This application is a 35 U.S.C. § 371 application of PCT/US2014/034817, filed on Apr. 21, 2014, and entitled “Mitigating Noise in Capacitive Sensor,” which is incorporated by reference as if fully disclosed herein.
The described embodiments relate generally to touchscreens and touch-sensitive devices. More particularly, the present embodiments relate to forming an area on a touchscreen which electrically isolates a portion of the viewable area of the touchscreen such that a user may use a portion of the screen as a touchscreen and another portion for viewing without electrical interference between the two portions.
A touchscreen is an electronic visual display that the user can control through simple or multi-touch gestures by touching the screen with one or more fingers. Some touchscreens can also be manipulated with other implements detect such as a stylus or ordinary or specially coated gloves. The user can use the touchscreen to react to what is displayed and to control how it is displayed (for example by zooming the text size). The touchscreen enables the user to interact directly with what is displayed, rather than using a mouse, touchpad, or any other intermediate device other than the optional stylus.
Touchscreens are common in devices such as game consoles, all-in-one computers, tablet computers, and smartphones. They can also be attached to computers or, as terminals, to networks. They also play a prominent role in the design of digital appliances such as personal digital assistants (PDAs), satellite navigation devices, mobile phones, and video games and some books. The popularity of smartphones, tablets, and many types of information appliances is driving the demand and acceptance of common touchscreens for portable and functional electronics. Touchscreens are found in the medical field and in heavy industry, as well as for automated teller machines (ATMs), and kiosks such as museum displays or room automation, where keyboard and mouse systems do not allow a suitably intuitive, rapid, or accurate interaction by the user with the display's content.
A capacitive touchscreen panel consists of an insulator such as glass, coated with a transparent conductor such as indium tin oxide (ITO). As the human body is also an electrical conductor, touching the surface of the screen results in a distortion of the screen's electrostatic field, measurable as a change in capacitance. When a user touches the surface, the system records the change in the electrical current that flows through the display. Different technologies may be used to determine the location of the touch. The location is then sent to the controller for processing. The controller interprets the command that the touch represents and communicates the command to the appropriate application in the electronic device.
An embodiment is disclosed that includes an area on a touchscreen which is electrically isolated from a portion of the viewable area of the touchscreen such that the capacitive sensor associated with the touchscreen does not detect a change in capacitance generated when a user touches a portion of a non-sensing region of the touchscreen but does detect a change in capacitance generated when a user touches a reference plane portion of the touchscreen. In one embodiment the reference plane and viewable areas are formed on a surface of the liquid crystal display associated with the touchscreen. In another embodiment, the reference plane and viewable areas are formed on a surface of a transparent layer which may be affixed between a liquid crystal display and a capacitive array. In another embodiment, an electronic device including the touchscreen is disclosed.
An embodiment is disclosed including a method for making a touchscreen which includes depositing an optically transparent electrically conductive layer of material on the thin film transistor (TFT) layer of an LCD. A portion of the deposited layer is then removed, to electromagnetically isolate a reference plane area and a non-sensing region on the TFT layer. The reference plane area is electrically connected to the system such that the reference plane area is active and a user's touch may be sensed by the capacitive array. The liquid crystal display is affixed to a capacitive array to complete the touchscreen.
In another embodiment, a method is disclosed depositing an optically transparent electrically conductive layer of material on an optically transparent separate layer. A portion of the optically transparent electrically conductive layer of material is then removed to define a reference plane area and a non-sensing region as in the embodiment above. The reference plane area is electromagnetically connected to the system such that the reference plane area is active and a user's touch may be sensed by the capacitive array. The optically transparent layer is sandwiched between the LCD and the capacitive array to form the touchscreen.
The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. The embodiments are discussed below with reference to
Referring to
When certain of the ITO electrodes in
In LCD operation, each pixel of the LCD consists of a layer of liquid crystal molecules aligned between two transparent electrode layers (12 and 14 in
Liquid crystals do not allow light to pass uniformly along both axes of the crystals. Grooves are formed on the surface of both pieces of glass 12 and 14 at 90 degrees to one another. The molecules in liquid crystal layer 13 in-between line up in a helix. When light from the backlight or reflective layer 16 passes through the first polarizer and enters the sandwich it's rotated by the liquid crystals so as to allow it to pass through the second polarizer and emerge out the front of the screen. This is known as the normally white mode. Applying an electric field across the sandwich causes the crystals to line up lengthwise. The light that passes through the first polarizer is not rotated by the crystals and can no longer pass through the front of the screen which is referred to as black mode. By controlling the voltage between these transparent electrodes the intensity of the light that passes through can be controlled. By adding a color filter array layer, the transmitted light may be controlled so as to appear in various color wavelengths.
Many touchscreens include a capacitive sensing array to sense changes in electrostatic fields caused by movement of an electrical conductor from one sensor to another in the array. Typically, a mutual-capacitance capacitive sensing array includes two layers or sets of traces/lines formed from a conductive coating, which may be transparent (such as indium tin oxide). In some embodiments, the layers of the array may be formed on opposing surfaces with the layers separated by an adhesive spacer. In a mutual capacitance array there is a capacitor at every intersection of each row and column of the array. A voltage is applied to the rows and columns and by bringing a finger or a conductive stylus close to the surface of the array the local field changes which alters the mutual capacitance. The capacitance change at every individual point on the grid can be measured to accurately determine the touch location by measuring the voltage in the other axis. Mutual capacitance allows multi-touch operation where multiple fingers, palms or styli can be accurately tracked at the same time. Referring to
Certain embodiments may use a mutual capacitance sensing array to correlate changes in capacitance to an input force, thereby sensing force in a non-binary fashion, in addition to or instead of sensing a touch. For example, a force exerted on a cover glass or other portion of a touchscreen 19 may cause local deformation of the touchscreen, thereby moving the upper and lower portions of the capacitive array closer to one another. This motion may generate a corresponding change in capacitance, insofar as a smaller distance separates the elements of the capacitive array and capacitance between two elements varies inversely with the square of the distance between the elements. Thus, a sensed change in capacitance may be indicative of, or correlated to, a force exerted on the touchscreen. The exact location of the force may be determined through the use of multiple force sensors spaced apart from one another, each of which may output a different change in capacitance in response to a force exerted in a local area. As one example, sensors closer to the location of a touch may detect a higher change in capacitance than sensors further away from the location of the touch. Alternately, a touch-sensing array may be used in addition to a force-sensing array in order to relatively precisely place the location of a touch.
Further, although capacitive sensing arrays described herein (such as the active reference planes discussed below) may be described in terms of mutual capacitance, the embodiments and concepts disclosed herein may operate equally with self-capacitive sensors.
Referring to
Referring to
As stated above, the capacitive array is located in close proximity to and under the LCD. Capacitive array is also located adjacent to other electrical components in the electronic device. As such capacitive array is subject to exposure to electrical noise that could distort electrostatic fields, or capacitive measurements thereof, employed to sense a touch location. Similarly, the electrostatic fields generated by the capacitive array may distort the signals in liquid crystal display, which may result in visual artifacts visible to the user on touchscreen 19. It may be desirable to define and/or pattern various regions on, beneath, or related to the touchscreen 19 such that the signals from the capacitive array associated with the liquid crystal display and the signals from the display itself do not interfere with each other so as to distort the visual image to a user or to introduce errors into the location determination of the capacitive array.
Thus, in many applications of tablet 17, it may be advantageous to use only selected areas of touchscreen 19 as an active touch-sensing, or force-sensing, area. Referring to
By limiting the area on touchscreen 19 on which the capacitive array senses a user's touch, force, or other input, certain economies may be achieved. For example, providing power to the entire viewable area of the LCD raises additional issues including higher resistance and increased coupling of display noise. By isolating non-sensing region 24, only the smaller area of the reference plane 26 requires power for the corresponding area of the capacitive array behind the screen. In addition, by limiting the areas of touchscreen 19 which serves as an “active” touchscreen area, certain aesthetic appeal is also achieved in that the displayed icons 23 do not interfere with the non-sensing region 24 and fingerprints or other residue left by user's finger 21 on the non-sensing region 24 may be reduced or eliminated.
In the embodiment shown in
Referring again to
The portion of the non-sensing region excluding the active reference plane (e.g., the non-sensing region 24) may be patterned in a fashion similar to, or identical to, the patterning of the active reference plane but is typically electrically isolated from the active reference plane. Thus, this non-sensing region 24 may not be electrically powered even when the active reference plane 26 is powered.
The creation of the active reference plane area 26 and the non-sensing region 24 on touchscreen 19 results in an interface area 27 which is the boundary between reference plane area 26 and non-sensing region 24. The interface area 27 between non-sensing region 24 and active reference plane 26 may be made small enough to prevent artifacts that may otherwise be visible to a user 18 on touchscreen 19 in the interface area 27. In another embodiment, this interface area 27 may be designed such that, while visible artifacts are present, the entire screen is populated with regular artifacts such that the overall appearance of touchscreen 19 remains uniform to user 18. In another embodiment, interface area 27 could be designed so as to be decorative or definitive to provide a clear visual delineation between non-sensing region 24 and active reference plane 26. Likewise, the interface area 27 and its boundaries may not be visible from the exterior of the device and the shape of the interface area may vary from what is shown.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In the embodiment shown in
By contrast, in capacitive sensing area 38 surrounding non-sensing region 37 there is no electrical shielding and the sensing array is active (e.g., powered), such that the capacitance of the user's finger 21 contacting the capacitive sensing area 38 on touchscreen 19 is sensed by the capacitive array as described above. Capacitive sensing area 38 is part of an active reference plane 39 that is defined by the electrical isolation of non-sensing region 37 from the capacitive array.
The creation of the active reference plane area 39 and the non-sensing region 37 on touchscreen 19 results in an interface area 43 which is the boundary between reference plane area 39 and non-sensing region 37 as was described above with reference to
Referring to
Referring to
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not target to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/034817 | 4/21/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/163843 | 10/29/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4527862 | Arakawa | Jul 1985 | A |
5343064 | Spangler et al. | Aug 1994 | A |
5929517 | Distefano et al. | Jul 1999 | A |
6002389 | Kasser | Dec 1999 | A |
6079282 | Lanter | Jun 2000 | A |
6154580 | Kuriyama et al. | Nov 2000 | A |
6323846 | Westerman et al. | Nov 2001 | B1 |
6545495 | Warmack et al. | Apr 2003 | B2 |
6568275 | Scholz et al. | May 2003 | B2 |
6570557 | Westerman et al. | May 2003 | B1 |
6570707 | Murakami | May 2003 | B1 |
6676611 | Bromba | Jan 2004 | B1 |
6677932 | Westerman | Jan 2004 | B1 |
6989728 | Van Zeeland et al. | Jan 2006 | B2 |
7158122 | Roberts | Jan 2007 | B2 |
7211885 | Nordal et al. | May 2007 | B2 |
7337085 | Soss | Feb 2008 | B2 |
7409876 | Ganapathi et al. | Aug 2008 | B2 |
7511702 | Hotelling | Mar 2009 | B2 |
7538760 | Hotelling et al. | May 2009 | B2 |
7609178 | Son et al. | Oct 2009 | B2 |
7719522 | Lyon et al. | May 2010 | B2 |
7784366 | Daverman et al. | Aug 2010 | B2 |
7800592 | Kerr et al. | Sep 2010 | B2 |
7920134 | Krah | Apr 2011 | B2 |
8072437 | Miller et al. | Dec 2011 | B2 |
8111248 | Lee et al. | Feb 2012 | B2 |
8169332 | Bernstein et al. | May 2012 | B2 |
8169416 | Han | May 2012 | B2 |
8228306 | Long | Jul 2012 | B2 |
8253711 | Kim et al. | Aug 2012 | B2 |
8274495 | Lee | Sep 2012 | B2 |
8334849 | Murphy et al. | Dec 2012 | B2 |
8351993 | Nunes | Jan 2013 | B2 |
8390481 | Pance et al. | Mar 2013 | B2 |
8421978 | Wang et al. | Apr 2013 | B2 |
8436823 | Kanehira et al. | May 2013 | B2 |
8547350 | Anglin et al. | Oct 2013 | B2 |
8577289 | Schlub et al. | Nov 2013 | B2 |
8577644 | Ksondzyk et al. | Nov 2013 | B1 |
8633916 | Bernstein et al. | Jan 2014 | B2 |
8669963 | Baker et al. | Mar 2014 | B2 |
8704787 | Yamamoto et al. | Apr 2014 | B2 |
8711122 | Wada et al. | Apr 2014 | B2 |
8724861 | Sun | May 2014 | B1 |
8743083 | Zanone et al. | Jun 2014 | B2 |
8760413 | Peterson et al. | Jun 2014 | B2 |
8780055 | Marchand et al. | Jul 2014 | B2 |
8780062 | Hibara et al. | Jul 2014 | B2 |
8830205 | Chang et al. | Sep 2014 | B2 |
8913031 | Honda et al. | Dec 2014 | B2 |
8922523 | Lynch et al. | Dec 2014 | B2 |
8963874 | Li et al. | Feb 2015 | B2 |
9024907 | Bolender | May 2015 | B2 |
9030440 | Pope et al. | May 2015 | B2 |
9057653 | Schediwy et al. | Jun 2015 | B2 |
9088282 | Holenarsipur et al. | Jul 2015 | B2 |
9092129 | Abdo et al. | Jul 2015 | B2 |
9104898 | Case | Aug 2015 | B2 |
9116569 | Stacy et al. | Aug 2015 | B2 |
9207134 | Ting et al. | Dec 2015 | B2 |
9229587 | Kawaguchi et al. | Jan 2016 | B2 |
9235645 | Ishizone et al. | Jan 2016 | B1 |
9262002 | Momeyer et al. | Feb 2016 | B2 |
9354752 | Kanehira et al. | May 2016 | B2 |
9375874 | Lin et al. | Jun 2016 | B2 |
9390308 | Mankowski et al. | Jul 2016 | B2 |
9411458 | Worfolk et al. | Aug 2016 | B2 |
9430102 | Prest et al. | Aug 2016 | B2 |
9454268 | Badaye et al. | Sep 2016 | B2 |
9459738 | Lin et al. | Oct 2016 | B2 |
9477342 | Daverman et al. | Oct 2016 | B2 |
9494473 | Hanson et al. | Nov 2016 | B2 |
9541578 | Shimata et al. | Jan 2017 | B2 |
9542589 | Thammasouk et al. | Jan 2017 | B2 |
9671889 | Miller et al. | Jun 2017 | B1 |
9678586 | Reynolds | Jun 2017 | B2 |
9710095 | Hotelling | Jul 2017 | B2 |
9715301 | Kuboyama et al. | Jul 2017 | B2 |
9772245 | Besling et al. | Sep 2017 | B2 |
9851828 | Richards et al. | Dec 2017 | B2 |
20060197753 | Hotelling | Sep 2006 | A1 |
20070030242 | Ito | Feb 2007 | A1 |
20070272919 | Mori et al. | Nov 2007 | A1 |
20080150901 | Lowles et al. | Jun 2008 | A1 |
20090015564 | Ye et al. | Jan 2009 | A1 |
20090066345 | Klauk et al. | Mar 2009 | A1 |
20090122021 | Liu | May 2009 | A1 |
20090237374 | Li et al. | Sep 2009 | A1 |
20100045628 | Gettemy et al. | Feb 2010 | A1 |
20100117989 | Chang | May 2010 | A1 |
20100123686 | Klinghult et al. | May 2010 | A1 |
20100220065 | Ma | Sep 2010 | A1 |
20110012845 | Rothkopf et al. | Jan 2011 | A1 |
20110037706 | Pasquero et al. | Feb 2011 | A1 |
20110080373 | Wang et al. | Apr 2011 | A1 |
20110096013 | Krumpelman et al. | Apr 2011 | A1 |
20110216016 | Rosener | Sep 2011 | A1 |
20110227872 | Huska et al. | Sep 2011 | A1 |
20110235156 | Kothari et al. | Sep 2011 | A1 |
20120038577 | Brown et al. | Feb 2012 | A1 |
20120086669 | Kim et al. | Apr 2012 | A1 |
20120089348 | Perlin et al. | Apr 2012 | A1 |
20120090757 | Buchan et al. | Apr 2012 | A1 |
20120098760 | Chuang | Apr 2012 | A1 |
20120098767 | Takai et al. | Apr 2012 | A1 |
20120104097 | Moran et al. | May 2012 | A1 |
20120169612 | Alameh et al. | Jul 2012 | A1 |
20120188202 | Tsujino et al. | Jul 2012 | A1 |
20120229417 | Badaye et al. | Sep 2012 | A1 |
20120274602 | Bita et al. | Nov 2012 | A1 |
20120313863 | Hsu | Dec 2012 | A1 |
20120319987 | Woo | Dec 2012 | A1 |
20130076375 | Hanumanthaiah et al. | Mar 2013 | A1 |
20130113732 | Kang et al. | May 2013 | A1 |
20130128416 | Weber | May 2013 | A1 |
20130176270 | Cattivelli et al. | Jul 2013 | A1 |
20130285973 | Elias et al. | Oct 2013 | A1 |
20130328575 | Ra et al. | Dec 2013 | A1 |
20140085213 | Huppi et al. | Mar 2014 | A1 |
20140085247 | Leung et al. | Mar 2014 | A1 |
20140111953 | McClure et al. | Apr 2014 | A1 |
20140152621 | Okayam et al. | Jun 2014 | A1 |
20150071509 | Myers | Mar 2015 | A1 |
20150130734 | Chang | May 2015 | A1 |
20150135108 | Pope et al. | May 2015 | A1 |
20150153829 | Shiraishi | Jun 2015 | A1 |
20150185909 | Gecnuk | Jul 2015 | A1 |
20150185946 | Fourie | Jul 2015 | A1 |
20150370376 | Harley et al. | Dec 2015 | A1 |
20150370396 | Ogata et al. | Dec 2015 | A1 |
20160033342 | Lyon et al. | Feb 2016 | A1 |
20160034088 | Richards et al. | Feb 2016 | A1 |
20160041648 | Richards | Feb 2016 | A1 |
20160042166 | Kang et al. | Feb 2016 | A1 |
20160062498 | Huppi et al. | Mar 2016 | A1 |
20160070404 | Kerr et al. | Mar 2016 | A1 |
20160098131 | Ogata et al. | Apr 2016 | A1 |
20160103542 | Ogata et al. | Apr 2016 | A1 |
20160103544 | Filiz et al. | Apr 2016 | A1 |
20160139716 | Filiz et al. | May 2016 | A1 |
20160258981 | Bushnell et al. | Sep 2016 | A1 |
20160314334 | He et al. | Oct 2016 | A1 |
20160378255 | Butler et al. | Dec 2016 | A1 |
20170038877 | Kuboyama et al. | Feb 2017 | A1 |
20170235403 | Miller et al. | Aug 2017 | A1 |
20170285746 | Kim et al. | Oct 2017 | A1 |
20170322660 | Kuboyama et al. | Nov 2017 | A1 |
20180048058 | Ehman et al. | Feb 2018 | A1 |
20180069588 | Jiang et al. | Mar 2018 | A1 |
20180088702 | Shutzberg et al. | Mar 2018 | A1 |
20180138102 | Pan et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
1502166 | Jun 2004 | CN |
1577385 | Feb 2005 | CN |
1582453 | Feb 2005 | CN |
1707415 | Dec 2005 | CN |
1714336 | Dec 2005 | CN |
101046720 | Oct 2007 | CN |
101427468 | May 2009 | CN |
101950224 | Jan 2011 | CN |
102016780 | Apr 2011 | CN |
201828892 | May 2011 | CN |
102103445 | Jun 2011 | CN |
102138120 | Jul 2011 | CN |
102193699 | Sep 2011 | CN |
102449583 | May 2012 | CN |
102467308 | May 2012 | CN |
102483673 | May 2012 | CN |
204650590 | Sep 2015 | CN |
2073107 | Jun 2009 | EP |
2128747 | Dec 2009 | EP |
2237142 | Oct 2010 | EP |
2267791 | Dec 2010 | EP |
2315102 | Apr 2011 | EP |
2315186 | Apr 2011 | EP |
2357547 | Aug 2011 | EP |
2413224 | Feb 2012 | EP |
2418561 | Feb 2012 | EP |
2420918 | Feb 2012 | EP |
2508960 | Oct 2012 | EP |
2660688 | Nov 2013 | EP |
2708985 | Mar 2014 | EP |
2313195 | Nov 1997 | GB |
S61292732 | Dec 1986 | JP |
2005031425 | Feb 2005 | JP |
2007310539 | Nov 2007 | JP |
2010225031 | Oct 2010 | JP |
2010244252 | Oct 2010 | JP |
2011100364 | May 2011 | JP |
2014052997 | Mar 2014 | JP |
1020100074005 | Jul 2010 | KR |
WO 97018528 | May 1997 | WO |
WO 11081882 | Jul 2011 | WO |
WO 11156447 | Dec 2011 | WO |
WO 12031564 | Mar 2012 | WO |
WO 12147659 | Nov 2012 | WO |
WO 12160844 | Nov 2012 | WO |
WO 13083207 | Jun 2013 | WO |
WO 13183191 | Dec 2013 | WO |
WO 14018121 | Jan 2014 | WO |
WO 12153555 | Jul 2014 | WO |
WO 14124173 | Aug 2014 | WO |
Entry |
---|
International Search Report and Written Opinion dated Sep. 1, 2014, PCT/US2014/034817, 13 pages. |
Bau, et al., “TeslaTouch: Electrovibration for Touch Surfaces,” UIST'10, Oct. 3-6, 2010, New York, New York USA, 10 pages. |
Engineers Edge, Common Plastic Molding Design Material Specification, 2015, http://www.engineersedge.com/plastic/materials_common_plastic.htm, 3 pages. |
Feist, “Samsung snags patent for new pressure sensitive touchscreens,” posted on AndroidAuthority.com at URL: http://www.androidauthority.com/samsung-patent-pressure-sensitive-touchscreens-354860, Mar. 7, 2014, 1 page. |
Widdle, “Measurement of the Poisson's ratio of flexible polyurethane foam and its influence on a uniaxial compression model,” International Journal of Engineering Science, vol. 46, 2008, pp. 31-49. |
Number | Date | Country | |
---|---|---|---|
20170046008 A1 | Feb 2017 | US |