets jetted from the adjacent ink channels 622 (step 712), and compares the jetting characteristics of the droplets to target characteristics to identify crosstalk for inkjet head 620 (step 714). As an example, assume that inkjet head 620 has 192 ink channels in parallel. Drive circuit 601 may send a drive waveform to fire the piezoelectric actuator 630 in ink channel 1. Droplet analyzer 610 measures the jetting characteristics of the droplets discharged from ink channel 1, and compares the jetting characteristics of the droplets to target characteristics (e.g., jetting characteristics with no crosstalk or jetting characteristics expected from the inkjet head). Drive circuit 601 may then send a drive waveform to fire the piezoelectric actuators 630 in ink channels 1-2. Droplet analyzer 610 measures the jetting characteristics of the droplets discharged from ink channels 1-2, and compares the jetting characteristics of the droplets to target characteristics. Drive circuit 601 may then send a drive waveform to fire the piezoelectric actuators 630 in ink channels 1-3. Droplet analyzer 610 measures the jetting characteristics of the droplets discharged from ink channels 1-3, and compares the jetting characteristics of the droplets to target characteristics. This process may continue until a sufficient number of adjacent ink channels are fired to identify crosstalk (e.g., all 192 channels firing at the same time). Droplet analyzer 610 can measure the jetting characteristics of inkjet head 620 during the firing of adjacent ink channels 622, and plot the jetting characteristics as a percentage of the target characteristics.
An inkjet head may also have “positive crosstalk”. Positive crosstalk is a type of crosstalk that increases the jetting characteristics of ink channels.
When compensation controller 606 identifies crosstalk in inkjet head 620 (step 702 of
To mitigate the effects of crosstalk in inkjet head 620, compensation controller 606 modifies, changes, or alters the amplitude of the jetting pulses provided to the ink channels 622 (step 704). If inkjet head 620 has negative crosstalk between the ink channels 622, then compensation controller 606 increases the amplitude of the jetting pulses (step 716).
If the jetting pulse settles on the target jetting voltage as shown in
In
If the jetting pulse settles on the target jetting voltage as shown in
The waveforms shown in
Any of the various components shown in the figures or described herein may be implemented as hardware, software, firmware, or some combination of these. For example, a component may be implemented as dedicated hardware. Dedicated hardware elements may be referred to as “processors”, “controllers”, or some similar terminology. When provided by a processor, the functions may be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which may be shared. Moreover, explicit use of the term “processor” or “controller” should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, without limitation, digital signal processor (DSP) hardware, a network processor, application specific integrated circuit (ASIC) or other circuitry, field programmable gate array (FPGA), read only memory (ROM) for storing software, random access memory (RAM), non-volatile storage, logic, or some other physical hardware component or module.
Also, a component may be implemented as instructions executable by a processor or a computer to perform the functions of the component. Some examples of instructions are software, program code, and firmware. The instructions are operational when executed by the processor to direct the processor to perform the functions of the element. The instructions may be stored on storage devices that are readable by the processor. Some examples of the storage devices are digital or solid-state memories, magnetic storage media such as a magnetic disks and magnetic tapes, hard drives, or optically readable digital data storage media.
Although specific embodiments were described herein, the scope of the invention is not limited to those specific embodiments. The scope of the invention is defined by the following claims and any equivalents thereof.