The detection of the level of glucose or other analytes, such as lactate, oxygen or the like, in certain individuals is vitally important to their health. For example, the monitoring of glucose is particularly important to individuals with diabetes. Diabetics may need to monitor glucose levels to determine when insulin is needed to reduce glucose levels in their bodies or when additional glucose is needed to raise the level of glucose in their bodies.
Devices have been developed for continuous or automatic monitoring of analytes, such as glucose, in bodily fluid such as in the blood stream or in interstitial fluid. Some of these analyte measuring devices are configured so that at least a portion of the devices are positioned below a skin surface of a user, e.g., in a blood vessel or in the subcutaneous tissue of a user.
Embodiments of the present disclosure include methods for mitigating single point failure of at least one device in an analyte monitoring system. Certain aspects include requesting that a functionality check of one or more components of a first device be performed and that data related to the functionality check of the one or more components of the first device be communicated to a second device, receiving, information from the first device that is related to functionality of the one or more components of the first device, communicating the information related to the functionality of the one or more components of the first device to a third device, receiving a request from the third device that an alarm be annunciated if it is determined by the third device that the one or more components of the first device is not functioning in accordance with at least one predetermined criterion and annunciating an alarm to alert a user that the one or more components of the first device is not functioning in accordance with the at least one predetermined criterion.
Embodiments of the present disclosure include computer-implemented methods for mitigating single point failure of at least one device in an analyte monitoring. Certain aspects include requesting that a functionality check of one or more components of a first device be performed and that data related to the functionality check of the one or more components of the first device be communicated to a second device, receiving the data related to the functionality of the one or more components of the first device, retrieving a list including at least one predetermined criterion related to the functionality of the one or more components of the first device from a storage component of the second device, comparing the data related to the functionality of the one or more components of the first device with the list including the at least one predetermined criterion and determining if the one or more components of the first device is functioning in accordance with the at least one predetermined criterion.
Embodiments of the present disclosure include computer-implemented methods for mitigating single point failure of at least one device in an analyte monitoring. Certain aspects include requesting that a functionality check of one or more components of a first device be performed and that data related to the functionality check of the one or more components of the first device be communicated to a second device and determining that the one or more components of the first device is not functioning properly if the data related to the functionality check of the components of the first device is not received at the second device, wherein an alarm is annunciated from at least one of the second device or a third device to alert a user that one or more components of the first device is not functioning properly.
Before the present disclosure is further described, it is to be understood that this disclosure is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.
As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, exemplary methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.
As used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
Analytes that may be monitored include, but are not limited to, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be monitored. In those embodiments that monitor more than one analyte, the analytes may be monitored at the same or different times.
Referring to
In certain embodiments, the primary receiver unit 104 may be further configured to transmit data to a data processing terminal 105 to evaluate or otherwise process or format data received by the primary receiver unit 104. The data processing terminal 105 may be configured to receive data directly from the data processing unit 102 via a communication link which may optionally be configured for bi-directional communication. Further, the data processing unit 102 may include a transmitter or a transceiver to transmit and/or receive data to and/or from the primary receiver unit 104, the data processing terminal 105 or optionally the secondary receiver unit 106.
Also shown in
Only one sensor 101, data processing unit 102 and data processing terminal 105 are shown in the embodiment of the analyte monitoring system 100 illustrated in
The analyte monitoring system 100 may be a continuous monitoring system, or semi-continuous, or a discrete monitoring system. In a multi-component environment, each component may be configured to be uniquely identified by one or more of the other components in the system so that communication conflict may be readily resolved between the various components within the analyte monitoring system 100. For example, unique IDs, communication channels, and the like, may be used.
In certain embodiments, the sensor 101 is physically positioned in or on the body of a user whose analyte level is being monitored. The sensor 101 may be configured to at least periodically perform a functionality check and convert the results of the functionality check into a corresponding signal for transmission by the data processing unit 102.
The data processing unit 102 is coupleable to the sensor 101 so that both devices are positioned in or on the user's body, with at least a portion of the analyte sensor 101 positioned transcutaneously. The data processing unit 102 in certain embodiments may include a portion of the sensor 101 (proximal section of the sensor in electrical communication with the data processing unit 102) which is encapsulated within or on the printed circuit board of the data processing unit 102 with, for example, potting material or other protective material. The data processing unit 102 performs data processing functions, where such functions may include but are not limited to, filtering and encoding of data signals, each of which corresponds to a sampled analyte level of the user, for transmission to the primary receiver unit 104 via the communication link 103. In one embodiment, the sensor 101 or the data processing unit 102 or a combined sensor/data processing unit may be wholly implantable under the skin layer of the user.
In one aspect, the primary receiver unit 104 may include an analog interface section including an RF receiver and an antenna that is configured to communicate with the data processing unit 102 via the communication link 103, and a data processing section for processing the received data from the data processing unit 102 such as data decoding, error detection and correction, data clock generation, and/or data bit recovery.
In operation, the primary receiver unit 104 in certain embodiments is configured to synchronize with the data processing unit 102 to uniquely identify the data processing unit 102, based on, for example, an identification information of the data processing unit 102, and thereafter, to periodically receive signals transmitted from the data processing unit 102 associated with the monitored analyte levels detected by the sensor 101. That is, when operating in the CGM mode, the receiver unit 104 in certain embodiments is configured to automatically receive data related to the functionality of the sensor from the analyte sensor/sensor electronics when the communication link (e.g., RF range) is maintained between these components.
Referring again to
The data processing terminal 105 may include an infusion device such as an insulin infusion pump or the like, which may be configured to administer insulin to patients, and which may be configured to communicate with the primary receiver unit 104 for receiving, among others, the measured analyte level. Alternatively, the primary receiver unit 104 may be configured to integrate an infusion device therein so that the primary receiver unit 104 is configured to administer insulin (or other appropriate drug) therapy to patients, for example, for administering and modifying basal profiles, as well as for determining appropriate boluses for administration based on, among others, the detected analyte levels received from the data processing unit 102. An infusion device may be an external device or an internal device (wholly implantable in a user).
In particular embodiments, the data processing terminal 105, which may include an insulin pump, may be configured to receive the functionality signals from the data processing unit 102, and thus, incorporate the functions of the primary receiver unit 104 including data processing for managing the patient's insulin therapy and analyte monitoring. In certain embodiments, the communication link 103 as well as one or more of the other communication interfaces shown in
As described in aspects of the present disclosure, the analyte monitoring system may include an on-body patch device with a thin profile that can be worn on the arm or other locations on the body (and under clothing worn by the user or the patient), the on-body patch device including an analyte sensor and circuitry and components for operating the sensor and processing and storing signals, including functionality signals, received from the sensor as well as for communication with the reader device. For example, one aspect of the on-body patch device may include electronics to sample the voltage signal received from the analyte sensor in fluid contact with the body fluid, and to process the sampled voltage signals into the corresponding glucose values and/or store the sampled voltage signal as raw data, or to perform a functionality check of its components, and to process the results of the functionality check into a signal or data.
In certain embodiments, the on-body patch device includes an antenna such as a loop antenna to receive RF power from an external device such as the reader device/receiver unit described above, electronics to convert the RF power received via the antenna into DC (direct current) power for the on-body patch device circuitry, communication module or electronics to detect commands received from the reader device, and communication component to transmit data to the reader device, a low capacity battery for providing power to sensor sampling circuitry (for example, the analog front end circuitry of the on-body patch device in signal communication with the analyte sensor), one or more non-volatile memory or storage device to store data including raw signals from the sensor or processed data based on the raw sensor signals. More specifically, in the on operation demand mode, the on-body patch device in certain embodiments is configured to transmit real time analyte related data and/or stored historical analyte related data, and/or functionality data when within the RF power range of the reader device. As such, when the reader device is removed or positioned out of range relative to the on-body patch device, the on-body patch device may no longer transmit the analyte related data and/or functionality data.
In certain embodiments, a data processing module/terminal may be provided in the analyte monitoring system that is configured to operate as a data logger, interacting or communicating with the on-body patch device by, for example, transmitting requests for functionality information to the on-body patch device, and storing the responsive functionality information received from the on-body patch device in one or more memory components of the data processing module (e.g., repeater unit). Further, data processing module may be configured as a compact on-body relay device to relay or retransmit the received analyte level information from the on-body patch device to the reader device/receiver unit or the remote terminal or both. The data processing module in one aspect may be physically coupled to the on-body patch device, for example, on a single adhesive patch on the skin surface of the patient. Alternatively, the data processing module may be positioned close to but not in contact with the on-body patch device. For example, when the on-body patch device is positioned on the abdomen of the patient, the data processing module may be worn on a belt of the patient or the user, such that the desired close proximity or predetermined distance of approximately 1-5 inches (or about 1-10 inches, for example, or more) between the on-body patch device and the data processing module may be maintained.
The various processes described above including the processes operating in the software application execution environment in the analyte monitoring system including the on-body patch device, the reader device, data processing module and/or the remote terminal performing one or more routines described above may be embodied as computer programs developed using an object oriented language that allows the modeling of complex systems with modular objects to create abstractions that are representative of real world, physical objects and their interrelationships. The software required to carry out the inventive process, which may be stored in a memory or storage device of the storage unit of the various components of the analyte monitoring system described above in conjunction to the Figures including the on-body patch device, the reader device, the data processing module, various described communication devices, or the remote terminal may be developed by a person of ordinary skill in the art and may include one or more computer program products.
In one embodiment, an apparatus for bi-directional communication with an analyte monitoring system may comprise a storage device having stored therein one or more routines, a processing unit operatively coupled to the storage device and configured to retrieve the stored one or more routines for execution, a data transmission component operatively coupled to the processing unit and configured to transmit data based at least in part on the one or more routines executed by the processing unit, and a data reception component operatively coupled to the processing unit and configured to receive functionality related data from a remote location and to store the received functionality related data in the storage device for retransmission, wherein the data transmission component is programmed to transmit a query to a remote location, and further wherein the data reception component receives the functionality related data from the remote location in response to the transmitted query when one or more electronics in the remote location transitions from an inactive state to an active state upon detection of the query from the data transmission component.
Referring back to
In certain embodiments, the reader device/receiver unit 220 may include an RF power switch that is user activatable or activated upon positioning within a predetermined distance from the on-body patch device 211 to turn on the analyte sensor in the on-body patch device 211. That is, using the RF signal, the analyte sensor coupled to the sensor electronics in the on-body patch device 211 may be initialized or activated. In another embodiment, a passive RFID function may be provided or programmed such that upon receiving a “turn on” signal which, when authenticated, will turn on the electronic power switch that activates the on-body patch device 211. That is, the passive RFID configuration may include drawing energy from the RF field radiated from the reader device/receiver unit 220 so as to prompt for and/or detect the “turn on” signal which, upon authentication, activates the on-body patch device 211.
In one embodiment, communication and/or RF power transfer between the reader device/receiver unit 220 and the on-body patch device 211 may be automatically initiated when the reader device/receiver unit 220 is placed in close proximity to the on-body patch device 211 as discussed above. Alternatively, the reader device/receiver unit 220 may be configured such that user activation, such as data request initiation and subsequent confirmation by the user using, for example, the display 222 and/or input components 221 of the reader device/receiver unit 220, may be required prior to the initiation of communication and/or RF power transfer between the reader device/receiver unit 220 and the on-body patch device 211. In a further embodiment, the reader device/receiver unit 220 may be user configurable between multiple modes, such that the user may choose whether the communication between the reader device/receiver unit 220 and on-body patch device 211 is performed automatically or requires a user activation and/or confirmation.
As further shown in
As discussed, some or all of the electronics in the on-body patch device 211 in one embodiment may be configured to rely on the RF power received from the reader device/receiver unit 220 to perform functionality data processing and/or transmission of the processed functionality information to the reader device/receiver unit 220. That is, the on-body patch device 211 may be discreetly worn on the body of the user or the patient, and under clothing, for example, and when desired, by positioning the reader device/receiver unit 220 within a predetermined distance from the on-body patch device 211, functionality information may be received by the reader device/receiver unit 220.
Referring still to
The data processing module 260 in one embodiment may be configured to communicate with the on-body patch device 211 in a similar manner as the reader device/receiver unit 220 and may include communication components such as antenna, power supply and memory, among others, for example, to allow provision of RF power to the on-body patch device 211 or to request or prompt the on-body patch device 211 to send the functionality related data and optionally stored analyte related data. The data processing module 260 may be configured to interact with the on-body patch device 211 in a similar manner as the reader device/receiver unit 220 such that the data processing module 260 may be positioned within a predetermined distance from the on-body patch device 211 for communication with the on-body patch device 211.
In one aspect, the on-body patch device 211 and the data processing module 260 may be positioned on the skin surface of the user or the patient within the predetermined distance of each other (for example, within approximately 5 inches or less) such that the communication between the on-body patch device 211 and the data processing module 260 is maintained. In a further aspect, the housing of the data processing module 260 may be configured to couple to or cooperate with the housing of the on-body patch device 211 such that the two devices are combined or integrated as a single assembly and positioned on the skin surface.
Referring again to
As further shown in
In one aspect, the data processing module 260 may be configured to operate as a data logger configured or programmed to periodically request or prompt the on-body patch device 211 to transmit the functionality related information, and to store the received information for later retrieval or subsequent transmission to the reader device/receiver unit 220 or to the remote terminal 270 or both, for further processing and analysis.
In a further aspect, the functionalities of the data processing module 260 may be configured or incorporated into a memory device such as an SD card, microSD card, compact flash card, XD card, Memory Stick card, Memory Stick Duo card, or USB memory stick/device including software programming resident in such devices to execute upon connection to the respective one or more of the on-body patch device 211, the remote terminal 270 or the reader device/receiver unit 220. In a further aspect, the functionalities of the data processing module 260, including executable software and programming, may be provided to a communication device such as a mobile telephone including, for example, iPhone, iPod Touch, Blackberry device, Palm based device (such as Palm Pre, Treo, Treo Pro, Centro), personal digital assistants (PDAs) or any other communication enabled operating system (such as Windows or Android operating systems) based mobile telephones as a downloadable application for execution by the downloading communication device. To this end, the remote terminal 270 as shown in
Depending upon the user setting or configuration on the communication device, the downloaded application may be programmed or customized using the user interface of the respective communication device (screen, keypad, and the like) to establish or program the desired settings such as a receiver alarm, an insulin pump alarm, sensor replacement alarm, or any other alarm or alert conditions as may be desired by the user. Moreover, the programmed notification settings on the communication device may be output using the output components of the respective communication devices, such as speaker, vibratory output component, or visual output/display. As a further example, the communication device may be provided with programming and application software to communicate with the on-body patch device 211 such that a frequency or periodicity of data acquisition is established. In this manner, the communication device may be configured to conveniently receive functionality information from the on-body patch device 211 at predetermined time periods such as, for example, but not limited to once every minute, once every five minutes, or once every 10 or 15 minutes, and store the received information, as well as to provide a desired or appropriate warning indication or notification to the user or the patient.
In one aspect, the RF receiver 302 is configured to communicate, via the communication link 103 (
Each of the various components of the primary receiver unit 104 shown in
Serial communication section 309 can also be used to upload data to a computer, such as functionality related data. The communication link with an external device (not shown) can be made, for example, by cable (such as USB or serial cable), infrared (IR) or RF link. The output/display 310 of the primary receiver unit 104 is configured to provide, among others, a graphical user interface (GUI), and may include a liquid crystal display (LCD) for displaying information. Additionally, the output/display 310 may also include an integrated speaker for outputting audible signals as well as to provide vibration output as commonly found in handheld electronic devices, such as mobile telephones, pagers, etc. In certain embodiments, the primary receiver unit 104 also includes an electro-luminescent lamp configured to provide backlighting to the output 310 for output visual display in dark ambient surroundings.
Referring back to
In further embodiments, the data processing unit 102 and/or the primary receiver unit 104 and/or the secondary receiver unit 106, and/or the data processing terminal/infusion section 105 of
Additional detailed descriptions are provided in U.S. Pat. Nos. 5,262,035; 5,264,104; 5,262,305; 5,320,715; 5,593,852; 6,175,752; 6,650,471; 6,746, 582; 6,284,478; 7,299,082; and 7,811,231; in U.S. application Ser. No. 11/060,365 filed Feb. 16, 2005 titled “Method and System for Providing Data Communication in Continuous Glucose Monitoring And Management System”, now U.S. Pat. No. 8,771,183, in U.S. application Ser. No. 12/698,124 filed Feb. 1, 2010 titled “Compact On-Body Physiological Monitoring Devices and Methods Thereof”, and in U.S. application Ser. No. 12/807,278 filed Aug. 31, 2010 titled “Medical Devices and Methods”, now U.S. Pat. No. 10,136,816, each of which is incorporated herein by reference.
A safety issue with the receiver device, continuous glucose monitors (CGMs), repeater unit, and insulin pumps in an analyte monitoring system is the susceptibility to single point failure associated with each device's microprocessor, power supply, audio annunciators, transmitter, and transceiver. Introducing a power supply monitoring circuit, a microprocessor monitoring circuit, a secondary power supply, and/or audio annunciator (or vibrator) to the device will provide redundancy that will reduce the likelihood of a failure going unnoticed by the user; however, including these components is costly in terms of expense and product size. The embodiments of the present disclosure provide additional protection against single point failures in systems made up of two or more devices. Essentially, each device in the analyte monitoring system is monitored by one or more of the other devices in the system.
In certain integrated CGM and insulin pump system embodiments, where both devices contain at least one microprocessor, power supply, and audio annunciator or other alarm mechanism, in one embodiment, each device can perform a periodic self test and report this to the other device. Each device has a monitoring process that would initiate an alarm if the other device does not report a successful self test. In some embodiments, the monitoring device could poll the other device, and even initiate the self test on the other device. Also, different functionality could be tested and/or reported on different test schedules.
The applicability of this functionality depends on how necessary periodic communication between the devices is to the function of the system. For instance, in certain embodiments where the receiver device of a continuous analyte monitoring system may not need to be in communication, such as RF communication, range with an insulin pump for the insulin pump to function, this feature could be optional, e.g., configured by the user, a parent of the user, and/or a physician. In other embodiments, such as for a closed loop control system where the control algorithm is maintained in the receiver device, frequent communication is needed between the handheld and the pump, and therefore continuous knowledge of the functionality of both devices is vital.
The second device 404 receives the request to perform a functionality check of the second device 404 from the first device 402 (408) and performs the functionality check of its components (410). In certain embodiments, the second device 404 only performs the functionality check if the second device 404 has the capacity to perform the check. A functionality check, or “self-test”, is a standard feature of most electronic devices. The functionality check of the components can include a determination of the current, voltage, and/or resistance that can be measured across an electrical circuit in the one or more components. The functionality check can include component testing that applies an input to the various components being tested, and receives an output based on the input. The functionality check may also include checking digital system components, such as a checksum for a block of memory. Any of a number of common techniques used in electronic devices can be applied to the functionality check of the present disclosure. In addition, some components of the devices in the analyte monitoring system may have built in self-test functionality that can be queried. For instance, a power supply module may have a digital self-test status output that can be queried by the processor in order to determine the functionality of the power supply. A device may have electronic circuitry that includes electronic or mechanical switches that allow testing of the electronic circuitry. The switch, for example, could route the current path for functional test across the speaker circuit to test for the proper speaker resistance, in order to detect any open or short circuits.
Referring still to
Still referring to
Returning to
In certain embodiments, the first device 402 does not have to poll the second device 404 to perform the functionality check if the second device 404 automatically performs the functionality check at predetermined intervals and automatically sends a signal or data related to the functionality of the second device 404 to the first device 402. In this manner, in certain embodiments, if the first device 402 does not automatically receive a signal or data related to the functionality of the second device 404 within a predetermined time period, then the first device 402 will annunciate an alarm to alert the user that the second device 404 is not functioning properly.
Referring to
Referring back to
Referring still to
Referring to
Still referring to
Returning to
In certain embodiments, the first device 602 does not have to send a request to the repeater unit 604 if the repeater unit 604 automatically polls the second device 606 to perform the functionality check or if the second device 606 automatically performs the functionality check at predetermined intervals and then automatically sends this information to the repeater unit 604. In this instance, if the repeater unit 604 does not receive a signal or data related to the functionality of the second device 606, then the repeater unit 604 can annunciate an alarm to alert the user that the second device 606 is not functioning properly.
In certain embodiments, the first device 702 does not have to request that the second device 704 perform a functionality check of its components, as the second device 704 automatically performs the functionality check at predetermined intervals and then automatically sends data related to the results of the functionality check to the first device 702. In this instance, if the first device 702 does not automatically receive data related to the functionality of the second device 704, then the first device 702 determines that the second device 704 is not functioning properly and annunciates an alarm at the first device 702 to alert the user.
In certain embodiments, the analyte monitoring system includes at least one transmitter attached to the continuous analyte sensor, the receiver device, and the insulin pump. In certain embodiments, the receiver device and/or the insulin pump will detect if the transmitter in the continuous analyte sensor stops functioning. In certain embodiments, the insulin pump and/or the continuous analyte sensor will detect if the transmitter in the receiver device stops functioning. In certain embodiments, the receiver device and/or the continuous analyte sensor will detect if the transmitter in the insulin pump stops functioning.
In certain embodiments, a computer-implemented method for mitigating single point failure of at least one device in an analyte monitoring system includes requesting that a functionality check of one or more components of a first device be performed and that data related to the functionality check of the one or more components of the first device be communicated to a second device, receiving information from the first device that is related to functionality of the one or more components of the first device, communicating the information related to the functionality of the one or more components of the first device to a third device, receiving a request from the third device that an alarm be annunciated if it is determined by the third device that the one or more components of the first device is not functioning in accordance with at least one predetermined criterion, and annunciating an alarm to alert a user that the one or more components of the first device is not functioning in accordance with the at least one predetermined criterion.
In certain aspects, the first device is a continuous glucose monitor.
In certain aspects, the second device includes a repeater unit operatively coupled to the continuous glucose monitor.
In certain aspects, the third device includes one of a receiver device or an insulin pump.
In certain aspects, the one or more components of the first device include at least one of a microprocessor, a power supply, a sensor, and an electronic component.
In certain aspects, the alarm includes at least one of an audio alarm, a vibratory alarm, and a visual alarm.
Certain aspects include receiving a request from the third device that a functionality check of one or more components of a first device be performed and that data related to the functionality check of the one or more components of the first device be communicated to the third device, wherein the request is received at the second device, the second device being operatively coupled to the first device.
In certain aspects, the information related to the functionality of the one or more components of the first device includes a lack of data being received from the first device.
Certain aspects include that the functionality check includes at least one of a determination of a current, a voltage, and a resistance that is measured across an electrical circuit in the one or more components, applying an input to the one or more components and receiving an output from the one or more components, a digital check of the one or more components, a checksum of a memory of the first device, a self-test output check of the one or more components, and an electrical or mechanical test of at least one switch of the one or more components.
Certain embodiments include the at least one predetermined criterion including at least one of a current, a voltage, and a resistance threshold used to define a proper operating range of the first device, a power supply measurement that defines an acceptable tolerance, and a digital threshold range used to define a proper operating range.
In certain embodiments, a computer-implemented method for mitigating single point failure of at least one device in an analyte monitoring system includes requesting that a functionality check of one or more components of a first device be performed and that data related to the functionality check of the one or more components of the first device be communicated to a second device, receiving the data related to the functionality of the one or more components of the first device, retrieving a list including at least one predetermined criterion related to the functionality of the one or more components of the first device from a storage component of the second device, comparing the data related to the functionality of the one or more components of the first device with the list including the at least one predetermined criterion, and determining if the one or more components of the first device is functioning in accordance with the at least one predetermined criterion.
Certain aspects include requesting that an alarm be annunciated at a third device to alert a user if it is determined by the second device that the one or more components of the first device is not functioning in accordance with the at least one predetermined criterion.
In certain aspects, the third device is operatively coupled to the first device.
In certain aspects, the request for the functionality check is received by a third device and the third device polls the first device to perform the functionality check.
Certain aspects include annunciating an alarm operatively coupled to the second device to alert a user if it is determined that the one or more components of the first device is not functioning in accordance with the at least one predetermined criterion.
In certain aspects, the first device is a continuous glucose monitor.
In certain aspects, the second device is one of a receiver device or an insulin pump.
In certain aspects, the third device is a repeater unit operatively coupled to the continuous glucose monitor.
In certain aspects, the one or more first components of the first device include at least one of a microprocessor, a power supply, a sensor, and an electric component.
In certain aspects, the alarm includes at least one of an audio alarm, a vibratory alarm, and a visual alarm.
Certain aspects include that the functionality check includes at least one of a determination of a current, a voltage, and a resistance that is measured across an electrical circuit in the one or more components, applying an input to the one or more components and receiving an output from the one or more components, a digital check of the one or more components, a checksum of a memory of the first device, a self-test output check of the one or more components, and an electrical or mechanical test of at least one switch of the one or more components.
Certain aspects include that the at least one predetermined criterion includes at least one of a current, a voltage, and a resistance threshold used to define a proper operating range of the first device, a power supply measurement that defines an acceptable tolerance, and a digital threshold range used to define a proper operating range.
In certain embodiments, a computer-implemented method for mitigating single point failure of at least one device in an analyte monitoring system includes requesting that a functionality check of one or more components of a first device be performed and that data related to the functionality check of the one or more components of the first device be communicated to a second device, and determining that the one or more components of the first device is not functioning properly if the data related to the functionality check of the components of the first device is not received at the second device, wherein an alarm is annunciated from at least one of the second device or a third device to alert a user that one or more components of the first device is not functioning properly.
Various other modifications and alterations in the structure and method of operation of the embodiments of the present disclosure will be apparent to those skilled in the art without departing from the scope and spirit of the present disclosure. Although the present disclosure has been described in connection with certain embodiments, it should be understood that the present disclosure as claimed should not be unduly limited to such embodiments. It is intended that the following claims define the scope of the present disclosure and that structures and methods within the scope of these claims and their equivalents be covered thereby.
The present application is a continuation of U.S. patent application Ser. No. 16/197,253 filed Nov. 20, 2018, which is a continuation of U.S. patent application Ser. No. 15/686,153 filed Aug. 24, 2017, now U.S. Pat. No. 10,136,847, which is a continuation of U.S. patent application Ser. No. 15/016,247, now U.S. Pat. No. 9,743,872, which is a continuation of U.S. patent application Ser. No. 14/251,542 filed Apr. 11, 2014, now U.S. Pat. No. 9,289,179, which is a continuation of U.S. patent application Ser. No. 13/684,078 filed Nov. 21, 2012, now U.S. Pat. No. 8,710,993, which claims priority to U.S. Provisional Application No. 61/563,518, filed Nov. 23, 2011, entitled “Mitigating Single Point Failure of Devices in an Analyte Monitoring System and Methods Thereof”, the disclosures of each of which are incorporated herein by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3581062 | Aston | May 1971 | A |
3926760 | Allen et al. | Dec 1975 | A |
3949388 | Fuller | Apr 1976 | A |
3960497 | Acord et al. | Jun 1976 | A |
4033330 | Willis et al. | Jul 1977 | A |
4036749 | Anderson | Jul 1977 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4129128 | McFarlane | Dec 1978 | A |
4245634 | Albisser et al. | Jan 1981 | A |
4327725 | Cortese et al. | May 1982 | A |
4344438 | Schultz | Aug 1982 | A |
4349728 | Phillips et al. | Sep 1982 | A |
4373527 | Fischell | Feb 1983 | A |
4392849 | Petre et al. | Jul 1983 | A |
4425920 | Bourland et al. | Jan 1984 | A |
4431004 | Bessman et al. | Feb 1984 | A |
4441968 | Emmer et al. | Apr 1984 | A |
4464170 | Clemens et al. | Aug 1984 | A |
4478976 | Goertz et al. | Oct 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4509531 | Ward | Apr 1985 | A |
4527240 | Kvitash | Jul 1985 | A |
4538616 | Rogoff | Sep 1985 | A |
4619793 | Lee | Oct 1986 | A |
4671288 | Gough | Jun 1987 | A |
4703756 | Gough et al. | Nov 1987 | A |
4731726 | Allen, III | Mar 1988 | A |
4749985 | Corsberg | Jun 1988 | A |
4757022 | Shults et al. | Jul 1988 | A |
4777953 | Ash et al. | Oct 1988 | A |
4779618 | Mund et al. | Oct 1988 | A |
4847785 | Stephens | Jul 1989 | A |
4854322 | Ash et al. | Aug 1989 | A |
4871351 | Feingold | Oct 1989 | A |
4890620 | Gough | Jan 1990 | A |
4925268 | Iyer et al. | May 1990 | A |
4953552 | DeMarzo | Sep 1990 | A |
4986271 | Wilkins | Jan 1991 | A |
4995402 | Smith et al. | Feb 1991 | A |
5000180 | Kuypers et al. | Mar 1991 | A |
5002054 | Ash et al. | Mar 1991 | A |
5019974 | Beckers | May 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5051688 | Murase et al. | Sep 1991 | A |
5055171 | Peck | Oct 1991 | A |
5068536 | Rosenthal | Nov 1991 | A |
5082550 | Rishpon et al. | Jan 1992 | A |
5106365 | Hernandez | Apr 1992 | A |
5122925 | Inpyn | Jun 1992 | A |
5135004 | Adams et al. | Aug 1992 | A |
5165407 | Wilson et al. | Nov 1992 | A |
5202261 | Musho et al. | Apr 1993 | A |
5204264 | Kaminer et al. | Apr 1993 | A |
5210778 | Massart | May 1993 | A |
5228449 | Christ et al. | Jul 1993 | A |
5231988 | Wernicke et al. | Aug 1993 | A |
5243696 | Carr et al. | Sep 1993 | A |
5246867 | Lakowicz et al. | Sep 1993 | A |
5251126 | Kahn et al. | Oct 1993 | A |
5262035 | Gregg et al. | Nov 1993 | A |
5262305 | Heller et al. | Nov 1993 | A |
5264104 | Gregg et al. | Nov 1993 | A |
5264105 | Gregg et al. | Nov 1993 | A |
5279294 | Anderson et al. | Jan 1994 | A |
5285792 | Sjoquist et al. | Feb 1994 | A |
5293877 | O'Hara et al. | Mar 1994 | A |
5298144 | Spokane | Mar 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5320725 | Gregg et al. | Jun 1994 | A |
5322063 | Allen et al. | Jun 1994 | A |
5330634 | Wong et al. | Jul 1994 | A |
5340722 | Wolfbeis et al. | Aug 1994 | A |
5342789 | Chick et al. | Aug 1994 | A |
5356786 | Heller et al. | Oct 1994 | A |
5360404 | Novacek et al. | Nov 1994 | A |
5372427 | Padovani et al. | Dec 1994 | A |
5379238 | Stark | Jan 1995 | A |
5384547 | Lynk et al. | Jan 1995 | A |
5390671 | Lord et al. | Feb 1995 | A |
5391250 | Cheney, II et al. | Feb 1995 | A |
5408999 | Singh et al. | Apr 1995 | A |
5410326 | Goldstein | Apr 1995 | A |
5411647 | Johnson et al. | May 1995 | A |
5425868 | Pedersen | Jun 1995 | A |
5429602 | Hauser | Jul 1995 | A |
5431160 | Wilkins | Jul 1995 | A |
5431921 | Thombre | Jul 1995 | A |
5438983 | Falcone | Aug 1995 | A |
5462645 | Albery et al. | Oct 1995 | A |
5472317 | Field et al. | Dec 1995 | A |
5489414 | Schreiber et al. | Feb 1996 | A |
5497772 | Schulman et al. | Mar 1996 | A |
5505828 | Wong et al. | Apr 1996 | A |
5507288 | Bocker et al. | Apr 1996 | A |
5509410 | Hill et al. | Apr 1996 | A |
5514718 | Lewis et al. | May 1996 | A |
5531878 | Vadgama et al. | Jul 1996 | A |
5532686 | Urbas et al. | Jul 1996 | A |
5552997 | Massart | Sep 1996 | A |
5555190 | Derby et al. | Sep 1996 | A |
5564434 | Halperin et al. | Oct 1996 | A |
5568400 | Stark et al. | Oct 1996 | A |
5568806 | Cheney, II et al. | Oct 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5582184 | Erickson et al. | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5593852 | Heller et al. | Jan 1997 | A |
5601435 | Quy | Feb 1997 | A |
5609575 | Larson et al. | Mar 1997 | A |
5628310 | Rao et al. | May 1997 | A |
5628324 | Sarbach | May 1997 | A |
5634468 | Platt et al. | Jun 1997 | A |
5640954 | Pfeiffer et al. | Jun 1997 | A |
5653239 | Pompei et al. | Aug 1997 | A |
5660163 | Schulman et al. | Aug 1997 | A |
5665222 | Heller et al. | Sep 1997 | A |
5707502 | McCaffrey et al. | Jan 1998 | A |
5711001 | Bussan et al. | Jan 1998 | A |
5711861 | Ward et al. | Jan 1998 | A |
5724030 | Urbas et al. | Mar 1998 | A |
5726646 | Bane et al. | Mar 1998 | A |
5733259 | Valcke et al. | Mar 1998 | A |
5735285 | Albert et al. | Apr 1998 | A |
5748103 | Flach et al. | May 1998 | A |
5749907 | Mann | May 1998 | A |
5772586 | Heinonen et al. | Jun 1998 | A |
5791344 | Schulman et al. | Aug 1998 | A |
5804047 | Karube et al. | Sep 1998 | A |
5833603 | Kovacs et al. | Nov 1998 | A |
5842189 | Keeler et al. | Nov 1998 | A |
5891049 | Cyrus et al. | Apr 1999 | A |
5899855 | Brown | May 1999 | A |
5914026 | Blubaugh, Jr. et al. | Jun 1999 | A |
5919141 | Money et al. | Jul 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5935224 | Svancarek et al. | Aug 1999 | A |
5942979 | Luppino | Aug 1999 | A |
5951485 | Cyrus et al. | Sep 1999 | A |
5957854 | Besson et al. | Sep 1999 | A |
5961451 | Reber et al. | Oct 1999 | A |
5964993 | Blubaugh, Jr. et al. | Oct 1999 | A |
5965380 | Heller et al. | Oct 1999 | A |
5971922 | Arita et al. | Oct 1999 | A |
5973613 | Reis et al. | Oct 1999 | A |
5980708 | Champagne et al. | Nov 1999 | A |
5995860 | Sun et al. | Nov 1999 | A |
6001067 | Shults et al. | Dec 1999 | A |
6024699 | Surwit et al. | Feb 2000 | A |
6028413 | Brockmann | Feb 2000 | A |
6049727 | Crothall | Apr 2000 | A |
6052565 | Ishikura et al. | Apr 2000 | A |
6066243 | Anderson et al. | May 2000 | A |
6083710 | Heller et al. | Jul 2000 | A |
6088608 | Schulman et al. | Jul 2000 | A |
6091976 | Pfeiffer et al. | Jul 2000 | A |
6091987 | Thompson | Jul 2000 | A |
6093172 | Funderburk et al. | Jul 2000 | A |
6096364 | Bok et al. | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6117290 | Say et al. | Sep 2000 | A |
6119028 | Schulman et al. | Sep 2000 | A |
6120676 | Heller et al. | Sep 2000 | A |
6121009 | Heller et al. | Sep 2000 | A |
6121611 | Lindsay et al. | Sep 2000 | A |
6122351 | Schlueter, Jr. et al. | Sep 2000 | A |
6130623 | MacLellan et al. | Oct 2000 | A |
6134461 | Say et al. | Oct 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6144871 | Saito et al. | Nov 2000 | A |
6157850 | Diab et al. | Dec 2000 | A |
6159147 | Lichter et al. | Dec 2000 | A |
6162611 | Heller et al. | Dec 2000 | A |
6175752 | Say et al. | Jan 2001 | B1 |
6200265 | Walsh et al. | Mar 2001 | B1 |
6212416 | Ward et al. | Apr 2001 | B1 |
6219574 | Cormier et al. | Apr 2001 | B1 |
6223283 | Chaiken et al. | Apr 2001 | B1 |
6233471 | Berner et al. | May 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6254586 | Mann et al. | Jul 2001 | B1 |
6270455 | Brown | Aug 2001 | B1 |
6275717 | Gross et al. | Aug 2001 | B1 |
6283761 | Joao | Sep 2001 | B1 |
6284478 | Heller et al. | Sep 2001 | B1 |
6291200 | LeJeune et al. | Sep 2001 | B1 |
6293925 | Safabash et al. | Sep 2001 | B1 |
6294997 | Paratore et al. | Sep 2001 | B1 |
6295506 | Heinonen et al. | Sep 2001 | B1 |
6299347 | Pompei | Oct 2001 | B1 |
6306104 | Cunningham et al. | Oct 2001 | B1 |
6309884 | Cooper et al. | Oct 2001 | B1 |
6314317 | Willis | Nov 2001 | B1 |
6329161 | Heller et al. | Dec 2001 | B1 |
6348640 | Navot et al. | Feb 2002 | B1 |
6359270 | Bridson | Mar 2002 | B1 |
6359444 | Grimes | Mar 2002 | B1 |
6360888 | McIvor et al. | Mar 2002 | B1 |
6366794 | Moussy et al. | Apr 2002 | B1 |
6377828 | Chaiken et al. | Apr 2002 | B1 |
6379301 | Worthington et al. | Apr 2002 | B1 |
6387048 | Schulman et al. | May 2002 | B1 |
6400974 | Lesho | Jun 2002 | B1 |
6405066 | Essenpreis et al. | Jun 2002 | B1 |
6413393 | Van Antwerp et al. | Jul 2002 | B1 |
6416471 | Kumar et al. | Jul 2002 | B1 |
6418346 | Nelson et al. | Jul 2002 | B1 |
6424847 | Mastrototaro et al. | Jul 2002 | B1 |
6427088 | Bowman, IV et al. | Jul 2002 | B1 |
6440068 | Brown et al. | Aug 2002 | B1 |
6471689 | Joseph et al. | Oct 2002 | B1 |
6478736 | Mault | Nov 2002 | B1 |
6484046 | Say et al. | Nov 2002 | B1 |
6493069 | Nagashimada et al. | Dec 2002 | B1 |
6496729 | Thompson | Dec 2002 | B2 |
6497655 | Linberg et al. | Dec 2002 | B1 |
6498043 | Schulman et al. | Dec 2002 | B1 |
6510344 | Halpern | Jan 2003 | B1 |
6514718 | Heller et al. | Feb 2003 | B2 |
6520326 | McIvor et al. | Feb 2003 | B2 |
6544212 | Galley et al. | Apr 2003 | B2 |
6546268 | Ishikawa et al. | Apr 2003 | B1 |
6549796 | Sohrab | Apr 2003 | B2 |
6551494 | Heller et al. | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6558320 | Causey, III et al. | May 2003 | B1 |
6558321 | Burd et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6560471 | Heller et al. | May 2003 | B1 |
6561975 | Pool et al. | May 2003 | B1 |
6561978 | Conn et al. | May 2003 | B1 |
6562001 | Lebel et al. | May 2003 | B2 |
6564105 | Starkweather et al. | May 2003 | B2 |
6565509 | Say et al. | May 2003 | B1 |
6571128 | Lebel et al. | May 2003 | B2 |
6572545 | Knobbe et al. | Jun 2003 | B2 |
6574490 | Abbink et al. | Jun 2003 | B2 |
6574510 | Von Arx et al. | Jun 2003 | B2 |
6576101 | Heller et al. | Jun 2003 | B1 |
6577899 | Lebel et al. | Jun 2003 | B2 |
6579231 | Phipps | Jun 2003 | B1 |
6579690 | Bonnecaze et al. | Jun 2003 | B1 |
6585644 | Lebel et al. | Jul 2003 | B2 |
6591125 | Buse et al. | Jul 2003 | B1 |
6595919 | Berner et al. | Jul 2003 | B2 |
6605200 | Mao et al. | Aug 2003 | B1 |
6605201 | Mao et al. | Aug 2003 | B1 |
6607509 | Bobroff et al. | Aug 2003 | B2 |
6610012 | Mault | Aug 2003 | B2 |
6631281 | Kastle | Oct 2003 | B1 |
6633772 | Ford et al. | Oct 2003 | B2 |
6635014 | Starkweather et al. | Oct 2003 | B2 |
6635167 | Batman et al. | Oct 2003 | B1 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6648821 | Lebel et al. | Nov 2003 | B2 |
6654625 | Say et al. | Nov 2003 | B1 |
6656114 | Poulsen et al. | Dec 2003 | B1 |
6658396 | Tang et al. | Dec 2003 | B1 |
6659948 | Lebel et al. | Dec 2003 | B2 |
6668196 | Villegas et al. | Dec 2003 | B1 |
6675030 | Ciurczak et al. | Jan 2004 | B2 |
6676816 | Mao et al. | Jan 2004 | B2 |
6687546 | Lebel et al. | Feb 2004 | B2 |
6689056 | Kilcoyne et al. | Feb 2004 | B1 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6695860 | Ward et al. | Feb 2004 | B1 |
6698269 | Baber et al. | Mar 2004 | B2 |
6702857 | Brauker et al. | Mar 2004 | B2 |
6721582 | Trepagnier et al. | Apr 2004 | B2 |
6730025 | Platt | May 2004 | B1 |
6731976 | Penn et al. | May 2004 | B2 |
6733446 | Lebel et al. | May 2004 | B2 |
6735183 | O'Toole et al. | May 2004 | B2 |
6740075 | Lebel et al. | May 2004 | B2 |
6740518 | Duong et al. | May 2004 | B1 |
6741877 | Shults et al. | May 2004 | B1 |
6746582 | Heller et al. | Jun 2004 | B2 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6770030 | Schaupp et al. | Aug 2004 | B1 |
6789195 | Prihoda et al. | Sep 2004 | B1 |
6790178 | Mault et al. | Sep 2004 | B1 |
6804558 | Haller et al. | Oct 2004 | B2 |
6809653 | Mann et al. | Oct 2004 | B1 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6811533 | Lebel et al. | Nov 2004 | B2 |
6811534 | Bowman, IV et al. | Nov 2004 | B2 |
6813519 | Lebel et al. | Nov 2004 | B2 |
6850790 | Berner et al. | Feb 2005 | B2 |
6862465 | Shults et al. | Mar 2005 | B2 |
6865407 | Kimball et al. | Mar 2005 | B2 |
6873268 | Lebel et al. | Mar 2005 | B2 |
6878112 | Linberg et al. | Apr 2005 | B2 |
6881551 | Heller et al. | Apr 2005 | B2 |
6882940 | Potts et al. | Apr 2005 | B2 |
6892085 | McIvor et al. | May 2005 | B2 |
6895263 | Shin et al. | May 2005 | B2 |
6895265 | Silver | May 2005 | B2 |
6923763 | Kovatchev et al. | Aug 2005 | B1 |
6923764 | Aceti et al. | Aug 2005 | B2 |
6931327 | Goode, Jr. et al. | Aug 2005 | B2 |
6932894 | Mao et al. | Aug 2005 | B2 |
6936006 | Sabra | Aug 2005 | B2 |
6940403 | Kail, IV | Sep 2005 | B2 |
6941163 | Ford et al. | Sep 2005 | B2 |
6942518 | Liamos et al. | Sep 2005 | B2 |
6950708 | Bowman, IV et al. | Sep 2005 | B2 |
6954662 | Freger et al. | Oct 2005 | B2 |
6958705 | Lebel et al. | Oct 2005 | B2 |
6968294 | Gutta et al. | Nov 2005 | B2 |
6971274 | Olin | Dec 2005 | B2 |
6974437 | Lebel et al. | Dec 2005 | B2 |
6983176 | Gardner et al. | Jan 2006 | B2 |
6990366 | Say et al. | Jan 2006 | B2 |
6997907 | Safabash et al. | Feb 2006 | B2 |
6998247 | Monfre et al. | Feb 2006 | B2 |
6999854 | Roth | Feb 2006 | B2 |
7003336 | Holker et al. | Feb 2006 | B2 |
7003340 | Say et al. | Feb 2006 | B2 |
7003341 | Say et al. | Feb 2006 | B2 |
7009511 | Mazar et al. | Mar 2006 | B2 |
7011630 | Desai et al. | Mar 2006 | B2 |
7015817 | Copley et al. | Mar 2006 | B2 |
7016713 | Gardner et al. | Mar 2006 | B2 |
7020508 | Stivoric et al. | Mar 2006 | B2 |
7022072 | Fox et al. | Apr 2006 | B2 |
7022219 | Mansouri et al. | Apr 2006 | B2 |
7024236 | Ford et al. | Apr 2006 | B2 |
7024245 | Lebel et al. | Apr 2006 | B2 |
7025425 | Kovatchev et al. | Apr 2006 | B2 |
7027848 | Robinson et al. | Apr 2006 | B2 |
7027931 | Jones et al. | Apr 2006 | B1 |
7029444 | Shin et al. | Apr 2006 | B2 |
7041068 | Freeman et al. | May 2006 | B2 |
7041468 | Drucker et al. | May 2006 | B2 |
7043305 | KenKnight et al. | May 2006 | B2 |
7046153 | Oja et al. | May 2006 | B2 |
7052472 | Miller et al. | May 2006 | B1 |
7052483 | Wojcik | May 2006 | B2 |
7056302 | Douglas | Jun 2006 | B2 |
7058453 | Nelson et al. | Jun 2006 | B2 |
7060031 | Webb et al. | Jun 2006 | B2 |
7074307 | Simpson et al. | Jul 2006 | B2 |
7081195 | Simpson et al. | Jul 2006 | B2 |
7082334 | Boute et al. | Jul 2006 | B2 |
7092891 | Maus et al. | Aug 2006 | B2 |
7098803 | Mann et al. | Aug 2006 | B2 |
7108778 | Simpson et al. | Sep 2006 | B2 |
7110803 | Shults et al. | Sep 2006 | B2 |
7113821 | Sun et al. | Sep 2006 | B1 |
7118667 | Lee | Oct 2006 | B2 |
7123950 | Mannheimer | Oct 2006 | B2 |
7125382 | Zhou et al. | Oct 2006 | B2 |
7134999 | Brauker et al. | Nov 2006 | B2 |
7136689 | Shults et al. | Nov 2006 | B2 |
7153265 | Vachon | Dec 2006 | B2 |
7155290 | Von Arx et al. | Dec 2006 | B2 |
7155729 | Andrew et al. | Dec 2006 | B1 |
7167818 | Brown | Jan 2007 | B2 |
7171274 | Starkweather et al. | Jan 2007 | B2 |
7174199 | Berner et al. | Feb 2007 | B2 |
7179226 | Crothall et al. | Feb 2007 | B2 |
7183102 | Monfre et al. | Feb 2007 | B2 |
7190988 | Say et al. | Mar 2007 | B2 |
7192450 | Brauker et al. | Mar 2007 | B2 |
7198606 | Boecker et al. | Apr 2007 | B2 |
7203549 | Schommer et al. | Apr 2007 | B2 |
7207974 | Safabash et al. | Apr 2007 | B2 |
7225535 | Feldman et al. | Jun 2007 | B2 |
7226442 | Sheppard et al. | Jun 2007 | B2 |
7226978 | Tapsak et al. | Jun 2007 | B2 |
7228182 | Healy et al. | Jun 2007 | B2 |
7237712 | DeRocco et al. | Jul 2007 | B2 |
7258673 | Racchini et al. | Aug 2007 | B2 |
7267665 | Steil et al. | Sep 2007 | B2 |
7276029 | Goode, Jr. et al. | Oct 2007 | B2 |
7278983 | Ireland et al. | Oct 2007 | B2 |
7286894 | Grant et al. | Oct 2007 | B1 |
7295867 | Berner et al. | Nov 2007 | B2 |
7299082 | Feldman et al. | Nov 2007 | B2 |
7301463 | Paterno | Nov 2007 | B1 |
7310544 | Brister et al. | Dec 2007 | B2 |
7317938 | Lorenz et al. | Jan 2008 | B2 |
7318816 | Bobroff et al. | Jan 2008 | B2 |
7324850 | Persen et al. | Jan 2008 | B2 |
7335294 | Heller et al. | Feb 2008 | B2 |
7344500 | Talbot et al. | Mar 2008 | B2 |
7347819 | Lebel et al. | Mar 2008 | B2 |
7354420 | Steil et al. | Apr 2008 | B2 |
7364592 | Carr-Brendel et al. | Apr 2008 | B2 |
7366556 | Brister et al. | Apr 2008 | B2 |
7379765 | Petisce et al. | May 2008 | B2 |
7384397 | Zhang et al. | Jun 2008 | B2 |
7387010 | Sunshine et al. | Jun 2008 | B2 |
7399277 | Saidara et al. | Jul 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7404796 | Ginsberg | Jul 2008 | B2 |
7419573 | Gundel | Sep 2008 | B2 |
7424318 | Brister et al. | Sep 2008 | B2 |
7460898 | Brister et al. | Dec 2008 | B2 |
7467003 | Brister et al. | Dec 2008 | B2 |
7468125 | Kraft et al. | Dec 2008 | B2 |
7471972 | Rhodes et al. | Dec 2008 | B2 |
7474992 | Ariyur | Jan 2009 | B2 |
7492254 | Bandy et al. | Feb 2009 | B2 |
7494465 | Brister et al. | Feb 2009 | B2 |
7497827 | Brister et al. | Mar 2009 | B2 |
7519408 | Rasdal et al. | Apr 2009 | B2 |
7519478 | Bartkowiak et al. | Apr 2009 | B2 |
7523004 | Bartkowiak et al. | Apr 2009 | B2 |
7547281 | Hayes et al. | Jun 2009 | B2 |
7565197 | Haubrich et al. | Jul 2009 | B2 |
7569030 | Lebel et al. | Aug 2009 | B2 |
7574266 | Dudding et al. | Aug 2009 | B2 |
7577469 | Aronowitz et al. | Aug 2009 | B1 |
7583990 | Goode, Jr. et al. | Sep 2009 | B2 |
7591801 | Brauker et al. | Sep 2009 | B2 |
7599726 | Goode, Jr. et al. | Oct 2009 | B2 |
7602310 | Mann et al. | Oct 2009 | B2 |
7604178 | Stewart | Oct 2009 | B2 |
7613491 | Boock et al. | Nov 2009 | B2 |
7615007 | Shults et al. | Nov 2009 | B2 |
7618369 | Hayter et al. | Nov 2009 | B2 |
7620438 | He | Nov 2009 | B2 |
7630748 | Budiman | Dec 2009 | B2 |
7632228 | Brauker et al. | Dec 2009 | B2 |
7635594 | Holmes et al. | Dec 2009 | B2 |
7637868 | Saint et al. | Dec 2009 | B2 |
7640048 | Dobbles et al. | Dec 2009 | B2 |
7651596 | Petisce et al. | Jan 2010 | B2 |
7651845 | Doyle, III et al. | Jan 2010 | B2 |
7653425 | Hayter et al. | Jan 2010 | B2 |
7654956 | Brister et al. | Feb 2010 | B2 |
7657297 | Simpson et al. | Feb 2010 | B2 |
7659823 | Killian et al. | Feb 2010 | B1 |
7668596 | Von Arx et al. | Feb 2010 | B2 |
7699775 | Desai et al. | Apr 2010 | B2 |
7699964 | Feldman et al. | Apr 2010 | B2 |
7711402 | Shults et al. | May 2010 | B2 |
7711493 | Bartkowiak et al. | May 2010 | B2 |
7713574 | Brister et al. | May 2010 | B2 |
7715893 | Kamath et al. | May 2010 | B2 |
7736310 | Taub et al. | Jun 2010 | B2 |
7741734 | Joannopoulos et al. | Jun 2010 | B2 |
7751864 | Buck, Jr. | Jul 2010 | B2 |
7766829 | Sloan et al. | Aug 2010 | B2 |
7768386 | Hayter et al. | Aug 2010 | B2 |
7768387 | Fennell et al. | Aug 2010 | B2 |
7771352 | Shults et al. | Aug 2010 | B2 |
7774145 | Brauker et al. | Aug 2010 | B2 |
7775444 | DeRocco et al. | Aug 2010 | B2 |
7778680 | Goode et al. | Aug 2010 | B2 |
7779332 | Karr et al. | Aug 2010 | B2 |
7782192 | Jeckelmann et al. | Aug 2010 | B2 |
7783333 | Brister et al. | Aug 2010 | B2 |
7783442 | Mueller, Jr. et al. | Aug 2010 | B2 |
7791467 | Mazar et al. | Sep 2010 | B2 |
7792562 | Shults et al. | Sep 2010 | B2 |
7811231 | Jin et al. | Oct 2010 | B2 |
7813809 | Strother et al. | Oct 2010 | B2 |
7826382 | Sicurello et al. | Nov 2010 | B2 |
7826981 | Goode, Jr. et al. | Nov 2010 | B2 |
7831310 | Lebel et al. | Nov 2010 | B2 |
7842174 | Zhou et al. | Nov 2010 | B2 |
7857760 | Brister et al. | Dec 2010 | B2 |
7860574 | Von Arx et al. | Dec 2010 | B2 |
7874985 | Kovatchev et al. | Jan 2011 | B2 |
7882611 | Shah et al. | Feb 2011 | B2 |
7885697 | Brister et al. | Feb 2011 | B2 |
7889069 | Fifolt et al. | Feb 2011 | B2 |
7899511 | Shults et al. | Mar 2011 | B2 |
7899545 | John | Mar 2011 | B2 |
7905833 | Brister et al. | Mar 2011 | B2 |
7912674 | Killoren Clark et al. | Mar 2011 | B2 |
7914450 | Goode, Jr. et al. | Mar 2011 | B2 |
7916013 | Stevenson | Mar 2011 | B2 |
7920906 | Goode et al. | Apr 2011 | B2 |
7928850 | Hayter et al. | Apr 2011 | B2 |
7938797 | Estes | May 2011 | B2 |
7941200 | Weinert et al. | May 2011 | B2 |
7946984 | Brister et al. | May 2011 | B2 |
7946985 | Mastrototaro et al. | May 2011 | B2 |
7955258 | Goscha et al. | Jun 2011 | B2 |
7970448 | Shults et al. | Jun 2011 | B2 |
7972296 | Braig et al. | Jul 2011 | B2 |
7974672 | Shults et al. | Jul 2011 | B2 |
7976466 | Ward et al. | Jul 2011 | B2 |
7978063 | Baldus et al. | Jul 2011 | B2 |
7996158 | Hayter et al. | Aug 2011 | B2 |
7999674 | Kamen | Aug 2011 | B2 |
8005524 | Brauker et al. | Aug 2011 | B2 |
8010174 | Goode et al. | Aug 2011 | B2 |
8010256 | Oowada | Aug 2011 | B2 |
8060173 | Goode, Jr. et al. | Nov 2011 | B2 |
8072310 | Everhart | Dec 2011 | B1 |
8090445 | Ginggen | Jan 2012 | B2 |
8093991 | Stevenson et al. | Jan 2012 | B2 |
8094009 | Allen et al. | Jan 2012 | B2 |
8098159 | Batra et al. | Jan 2012 | B2 |
8098160 | Howarth et al. | Jan 2012 | B2 |
8098161 | Lavedas | Jan 2012 | B2 |
8098201 | Choi et al. | Jan 2012 | B2 |
8098208 | Ficker et al. | Jan 2012 | B2 |
8102021 | Degani | Jan 2012 | B2 |
8102154 | Bishop et al. | Jan 2012 | B2 |
8102263 | Yeo et al. | Jan 2012 | B2 |
8102789 | Rosar et al. | Jan 2012 | B2 |
8103241 | Young et al. | Jan 2012 | B2 |
8103325 | Swedlow et al. | Jan 2012 | B2 |
8103471 | Hayter | Jan 2012 | B2 |
8111042 | Bennett | Feb 2012 | B2 |
8115488 | McDowell | Feb 2012 | B2 |
8116681 | Baarman | Feb 2012 | B2 |
8116683 | Baarman | Feb 2012 | B2 |
8117481 | Anselmi et al. | Feb 2012 | B2 |
8120493 | Burr | Feb 2012 | B2 |
8124452 | Sheats | Feb 2012 | B2 |
8130093 | Mazar et al. | Mar 2012 | B2 |
8131351 | Kalgren et al. | Mar 2012 | B2 |
8131365 | Zhang et al. | Mar 2012 | B2 |
8131565 | Dicks et al. | Mar 2012 | B2 |
8132037 | Fehr et al. | Mar 2012 | B2 |
8135352 | Langsweirdt et al. | Mar 2012 | B2 |
8136735 | Arai et al. | Mar 2012 | B2 |
8138925 | Downie et al. | Mar 2012 | B2 |
8140160 | Pless et al. | Mar 2012 | B2 |
8140168 | Olson et al. | Mar 2012 | B2 |
8140299 | Siess | Mar 2012 | B2 |
8140312 | Hayter et al. | Mar 2012 | B2 |
8150321 | Winter et al. | Apr 2012 | B2 |
8150516 | Levine et al. | Apr 2012 | B2 |
8160669 | Brauker et al. | Apr 2012 | B2 |
8160900 | Taub et al. | Apr 2012 | B2 |
8170803 | Kamath et al. | May 2012 | B2 |
8179266 | Hermle | May 2012 | B2 |
8192394 | Estes et al. | Jun 2012 | B2 |
8216138 | McGarraugh | Jul 2012 | B1 |
8216139 | Brauker et al. | Jul 2012 | B2 |
8239166 | Hayter et al. | Aug 2012 | B2 |
8255026 | Al-Ali | Aug 2012 | B1 |
8260558 | Hayter et al. | Sep 2012 | B2 |
8282549 | Brauker et al. | Oct 2012 | B2 |
8306766 | Mueller, Jr. et al. | Nov 2012 | B2 |
8374667 | Brauker et al. | Feb 2013 | B2 |
8374668 | Hayter et al. | Feb 2013 | B1 |
8376945 | Hayter et al. | Feb 2013 | B2 |
8377271 | Mao et al. | Feb 2013 | B2 |
8409093 | Bugler | Apr 2013 | B2 |
8444560 | Hayter et al. | May 2013 | B2 |
8461985 | Fennell et al. | Jun 2013 | B2 |
8478557 | Hayter et al. | Jul 2013 | B2 |
8484005 | Hayter et al. | Jul 2013 | B2 |
8543354 | Luo et al. | Sep 2013 | B2 |
8560038 | Hayter et al. | Oct 2013 | B2 |
8571808 | Hayter | Oct 2013 | B2 |
8583205 | Budiman et al. | Nov 2013 | B2 |
8597570 | Terashima et al. | Dec 2013 | B2 |
8600681 | Hayter et al. | Dec 2013 | B2 |
8608923 | Zhou et al. | Dec 2013 | B2 |
8612163 | Hayter et al. | Dec 2013 | B2 |
8657746 | Roy | Feb 2014 | B2 |
8682615 | Hayter et al. | Mar 2014 | B2 |
8710993 | Hayter et al. | Apr 2014 | B2 |
8834366 | Hayter et al. | Sep 2014 | B2 |
8845536 | Brauker et al. | Sep 2014 | B2 |
9000914 | Baker et al. | Apr 2015 | B2 |
9060719 | Hayter et al. | Jun 2015 | B2 |
9119528 | Cobelli et al. | Sep 2015 | B2 |
9125548 | Hayter | Sep 2015 | B2 |
9289179 | Hayter et al. | Mar 2016 | B2 |
9398872 | Hayter et al. | Jul 2016 | B2 |
9408566 | Hayter et al. | Aug 2016 | B2 |
9439586 | Bugler | Sep 2016 | B2 |
9483608 | Hayter et al. | Nov 2016 | B2 |
9558325 | Hayter et al. | Jan 2017 | B2 |
9743872 | Hayter et al. | Aug 2017 | B2 |
9797880 | Hayter et al. | Oct 2017 | B2 |
9801541 | Mensinger et al. | Oct 2017 | B2 |
9804148 | Hayter et al. | Oct 2017 | B2 |
9833181 | Hayter et al. | Dec 2017 | B2 |
9980140 | Spencer et al. | May 2018 | B1 |
10136847 | Hayter et al. | Nov 2018 | B2 |
10375222 | Mandapaka et al. | Aug 2019 | B2 |
10702215 | Hampapuram et al. | Jul 2020 | B2 |
10855788 | Arabo et al. | Dec 2020 | B2 |
10939859 | Hayter | Mar 2021 | B2 |
11213204 | Mensinger et al. | Jan 2022 | B2 |
11991175 | Rolfe et al. | May 2024 | B2 |
20010037366 | Webb et al. | Nov 2001 | A1 |
20020016534 | Trepagnier et al. | Feb 2002 | A1 |
20020019022 | Dunn et al. | Feb 2002 | A1 |
20020032531 | Mansky et al. | Mar 2002 | A1 |
20020042090 | Heller et al. | Apr 2002 | A1 |
20020054320 | Ogino | May 2002 | A1 |
20020057993 | Maisey et al. | May 2002 | A1 |
20020065454 | Lebel et al. | May 2002 | A1 |
20020068860 | Clark | Jun 2002 | A1 |
20020095076 | Krausman et al. | Jul 2002 | A1 |
20020103499 | Perez et al. | Aug 2002 | A1 |
20020106709 | Potts et al. | Aug 2002 | A1 |
20020117639 | Paolini et al. | Aug 2002 | A1 |
20020120186 | Keimel | Aug 2002 | A1 |
20020128594 | Das et al. | Sep 2002 | A1 |
20020147135 | Schnell | Oct 2002 | A1 |
20020150959 | Lejeune et al. | Oct 2002 | A1 |
20020156355 | Gough | Oct 2002 | A1 |
20020161288 | Shin et al. | Oct 2002 | A1 |
20020169635 | Shillingburg | Nov 2002 | A1 |
20030004403 | Drinan et al. | Jan 2003 | A1 |
20030023317 | Brauker et al. | Jan 2003 | A1 |
20030023461 | Quintanilla et al. | Jan 2003 | A1 |
20030028089 | Galley et al. | Feb 2003 | A1 |
20030032077 | Itoh et al. | Feb 2003 | A1 |
20030032867 | Crothall et al. | Feb 2003 | A1 |
20030032874 | Rhodes et al. | Feb 2003 | A1 |
20030042137 | Mao et al. | Mar 2003 | A1 |
20030050546 | Desai et al. | Mar 2003 | A1 |
20030054428 | Monfre et al. | Mar 2003 | A1 |
20030060692 | Ruchti et al. | Mar 2003 | A1 |
20030060753 | Starkweather et al. | Mar 2003 | A1 |
20030065308 | Lebel et al. | Apr 2003 | A1 |
20030100040 | Bonnecaze et al. | May 2003 | A1 |
20030100821 | Heller et al. | May 2003 | A1 |
20030114897 | Von Arx et al. | Jun 2003 | A1 |
20030125612 | Fox et al. | Jul 2003 | A1 |
20030130616 | Steil et al. | Jul 2003 | A1 |
20030134347 | Heller et al. | Jul 2003 | A1 |
20030147515 | Kai et al. | Aug 2003 | A1 |
20030168338 | Gao et al. | Sep 2003 | A1 |
20030176933 | Lebel et al. | Sep 2003 | A1 |
20030187338 | Say et al. | Oct 2003 | A1 |
20030191377 | Robinson et al. | Oct 2003 | A1 |
20030199744 | Buse et al. | Oct 2003 | A1 |
20030199790 | Boecker et al. | Oct 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030211617 | Jones | Nov 2003 | A1 |
20030212317 | Kovatchev et al. | Nov 2003 | A1 |
20030212379 | Bylund et al. | Nov 2003 | A1 |
20030216630 | Jersey-Willuhn et al. | Nov 2003 | A1 |
20030217966 | Tapsak et al. | Nov 2003 | A1 |
20030235817 | Bartkowiak et al. | Dec 2003 | A1 |
20040010186 | Kimball et al. | Jan 2004 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040011671 | Shults et al. | Jan 2004 | A1 |
20040024553 | Monfre et al. | Feb 2004 | A1 |
20040034289 | Teller et al. | Feb 2004 | A1 |
20040039298 | Abreu | Feb 2004 | A1 |
20040040840 | Mao et al. | Mar 2004 | A1 |
20040041749 | Dixon | Mar 2004 | A1 |
20040045879 | Shults et al. | Mar 2004 | A1 |
20040054263 | Moerman et al. | Mar 2004 | A1 |
20040063435 | Sakamoto et al. | Apr 2004 | A1 |
20040064068 | DeNuzzio et al. | Apr 2004 | A1 |
20040099529 | Mao et al. | May 2004 | A1 |
20040106858 | Say et al. | Jun 2004 | A1 |
20040111017 | Say et al. | Jun 2004 | A1 |
20040117204 | Mazar et al. | Jun 2004 | A1 |
20040122353 | Shahmirian et al. | Jun 2004 | A1 |
20040133164 | Funderburk et al. | Jul 2004 | A1 |
20040133390 | Osorio et al. | Jul 2004 | A1 |
20040135571 | Uutela et al. | Jul 2004 | A1 |
20040135684 | Steinthal et al. | Jul 2004 | A1 |
20040138588 | Saikley et al. | Jul 2004 | A1 |
20040142403 | Hetzel et al. | Jul 2004 | A1 |
20040146909 | Duong et al. | Jul 2004 | A1 |
20040147872 | Thompson | Jul 2004 | A1 |
20040152622 | Keith et al. | Aug 2004 | A1 |
20040162678 | Hetzel et al. | Aug 2004 | A1 |
20040167464 | Ireland et al. | Aug 2004 | A1 |
20040167801 | Say et al. | Aug 2004 | A1 |
20040171921 | Say et al. | Sep 2004 | A1 |
20040176672 | Silver et al. | Sep 2004 | A1 |
20040186362 | Brauker et al. | Sep 2004 | A1 |
20040186365 | Jin et al. | Sep 2004 | A1 |
20040193020 | Chiba et al. | Sep 2004 | A1 |
20040193025 | Steil et al. | Sep 2004 | A1 |
20040193090 | Lebel et al. | Sep 2004 | A1 |
20040197846 | Hockersmith et al. | Oct 2004 | A1 |
20040199056 | Husemann et al. | Oct 2004 | A1 |
20040199059 | Brauker et al. | Oct 2004 | A1 |
20040204687 | Mogensen et al. | Oct 2004 | A1 |
20040204868 | Maynard et al. | Oct 2004 | A1 |
20040219664 | Heller et al. | Nov 2004 | A1 |
20040225338 | Lebel et al. | Nov 2004 | A1 |
20040236200 | Say et al. | Nov 2004 | A1 |
20040249253 | Racchini et al. | Dec 2004 | A1 |
20040254433 | Bandis et al. | Dec 2004 | A1 |
20040254434 | Goodnow et al. | Dec 2004 | A1 |
20040260478 | Schwamm | Dec 2004 | A1 |
20040267300 | Mace | Dec 2004 | A1 |
20050001024 | Kusaka et al. | Jan 2005 | A1 |
20050004439 | Shin et al. | Jan 2005 | A1 |
20050004494 | Perez et al. | Jan 2005 | A1 |
20050010269 | Lebel et al. | Jan 2005 | A1 |
20050017864 | Tsoukalis | Jan 2005 | A1 |
20050027177 | Shin et al. | Feb 2005 | A1 |
20050027180 | Goode et al. | Feb 2005 | A1 |
20050027181 | Goode et al. | Feb 2005 | A1 |
20050027182 | Siddiqui et al. | Feb 2005 | A1 |
20050027462 | Goode et al. | Feb 2005 | A1 |
20050027463 | Goode et al. | Feb 2005 | A1 |
20050031689 | Shults et al. | Feb 2005 | A1 |
20050038332 | Saidara et al. | Feb 2005 | A1 |
20050043598 | Goode, Jr. et al. | Feb 2005 | A1 |
20050049179 | Davidson et al. | Mar 2005 | A1 |
20050049473 | Desai et al. | Mar 2005 | A1 |
20050070774 | Addison et al. | Mar 2005 | A1 |
20050070777 | Cho et al. | Mar 2005 | A1 |
20050090607 | Tapsak et al. | Apr 2005 | A1 |
20050096511 | Fox et al. | May 2005 | A1 |
20050096512 | Fox et al. | May 2005 | A1 |
20050096516 | Soykan et al. | May 2005 | A1 |
20050112169 | Brauker et al. | May 2005 | A1 |
20050113648 | Yang et al. | May 2005 | A1 |
20050113653 | Fox et al. | May 2005 | A1 |
20050113886 | Fischell et al. | May 2005 | A1 |
20050114068 | Chey et al. | May 2005 | A1 |
20050115832 | Simpson et al. | Jun 2005 | A1 |
20050116683 | Cheng et al. | Jun 2005 | A1 |
20050121322 | Say et al. | Jun 2005 | A1 |
20050131346 | Douglas | Jun 2005 | A1 |
20050134731 | Lee et al. | Jun 2005 | A1 |
20050137530 | Campbell et al. | Jun 2005 | A1 |
20050143635 | Kamath et al. | Jun 2005 | A1 |
20050148890 | Hastings | Jul 2005 | A1 |
20050154271 | Rasdal et al. | Jul 2005 | A1 |
20050176136 | Burd et al. | Aug 2005 | A1 |
20050177398 | Watanabe et al. | Aug 2005 | A1 |
20050182306 | Sloan | Aug 2005 | A1 |
20050187442 | Cho et al. | Aug 2005 | A1 |
20050187720 | Goode, Jr. et al. | Aug 2005 | A1 |
20050192494 | Ginsberg | Sep 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20050195930 | Spital et al. | Sep 2005 | A1 |
20050196821 | Monfre et al. | Sep 2005 | A1 |
20050197793 | Baker, Jr. | Sep 2005 | A1 |
20050199494 | Say et al. | Sep 2005 | A1 |
20050203360 | Brauker et al. | Sep 2005 | A1 |
20050204134 | Von Arx et al. | Sep 2005 | A1 |
20050209515 | Hockersmith et al. | Sep 2005 | A1 |
20050214892 | Kovatchev et al. | Sep 2005 | A1 |
20050236361 | Ufer et al. | Oct 2005 | A1 |
20050239154 | Feldman et al. | Oct 2005 | A1 |
20050239156 | Drucker et al. | Oct 2005 | A1 |
20050241957 | Mao et al. | Nov 2005 | A1 |
20050245795 | Goode, Jr. et al. | Nov 2005 | A1 |
20050245799 | Brauker et al. | Nov 2005 | A1 |
20050245839 | Stivoric et al. | Nov 2005 | A1 |
20050245904 | Estes et al. | Nov 2005 | A1 |
20050251033 | Scarantino et al. | Nov 2005 | A1 |
20050272985 | Kotulla et al. | Dec 2005 | A1 |
20050277164 | Drucker et al. | Dec 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20050280521 | Mizumaki | Dec 2005 | A1 |
20050287620 | Heller et al. | Dec 2005 | A1 |
20060001538 | Kraft et al. | Jan 2006 | A1 |
20060001551 | Kraft et al. | Jan 2006 | A1 |
20060004270 | Bedard et al. | Jan 2006 | A1 |
20060010098 | Goodnow et al. | Jan 2006 | A1 |
20060011474 | Schulein et al. | Jan 2006 | A1 |
20060015020 | Neale et al. | Jan 2006 | A1 |
20060015024 | Brister et al. | Jan 2006 | A1 |
20060016700 | Brister et al. | Jan 2006 | A1 |
20060017923 | Ruchti et al. | Jan 2006 | A1 |
20060019327 | Brister et al. | Jan 2006 | A1 |
20060020186 | Brister et al. | Jan 2006 | A1 |
20060020187 | Brister et al. | Jan 2006 | A1 |
20060020188 | Kamath et al. | Jan 2006 | A1 |
20060020189 | Brister et al. | Jan 2006 | A1 |
20060020190 | Kamath et al. | Jan 2006 | A1 |
20060020191 | Brister et al. | Jan 2006 | A1 |
20060020192 | Brister et al. | Jan 2006 | A1 |
20060020300 | Nghiem et al. | Jan 2006 | A1 |
20060025663 | Talbot et al. | Feb 2006 | A1 |
20060029177 | Cranford, Jr. et al. | Feb 2006 | A1 |
20060031094 | Cohen et al. | Feb 2006 | A1 |
20060036139 | Brister et al. | Feb 2006 | A1 |
20060036140 | Brister et al. | Feb 2006 | A1 |
20060036141 | Kamath et al. | Feb 2006 | A1 |
20060036142 | Brister et al. | Feb 2006 | A1 |
20060036143 | Brister et al. | Feb 2006 | A1 |
20060036144 | Brister et al. | Feb 2006 | A1 |
20060036145 | Brister et al. | Feb 2006 | A1 |
20060058588 | Zdeblick | Mar 2006 | A1 |
20060079740 | Silver et al. | Apr 2006 | A1 |
20060091006 | Wang et al. | May 2006 | A1 |
20060094947 | Kovatchev et al. | May 2006 | A1 |
20060142651 | Brister et al. | Jun 2006 | A1 |
20060154642 | Scannell | Jul 2006 | A1 |
20060155180 | Brister et al. | Jul 2006 | A1 |
20060156796 | Burke et al. | Jul 2006 | A1 |
20060166629 | Reggiardo | Jul 2006 | A1 |
20060173260 | Gaoni et al. | Aug 2006 | A1 |
20060173406 | Hayes et al. | Aug 2006 | A1 |
20060173444 | Choy et al. | Aug 2006 | A1 |
20060183984 | Dobbles et al. | Aug 2006 | A1 |
20060183985 | Brister et al. | Aug 2006 | A1 |
20060189851 | Tivig et al. | Aug 2006 | A1 |
20060189863 | Peyser et al. | Aug 2006 | A1 |
20060193375 | Lee | Aug 2006 | A1 |
20060202805 | Schulman et al. | Sep 2006 | A1 |
20060211072 | Ryan et al. | Sep 2006 | A1 |
20060222566 | Brauker et al. | Oct 2006 | A1 |
20060224109 | Steil et al. | Oct 2006 | A1 |
20060224141 | Rush et al. | Oct 2006 | A1 |
20060229512 | Petisce et al. | Oct 2006 | A1 |
20060247508 | Fennell | Nov 2006 | A1 |
20060247710 | Goetz et al. | Nov 2006 | A1 |
20060247985 | Liamos et al. | Nov 2006 | A1 |
20060253296 | Liisberg et al. | Nov 2006 | A1 |
20060258929 | Goode et al. | Nov 2006 | A1 |
20060272652 | Stocker et al. | Dec 2006 | A1 |
20060276771 | Galley et al. | Dec 2006 | A1 |
20060281985 | Ward et al. | Dec 2006 | A1 |
20060287691 | Drew | Dec 2006 | A1 |
20060290496 | Peeters et al. | Dec 2006 | A1 |
20060293607 | Alt et al. | Dec 2006 | A1 |
20070007133 | Mang et al. | Jan 2007 | A1 |
20070010950 | Abensour et al. | Jan 2007 | A1 |
20070016381 | Kamath et al. | Jan 2007 | A1 |
20070017983 | Frank et al. | Jan 2007 | A1 |
20070027381 | Stafford | Feb 2007 | A1 |
20070027507 | Burdett et al. | Feb 2007 | A1 |
20070032706 | Kamath et al. | Feb 2007 | A1 |
20070032717 | Brister et al. | Feb 2007 | A1 |
20070033074 | Nitzan et al. | Feb 2007 | A1 |
20070038044 | Dobbles et al. | Feb 2007 | A1 |
20070055799 | Koehler et al. | Mar 2007 | A1 |
20070060803 | Liljeryd et al. | Mar 2007 | A1 |
20070060814 | Stafford | Mar 2007 | A1 |
20070060869 | Tolle et al. | Mar 2007 | A1 |
20070060979 | Strother et al. | Mar 2007 | A1 |
20070066873 | Kamath et al. | Mar 2007 | A1 |
20070066956 | Finkel | Mar 2007 | A1 |
20070071681 | Gadkar et al. | Mar 2007 | A1 |
20070073129 | Shah et al. | Mar 2007 | A1 |
20070078320 | Stafford | Apr 2007 | A1 |
20070078321 | Mazza et al. | Apr 2007 | A1 |
20070078322 | Stafford | Apr 2007 | A1 |
20070078323 | Reggiardo et al. | Apr 2007 | A1 |
20070078818 | Zivitz et al. | Apr 2007 | A1 |
20070093786 | Goldsmith et al. | Apr 2007 | A1 |
20070094216 | Mathias et al. | Apr 2007 | A1 |
20070100222 | Mastrototaro et al. | May 2007 | A1 |
20070106135 | Sloan et al. | May 2007 | A1 |
20070107973 | Jiang et al. | May 2007 | A1 |
20070118030 | Bruce et al. | May 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070124002 | Estes et al. | May 2007 | A1 |
20070129621 | Kellogg et al. | Jun 2007 | A1 |
20070149875 | Ouyang et al. | Jun 2007 | A1 |
20070151869 | Heller et al. | Jul 2007 | A1 |
20070153705 | Rosar et al. | Jul 2007 | A1 |
20070156033 | Causey, III et al. | Jul 2007 | A1 |
20070156094 | Safabash et al. | Jul 2007 | A1 |
20070163880 | Woo et al. | Jul 2007 | A1 |
20070168224 | Letzt et al. | Jul 2007 | A1 |
20070173706 | Neinast et al. | Jul 2007 | A1 |
20070173709 | Petisce et al. | Jul 2007 | A1 |
20070173710 | Petisce et al. | Jul 2007 | A1 |
20070173761 | Kanderian et al. | Jul 2007 | A1 |
20070179349 | Hoyme et al. | Aug 2007 | A1 |
20070179352 | Randlov et al. | Aug 2007 | A1 |
20070191701 | Feldman et al. | Aug 2007 | A1 |
20070191702 | Yodfat et al. | Aug 2007 | A1 |
20070202562 | Curry | Aug 2007 | A1 |
20070203407 | Hoss et al. | Aug 2007 | A1 |
20070203966 | Brauker et al. | Aug 2007 | A1 |
20070208244 | Brauker et al. | Sep 2007 | A1 |
20070208246 | Brauker et al. | Sep 2007 | A1 |
20070213657 | Jennewine et al. | Sep 2007 | A1 |
20070228071 | Kamen et al. | Oct 2007 | A1 |
20070232878 | Kovatchev et al. | Oct 2007 | A1 |
20070232880 | Siddiqui et al. | Oct 2007 | A1 |
20070235331 | Simpson et al. | Oct 2007 | A1 |
20070244383 | Talbot et al. | Oct 2007 | A1 |
20070249922 | Peyser et al. | Oct 2007 | A1 |
20070253021 | Mehta et al. | Nov 2007 | A1 |
20070255116 | Mehta et al. | Nov 2007 | A1 |
20070255321 | Gerber et al. | Nov 2007 | A1 |
20070255348 | Holtzclaw | Nov 2007 | A1 |
20070255531 | Drew | Nov 2007 | A1 |
20070258395 | Jollota et al. | Nov 2007 | A1 |
20070270672 | Hayter | Nov 2007 | A1 |
20070271285 | Eichorn et al. | Nov 2007 | A1 |
20070282299 | Hellwig | Dec 2007 | A1 |
20070285238 | Batra | Dec 2007 | A1 |
20070299617 | Willis | Dec 2007 | A1 |
20080004515 | Jennewine et al. | Jan 2008 | A1 |
20080004601 | Jennewine et al. | Jan 2008 | A1 |
20080009692 | Stafford | Jan 2008 | A1 |
20080012701 | Kass et al. | Jan 2008 | A1 |
20080017522 | Heller et al. | Jan 2008 | A1 |
20080018433 | Pitt-Pladdy | Jan 2008 | A1 |
20080021436 | Wolpert et al. | Jan 2008 | A1 |
20080021666 | Goode, Jr. et al. | Jan 2008 | A1 |
20080021972 | Huelskamp et al. | Jan 2008 | A1 |
20080029391 | Mao et al. | Feb 2008 | A1 |
20080030369 | Mann et al. | Feb 2008 | A1 |
20080033254 | Kamath et al. | Feb 2008 | A1 |
20080039702 | Hayter et al. | Feb 2008 | A1 |
20080045824 | Tapsak et al. | Feb 2008 | A1 |
20080057484 | Miyata et al. | Mar 2008 | A1 |
20080058625 | McGarraugh et al. | Mar 2008 | A1 |
20080058626 | Miyata et al. | Mar 2008 | A1 |
20080058678 | Miyata et al. | Mar 2008 | A1 |
20080058773 | John | Mar 2008 | A1 |
20080060955 | Goodnow | Mar 2008 | A1 |
20080061961 | John | Mar 2008 | A1 |
20080064937 | McGarraugh et al. | Mar 2008 | A1 |
20080064943 | Talbot et al. | Mar 2008 | A1 |
20080071156 | Brister et al. | Mar 2008 | A1 |
20080071157 | McGarraugh et al. | Mar 2008 | A1 |
20080071158 | McGarraugh et al. | Mar 2008 | A1 |
20080071328 | Haubrich et al. | Mar 2008 | A1 |
20080077073 | Keenan et al. | Mar 2008 | A1 |
20080081958 | Denison | Apr 2008 | A1 |
20080081977 | Hayter et al. | Apr 2008 | A1 |
20080083617 | Simpson et al. | Apr 2008 | A1 |
20080086042 | Brister et al. | Apr 2008 | A1 |
20080086044 | Brister et al. | Apr 2008 | A1 |
20080086273 | Shults et al. | Apr 2008 | A1 |
20080087544 | Zhou et al. | Apr 2008 | A1 |
20080092638 | Brenneman et al. | Apr 2008 | A1 |
20080097246 | Stafford | Apr 2008 | A1 |
20080097289 | Steil et al. | Apr 2008 | A1 |
20080103447 | Reggiardo et al. | May 2008 | A1 |
20080108942 | Brister et al. | May 2008 | A1 |
20080114228 | McCluskey et al. | May 2008 | A1 |
20080119705 | Patel et al. | May 2008 | A1 |
20080119710 | Reggiardo et al. | May 2008 | A1 |
20080139910 | Mastrototaro et al. | Jun 2008 | A1 |
20080154099 | Aspel et al. | Jun 2008 | A1 |
20080154101 | Jain | Jun 2008 | A1 |
20080154513 | Kovatchev et al. | Jun 2008 | A1 |
20080161666 | Feldman et al. | Jul 2008 | A1 |
20080167543 | Say et al. | Jul 2008 | A1 |
20080167572 | Stivoric et al. | Jul 2008 | A1 |
20080172205 | Breton et al. | Jul 2008 | A1 |
20080177149 | Weinert et al. | Jul 2008 | A1 |
20080177165 | Blomquist et al. | Jul 2008 | A1 |
20080182537 | Manku et al. | Jul 2008 | A1 |
20080183060 | Steil et al. | Jul 2008 | A1 |
20080183061 | Goode et al. | Jul 2008 | A1 |
20080183399 | Goode et al. | Jul 2008 | A1 |
20080188731 | Brister et al. | Aug 2008 | A1 |
20080188796 | Steil et al. | Aug 2008 | A1 |
20080189051 | Goode et al. | Aug 2008 | A1 |
20080194934 | Ray et al. | Aug 2008 | A1 |
20080194935 | Brister et al. | Aug 2008 | A1 |
20080194936 | Goode et al. | Aug 2008 | A1 |
20080194937 | Goode et al. | Aug 2008 | A1 |
20080194938 | Brister et al. | Aug 2008 | A1 |
20080195232 | Carr-Brendel et al. | Aug 2008 | A1 |
20080195967 | Goode et al. | Aug 2008 | A1 |
20080197024 | Simpson et al. | Aug 2008 | A1 |
20080200788 | Brister et al. | Aug 2008 | A1 |
20080200789 | Brister et al. | Aug 2008 | A1 |
20080200791 | Simpson et al. | Aug 2008 | A1 |
20080201325 | Doniger et al. | Aug 2008 | A1 |
20080208025 | Shults et al. | Aug 2008 | A1 |
20080208026 | Noujaim et al. | Aug 2008 | A1 |
20080208113 | Damiano et al. | Aug 2008 | A1 |
20080214900 | Fennell et al. | Sep 2008 | A1 |
20080214910 | Buck | Sep 2008 | A1 |
20080214915 | Brister et al. | Sep 2008 | A1 |
20080214918 | Brister et al. | Sep 2008 | A1 |
20080228051 | Shults et al. | Sep 2008 | A1 |
20080228054 | Shults et al. | Sep 2008 | A1 |
20080228055 | Sher | Sep 2008 | A1 |
20080234663 | Yodfat et al. | Sep 2008 | A1 |
20080234943 | Ray et al. | Sep 2008 | A1 |
20080234992 | Ray et al. | Sep 2008 | A1 |
20080235469 | Drew | Sep 2008 | A1 |
20080242961 | Brister et al. | Oct 2008 | A1 |
20080242963 | Essenpreis et al. | Oct 2008 | A1 |
20080254544 | Modzelewski et al. | Oct 2008 | A1 |
20080255434 | Hayter et al. | Oct 2008 | A1 |
20080255437 | Hayter | Oct 2008 | A1 |
20080255438 | Saidara et al. | Oct 2008 | A1 |
20080255808 | Hayter | Oct 2008 | A1 |
20080256048 | Hayter | Oct 2008 | A1 |
20080262469 | Brister et al. | Oct 2008 | A1 |
20080269714 | Mastrototaro et al. | Oct 2008 | A1 |
20080269723 | Mastrototaro et al. | Oct 2008 | A1 |
20080275313 | Brister et al. | Nov 2008 | A1 |
20080278332 | Fennel et al. | Nov 2008 | A1 |
20080278333 | Fennell et al. | Nov 2008 | A1 |
20080287761 | Hayter | Nov 2008 | A1 |
20080287762 | Hayter | Nov 2008 | A1 |
20080287763 | Hayter | Nov 2008 | A1 |
20080287764 | Rasdal et al. | Nov 2008 | A1 |
20080287765 | Rasdal et al. | Nov 2008 | A1 |
20080287766 | Rasdal et al. | Nov 2008 | A1 |
20080288180 | Hayter | Nov 2008 | A1 |
20080288204 | Hayter et al. | Nov 2008 | A1 |
20080294024 | Cosentino et al. | Nov 2008 | A1 |
20080296155 | Shults et al. | Dec 2008 | A1 |
20080300572 | Rankers et al. | Dec 2008 | A1 |
20080306368 | Goode et al. | Dec 2008 | A1 |
20080306434 | Dobbles et al. | Dec 2008 | A1 |
20080306435 | Kamath et al. | Dec 2008 | A1 |
20080306444 | Brister et al. | Dec 2008 | A1 |
20080312518 | Jina et al. | Dec 2008 | A1 |
20080312841 | Hayter | Dec 2008 | A1 |
20080312842 | Hayter | Dec 2008 | A1 |
20080312844 | Hayter et al. | Dec 2008 | A1 |
20080312845 | Hayter et al. | Dec 2008 | A1 |
20080314395 | Kovatchev et al. | Dec 2008 | A1 |
20080319085 | Wright et al. | Dec 2008 | A1 |
20080319279 | Ramsay et al. | Dec 2008 | A1 |
20080319295 | Bernstein et al. | Dec 2008 | A1 |
20080319296 | Bernstein et al. | Dec 2008 | A1 |
20090005665 | Hayter et al. | Jan 2009 | A1 |
20090005666 | Shin et al. | Jan 2009 | A1 |
20090005729 | Hendrixson et al. | Jan 2009 | A1 |
20090006034 | Hayter et al. | Jan 2009 | A1 |
20090006061 | Thukral et al. | Jan 2009 | A1 |
20090006133 | Weinert et al. | Jan 2009 | A1 |
20090012376 | Agus | Jan 2009 | A1 |
20090012379 | Goode et al. | Jan 2009 | A1 |
20090018424 | Kamath et al. | Jan 2009 | A1 |
20090018425 | Ouyang et al. | Jan 2009 | A1 |
20090024050 | Jung | Jan 2009 | A1 |
20090030293 | Cooper et al. | Jan 2009 | A1 |
20090030294 | Petisce et al. | Jan 2009 | A1 |
20090030641 | Fjield et al. | Jan 2009 | A1 |
20090033482 | Hayter et al. | Feb 2009 | A1 |
20090036747 | Hayter et al. | Feb 2009 | A1 |
20090036758 | Brauker et al. | Feb 2009 | A1 |
20090036760 | Hayter | Feb 2009 | A1 |
20090036763 | Brauker et al. | Feb 2009 | A1 |
20090040022 | Finkenzeller | Feb 2009 | A1 |
20090043181 | Brauker et al. | Feb 2009 | A1 |
20090043182 | Brauker et al. | Feb 2009 | A1 |
20090043525 | Brauker et al. | Feb 2009 | A1 |
20090043541 | Brauker et al. | Feb 2009 | A1 |
20090043542 | Brauker et al. | Feb 2009 | A1 |
20090045055 | Rhodes et al. | Feb 2009 | A1 |
20090048503 | Dalal et al. | Feb 2009 | A1 |
20090054745 | Jennewine et al. | Feb 2009 | A1 |
20090054747 | Fennell | Feb 2009 | A1 |
20090054748 | Feldman et al. | Feb 2009 | A1 |
20090054749 | He | Feb 2009 | A1 |
20090054753 | Robinson et al. | Feb 2009 | A1 |
20090055149 | Hayter et al. | Feb 2009 | A1 |
20090062633 | Brauker et al. | Mar 2009 | A1 |
20090062635 | Brauker et al. | Mar 2009 | A1 |
20090062767 | VanAntwerp et al. | Mar 2009 | A1 |
20090063187 | Johnson et al. | Mar 2009 | A1 |
20090063402 | Hayter | Mar 2009 | A1 |
20090076356 | Simpson et al. | Mar 2009 | A1 |
20090076360 | Brister et al. | Mar 2009 | A1 |
20090076361 | Kamath et al. | Mar 2009 | A1 |
20090082693 | Stafford | Mar 2009 | A1 |
20090085768 | Patel et al. | Apr 2009 | A1 |
20090085873 | Betts et al. | Apr 2009 | A1 |
20090088614 | Taub | Apr 2009 | A1 |
20090093687 | Telfort et al. | Apr 2009 | A1 |
20090099436 | Brister et al. | Apr 2009 | A1 |
20090105554 | Stahmann et al. | Apr 2009 | A1 |
20090105560 | Solomon | Apr 2009 | A1 |
20090105568 | Bugler | Apr 2009 | A1 |
20090105570 | Sloan et al. | Apr 2009 | A1 |
20090105571 | Fennell et al. | Apr 2009 | A1 |
20090105636 | Hayter et al. | Apr 2009 | A1 |
20090112478 | Mueller, Jr. et al. | Apr 2009 | A1 |
20090112626 | Talbot et al. | Apr 2009 | A1 |
20090124877 | Goode et al. | May 2009 | A1 |
20090124878 | Goode et al. | May 2009 | A1 |
20090124879 | Brister et al. | May 2009 | A1 |
20090124964 | Leach et al. | May 2009 | A1 |
20090131768 | Simpson et al. | May 2009 | A1 |
20090131769 | Leach et al. | May 2009 | A1 |
20090131776 | Simpson et al. | May 2009 | A1 |
20090131777 | Simpson et al. | May 2009 | A1 |
20090137886 | Shariati et al. | May 2009 | A1 |
20090137887 | Shariati et al. | May 2009 | A1 |
20090143659 | Li et al. | Jun 2009 | A1 |
20090143660 | Brister et al. | Jun 2009 | A1 |
20090149717 | Brauer et al. | Jun 2009 | A1 |
20090149728 | Van Antwerp et al. | Jun 2009 | A1 |
20090150186 | Cohen et al. | Jun 2009 | A1 |
20090156919 | Brister et al. | Jun 2009 | A1 |
20090156924 | Shariati et al. | Jun 2009 | A1 |
20090163790 | Brister et al. | Jun 2009 | A1 |
20090163791 | Brister et al. | Jun 2009 | A1 |
20090163855 | Shin et al. | Jun 2009 | A1 |
20090164190 | Hayter | Jun 2009 | A1 |
20090164239 | Hayter et al. | Jun 2009 | A1 |
20090164251 | Hayter | Jun 2009 | A1 |
20090177068 | Stivoric et al. | Jul 2009 | A1 |
20090178459 | Li et al. | Jul 2009 | A1 |
20090182217 | Li et al. | Jul 2009 | A1 |
20090189738 | Hermle | Jul 2009 | A1 |
20090192366 | Mensinger et al. | Jul 2009 | A1 |
20090192380 | Shariati et al. | Jul 2009 | A1 |
20090192722 | Shariati et al. | Jul 2009 | A1 |
20090192724 | Brauker et al. | Jul 2009 | A1 |
20090192745 | Kamath et al. | Jul 2009 | A1 |
20090192751 | Kamath et al. | Jul 2009 | A1 |
20090198118 | Hayter et al. | Aug 2009 | A1 |
20090203981 | Brauker et al. | Aug 2009 | A1 |
20090204341 | Brauker et al. | Aug 2009 | A1 |
20090216100 | Ebner et al. | Aug 2009 | A1 |
20090216103 | Brister et al. | Aug 2009 | A1 |
20090221890 | Saffer et al. | Sep 2009 | A1 |
20090227855 | Hill et al. | Sep 2009 | A1 |
20090234200 | Husheer | Sep 2009 | A1 |
20090240120 | Mensinger et al. | Sep 2009 | A1 |
20090240128 | Mensinger et al. | Sep 2009 | A1 |
20090240193 | Mensinger et al. | Sep 2009 | A1 |
20090240440 | Shurabura et al. | Sep 2009 | A1 |
20090242399 | Kamath et al. | Oct 2009 | A1 |
20090242425 | Kamath et al. | Oct 2009 | A1 |
20090247855 | Boock et al. | Oct 2009 | A1 |
20090247856 | Boock et al. | Oct 2009 | A1 |
20090247857 | Harper et al. | Oct 2009 | A1 |
20090247931 | Damgaard-Sorensen | Oct 2009 | A1 |
20090253973 | Bashan et al. | Oct 2009 | A1 |
20090257911 | Thomas et al. | Oct 2009 | A1 |
20090259118 | Feldman et al. | Oct 2009 | A1 |
20090267765 | Greene et al. | Oct 2009 | A1 |
20090275815 | Bickoff et al. | Nov 2009 | A1 |
20090287073 | Boock et al. | Nov 2009 | A1 |
20090287074 | Shults et al. | Nov 2009 | A1 |
20090289796 | Blumberg | Nov 2009 | A1 |
20090292188 | Hoss et al. | Nov 2009 | A1 |
20090296742 | Sicurello et al. | Dec 2009 | A1 |
20090298182 | Schulat et al. | Dec 2009 | A1 |
20090299155 | Yang et al. | Dec 2009 | A1 |
20090299156 | Simpson et al. | Dec 2009 | A1 |
20090299162 | Brauker et al. | Dec 2009 | A1 |
20090299276 | Brauker et al. | Dec 2009 | A1 |
20090312622 | Regittnig | Dec 2009 | A1 |
20100010324 | Brauker et al. | Jan 2010 | A1 |
20100010329 | Taub et al. | Jan 2010 | A1 |
20100010330 | Rankers | Jan 2010 | A1 |
20100010331 | Brauker et al. | Jan 2010 | A1 |
20100010332 | Brauker et al. | Jan 2010 | A1 |
20100014626 | Fennell et al. | Jan 2010 | A1 |
20100016687 | Brauker et al. | Jan 2010 | A1 |
20100016698 | Rasdal et al. | Jan 2010 | A1 |
20100022855 | Brauker et al. | Jan 2010 | A1 |
20100022988 | Wochner et al. | Jan 2010 | A1 |
20100030038 | Brauker et al. | Feb 2010 | A1 |
20100030053 | Goode, Jr. et al. | Feb 2010 | A1 |
20100030484 | Brauker et al. | Feb 2010 | A1 |
20100030485 | Brauker et al. | Feb 2010 | A1 |
20100036215 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036216 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036222 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036223 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036225 | Goode, Jr. et al. | Feb 2010 | A1 |
20100041971 | Goode, Jr. et al. | Feb 2010 | A1 |
20100045425 | Chivallier | Feb 2010 | A1 |
20100045465 | Brauker et al. | Feb 2010 | A1 |
20100049024 | Saint et al. | Feb 2010 | A1 |
20100056992 | Hayter et al. | Mar 2010 | A1 |
20100057040 | Hayter | Mar 2010 | A1 |
20100057041 | Hayter | Mar 2010 | A1 |
20100057042 | Hayter | Mar 2010 | A1 |
20100057044 | Hayter | Mar 2010 | A1 |
20100057057 | Hayter et al. | Mar 2010 | A1 |
20100063373 | Kamath et al. | Mar 2010 | A1 |
20100064764 | Hayter et al. | Mar 2010 | A1 |
20100075353 | Heaton | Mar 2010 | A1 |
20100076283 | Simpson et al. | Mar 2010 | A1 |
20100081906 | Hayter et al. | Apr 2010 | A1 |
20100081908 | Dobbles et al. | Apr 2010 | A1 |
20100081909 | Budiman et al. | Apr 2010 | A1 |
20100081910 | Brister et al. | Apr 2010 | A1 |
20100081953 | Syeda-Mahmood et al. | Apr 2010 | A1 |
20100087724 | Brauker et al. | Apr 2010 | A1 |
20100094111 | Heller et al. | Apr 2010 | A1 |
20100094251 | Estes et al. | Apr 2010 | A1 |
20100096259 | Zhang et al. | Apr 2010 | A1 |
20100099970 | Shults et al. | Apr 2010 | A1 |
20100099971 | Shults et al. | Apr 2010 | A1 |
20100105999 | Dixon et al. | Apr 2010 | A1 |
20100119693 | Tapsak et al. | May 2010 | A1 |
20100121167 | McGarraugh et al. | May 2010 | A1 |
20100121169 | Petisce et al. | May 2010 | A1 |
20100141656 | Krieftewirth | Jun 2010 | A1 |
20100152554 | Steine et al. | Jun 2010 | A1 |
20100152561 | Goodnow et al. | Jun 2010 | A1 |
20100160759 | Celentano et al. | Jun 2010 | A1 |
20100168538 | Keenan et al. | Jul 2010 | A1 |
20100168546 | Kamath et al. | Jul 2010 | A1 |
20100174266 | Estes | Jul 2010 | A1 |
20100185175 | Kamen et al. | Jul 2010 | A1 |
20100190435 | Cook et al. | Jul 2010 | A1 |
20100191082 | Brister et al. | Jul 2010 | A1 |
20100191085 | Budiman | Jul 2010 | A1 |
20100191472 | Doniger et al. | Jul 2010 | A1 |
20100198034 | Thomas et al. | Aug 2010 | A1 |
20100198142 | Sloan et al. | Aug 2010 | A1 |
20100198314 | Wei | Aug 2010 | A1 |
20100204557 | Kiaie et al. | Aug 2010 | A1 |
20100213080 | Celentano et al. | Aug 2010 | A1 |
20100230285 | Hoss et al. | Sep 2010 | A1 |
20100234710 | Budiman et al. | Sep 2010 | A1 |
20100240975 | Goode et al. | Sep 2010 | A1 |
20100261987 | Kamath et al. | Oct 2010 | A1 |
20100268157 | Wehba et al. | Oct 2010 | A1 |
20100268477 | Mueller, Jr. et al. | Oct 2010 | A1 |
20100274111 | Say et al. | Oct 2010 | A1 |
20100274515 | Hoss et al. | Oct 2010 | A1 |
20100275108 | Sloan et al. | Oct 2010 | A1 |
20100292948 | Feldman et al. | Nov 2010 | A1 |
20100312176 | Lauer et al. | Dec 2010 | A1 |
20100313105 | Nekoomaram et al. | Dec 2010 | A1 |
20110004085 | Mensinger et al. | Jan 2011 | A1 |
20110004276 | Blair et al. | Jan 2011 | A1 |
20110024043 | Boock et al. | Feb 2011 | A1 |
20110024307 | Simpson et al. | Feb 2011 | A1 |
20110027127 | Simpson et al. | Feb 2011 | A1 |
20110027453 | Boock et al. | Feb 2011 | A1 |
20110027458 | Boock et al. | Feb 2011 | A1 |
20110028815 | Simpson et al. | Feb 2011 | A1 |
20110028816 | Simpson et al. | Feb 2011 | A1 |
20110031986 | Bhat et al. | Feb 2011 | A1 |
20110036714 | Zhou et al. | Feb 2011 | A1 |
20110040163 | Telson et al. | Feb 2011 | A1 |
20110054282 | Nekoomaram et al. | Mar 2011 | A1 |
20110054334 | Fischell | Mar 2011 | A1 |
20110060530 | Fennell | Mar 2011 | A1 |
20110077490 | Simpson et al. | Mar 2011 | A1 |
20110077494 | Doniger et al. | Mar 2011 | A1 |
20110081726 | Berman | Apr 2011 | A1 |
20110106011 | Cinar et al. | May 2011 | A1 |
20110112696 | Yodfat et al. | May 2011 | A1 |
20110131307 | El Bazzal et al. | Jun 2011 | A1 |
20110148905 | Simmons et al. | Jun 2011 | A1 |
20110152637 | Kateraas et al. | Jun 2011 | A1 |
20110173308 | Gutekunst | Jul 2011 | A1 |
20110178717 | Goodnow et al. | Jul 2011 | A1 |
20110184267 | Duke et al. | Jul 2011 | A1 |
20110193704 | Harper et al. | Aug 2011 | A1 |
20110202495 | Gawlick | Aug 2011 | A1 |
20110208027 | Wagner et al. | Aug 2011 | A1 |
20110213225 | Bernstein et al. | Sep 2011 | A1 |
20110257895 | Brauker et al. | Oct 2011 | A1 |
20110282327 | Kellogg et al. | Nov 2011 | A1 |
20110287528 | Fern et al. | Nov 2011 | A1 |
20110289497 | Kiaie et al. | Nov 2011 | A1 |
20110320130 | Valdes et al. | Dec 2011 | A1 |
20110320167 | Budiman | Dec 2011 | A1 |
20120004512 | Kovatchev et al. | Jan 2012 | A1 |
20120078071 | Bohm et al. | Mar 2012 | A1 |
20120088995 | Fennell et al. | Apr 2012 | A1 |
20120108934 | Valdes et al. | May 2012 | A1 |
20120165626 | Irina et al. | Jun 2012 | A1 |
20120165640 | Galley et al. | Jun 2012 | A1 |
20120173200 | Breton et al. | Jul 2012 | A1 |
20120185416 | Baras et al. | Jul 2012 | A1 |
20120186997 | Li et al. | Jul 2012 | A1 |
20120190989 | Kaiser et al. | Jul 2012 | A1 |
20120245447 | Karan et al. | Sep 2012 | A1 |
20120283542 | McGarraugh | Nov 2012 | A1 |
20120313785 | Hanson et al. | Dec 2012 | A1 |
20120318670 | Karinka et al. | Dec 2012 | A1 |
20130035575 | Mayou et al. | Feb 2013 | A1 |
20130109944 | Sparacino et al. | May 2013 | A1 |
20130130215 | Bock et al. | May 2013 | A1 |
20130137953 | Harper et al. | May 2013 | A1 |
20130184547 | Taub et al. | Jul 2013 | A1 |
20130225959 | Bugler | Aug 2013 | A1 |
20130231541 | Hayter et al. | Sep 2013 | A1 |
20130235166 | Jones et al. | Sep 2013 | A1 |
20130245547 | El-Khatib et al. | Sep 2013 | A1 |
20130324823 | Koski et al. | Dec 2013 | A1 |
20140005499 | Catt et al. | Jan 2014 | A1 |
20140012511 | Mensinger et al. | Jan 2014 | A1 |
20140046160 | Terashima et al. | Feb 2014 | A1 |
20140088392 | Bernstein et al. | Mar 2014 | A1 |
20140266785 | Miller et al. | Sep 2014 | A1 |
20140313052 | Yarger et al. | Oct 2014 | A1 |
20140379273 | Petisce et al. | Dec 2014 | A1 |
20150123810 | Hernandez-Rosas et al. | May 2015 | A1 |
20150141770 | Rastogi et al. | May 2015 | A1 |
20150205947 | Berman et al. | Jul 2015 | A1 |
20150207796 | Love et al. | Jul 2015 | A1 |
20150241407 | Ou et al. | Aug 2015 | A1 |
20160245791 | Hayter et al. | Aug 2016 | A1 |
20160302701 | Bhavaraju et al. | Oct 2016 | A1 |
20160317069 | Hayter et al. | Nov 2016 | A1 |
20170053084 | McMahon et al. | Feb 2017 | A1 |
20170185748 | Budiman et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
0098592 | Jan 1984 | EP |
0127958 | Dec 1984 | EP |
0320109 | Jun 1989 | EP |
0353328 | Feb 1990 | EP |
0390390 | Oct 1990 | EP |
0396788 | Nov 1990 | EP |
0286118 | Jan 1995 | EP |
1048264 | Nov 2000 | EP |
1568309 | Aug 2005 | EP |
3 210 137 | Mar 2021 | EP |
2914159 | Apr 2021 | EP |
3 831 282 | Mar 2022 | EP |
2939158 | Mar 2022 | EP |
4 070 727 | Oct 2022 | EP |
4 070 727 | Jul 2023 | EP |
3988471 | Jul 2023 | EP |
WO-1993006237 | Apr 1993 | WO |
WO-1996025089 | Aug 1996 | WO |
WO-1996035370 | Nov 1996 | WO |
WO-1998035053 | Aug 1998 | WO |
WO-1999056613 | Nov 1999 | WO |
WO-2000049940 | Aug 2000 | WO |
WO-2000059370 | Oct 2000 | WO |
WO 0078213 | Dec 2000 | WO |
WO-2000074753 | Dec 2000 | WO |
WO-2000078992 | Dec 2000 | WO |
WO-2001052935 | Jul 2001 | WO |
WO-2001054753 | Aug 2001 | WO |
WO-2002016905 | Feb 2002 | WO |
WO-2002058537 | Aug 2002 | WO |
WO-2003076893 | Sep 2003 | WO |
WO-2003082091 | Oct 2003 | WO |
WO-2003085372 | Oct 2003 | WO |
WO 2004006982 | Jan 2004 | WO |
WO-2004047445 | Jun 2004 | WO |
WO-2004061420 | Jul 2004 | WO |
WO-2005010756 | Feb 2005 | WO |
WO-2005040404 | May 2005 | WO |
WO 2005065538 | Jul 2005 | WO |
WO-2005089103 | Sep 2005 | WO |
WO 2005121785 | Dec 2005 | WO |
WO-2006024671 | Mar 2006 | WO |
WO-2006051466 | May 2006 | WO |
WO-2006064397 | Jun 2006 | WO |
WO 2006079867 | Aug 2006 | WO |
WO-2007007459 | Jan 2007 | WO |
WO-2007097754 | Aug 2007 | WO |
WO-2008086541 | Jul 2008 | WO |
WO 2009136372 | Nov 2009 | WO |
WO-2010022387 | Feb 2010 | WO |
WO-2010077329 | Jul 2010 | WO |
WO 2011026053 | Mar 2011 | WO |
WO 2012154286 | Nov 2012 | WO |
WO 2014070456 | May 2014 | WO |
WO 2014105631 | Jul 2014 | WO |
WO 2015069797 | May 2015 | WO |
WO 2016092448 | Jun 2016 | WO |
Entry |
---|
Exhibit CP-2, Expert Report of Dr. Cesar C. Palerm, Sep. 20, 2022: Sparacino, et al., Glucose Concentration can be Predicted Ahead in Time From Continuous Glucose Monitoring Sensor Time-Series, IEEE Transactions on Biomedical Engineering, vol. 54, No. 5, pp. 931-937 (2007). |
Exhibit CP-3, Expert Report of Dr. Cesar C. Palerm, Sep. 20, 2022: In Vivo Glucose Sensing, Chemical Analysis, a Series of Monographs on Analytical Chemistry and Its Applications, vol. 174, Wiley (2010). |
Exhibit CP-4, Expert Report of Dr. Cesar C. Palerm, Sep. 20, 2022: Animas® Vibe™, the First Integrated Offering from Animas Corporation and Dexcom, Inc., Receives European CE Mark Approval (2011). |
Exhibit CP-6, Second Expert Report of Dr. Cesar C. Palerm, Oct. 21, 2022: Bailey, et al., Reduction in Hemoglobin A1c with Real-Time Continuous Glucose Monitoring: Results from a 12-Week Observational Study, Diabetes Technology & Therapeutics, vol. 9, No. 3, pp. 203-210 (2007). |
Exhibit CP-7, Second Expert Report of Dr. Cesar C. Palerm, Oct. 21, 2022: Garg, et al., Improvement in Glycemic Excusions With a Transcutaneous, Real-Time Continuous Glucose Sensor, Diabetes Care, vol. 29, No. 1, pp. 44-50 (2006). |
Exhibit CP-8, Second Expert Report of Dr. Cesar C. Palerm, Oct. 21, 2022: Garg, et al., Relatioship of Fasting and Hourly Blood Glucose Levels to HbA1c Values, Diabetes Care, vol. 29, No. 12, pp. 2644-2649 (2006). |
Exhibit CP-9, Second Expert Report of Dr. Cesar C. Palerm, Oct. 21, 2022: Welcome to Your FreeStyle Libre System, In-Service Guide, Abbott (2017). |
Exhibit CP-10, Second Expert Report of Dr. Cesar C. Palerm, Oct. 21, 2022: Standards of Medical Care in Diabetes—2009, American Diabetes Association, Diabetes Care, vol. 32, Supplement 1, pp. S13-S61 (2009). |
Exhibit No. 2, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Committee for Proprietary Medicinal Products (CPMP), Note for Guidance on Clinical Investigation of Medicinal Products in the Treatment of Diabetes Mellitus, EMEA, The European Agency for the Evaluation of Medicinal Products (2002). |
Exhibit No. 3, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Defining and Reporting Hypoglycemia in Diabetes, Diabetes Care, vol. 28, No. 5, pp. 1245-1249 (2005). |
Exhibit No. 4, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Amiel, et al., Review Article, Hypoglycaemia in Type 2 diabetes, Diabetic Medicine, vol. 25, pp. 245-254 (2008). |
Exhibit No. 5, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Swinnen, et al., Changing the glucose cut-off values that define hypoglycaemia has a major effect on reported frequencies of hypoglycaemia, Diabetologia, vol. 52, pp. 38-41. |
Exhibit No. 6, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Frier, Defining hypoglycaemia: what level has clinical relevance?, Diabetologia, vol. 52, pp. 31-34 (2009). |
Exhibit No. 7, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Cryer, Preventing hypoglycaemia: what is the appropriate glucose alert value?, Diabetologia, vol. 52, pp. 35-37 (2009). |
Exhibit No. 8, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Oxford Textbook of Endocrinology and Diabetes (2011). |
Exhibit No. 9, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Guideline on clinical investigation of medicinal products in the treatment or prevention of diabetes mellitus, European Medicines Agency, Science Medicines Health (2012). |
Exhibit No. 10, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Type 1 Diabetes Research Roadmap, Identifying the strengths and weaknesses, gaps and opportunities of UK type 1 diabetes research; clearing a path to the cure, JDRF Improving Lives. Curing Type 1 Diabetes. Join us in finding the cure for type 1 diabetes (2013). |
Exhibit No. 11, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus, The New England Journal of Medicine, vol. 329, No. 14 (1993). |
Exhibit No. 12, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Modern Standards and Service Models, Diabetes, National Service Framework for Diabetes: Standards, Department of Health (2000). |
Exhibit No. 13, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Training in flexible, intensive, insulin management to enable dietary freedom in people with type 1 diabetes: dose adjustment for normal eating (DAFNE) randomised controlled trial, BMJ, vol. 325 (2002). |
Exhibit No. 14, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Type 1 diabetes: diagnosis and management of type 1 diabetes in children, young people and adults, Clinical Guideline 15, NHS, National Institute for Clinical Excellence (2004). |
Exhibit No. 15, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Oxford Textbook of Endocrinology and Diabetes (2011). |
Exhibit No. 16, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Pickup, et al., Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data, BMJ (2011). |
Exhibit No. 17, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Diabetes (type 1), NIHR (2011). |
Exhibit No. 18, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Aleppo, et al., REPLACE-BG: A Randomized Trial Comparing Continuous Glucose Monitoring With and Without Routine Blood Glucose Monitoring in Adults With Well-Controlled Type 1 Diabetes, Diabetes Care, vol. 40, pp. 538-545 (2017). |
Exhibit No. 19, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Glucose Concentrations of Less Than 3.0 mmol/L (54 mg/dL) Should Be Reported in Clinical Trials: A Joint Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes, Diabetes Care, vol. 40, pp. 155-157 (2017). |
Exhibit No. 20, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Continuous Glucose Sensors: Continuing Questions about Clinical Accuracy, J Diabetes Sci Technol vol. 1, Issue 5, pp. 669-675 (2007). |
Exhibit No. 21, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: DeVries, Glucose Sensing Issues for the Artificial Pancreas, Journal of Diabetes Science and Technology, vol. 2, Issue 4, pp. 732-734 (2008). |
Exhibit No. 22, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Innovation Milestones, et al. |
Exhibit No. 23, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: CGMS® System Gold™ Continuous Glucose Monitoring Overview, Medtronic MiniMed (2004). |
Exhibit No. 24, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: GlucoWatch G2, Automatic Glucose Biographer and Auto Sensors (2002). |
Exhibit No. 25, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Guardian® REAL-Time, Continuous Glucose Monitoring System, User Guide, Medtronic MiniMed (2006). |
Exhibit No. 26, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: CGMS° iPro™ Continuous Glucose Recorder, User Guide, Medtronic MiniMed (2007). |
Exhibit No. 27, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: FreeStyle Navigator, Continuous Glucose Monitoring System, User Guide, Abbott (2008, 2010). |
Exhibit No. 28, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: FreeStyle Navigator II, Continuous Glucose Monitoring System, User's Manual, Abbott (2011-2013). |
Exhibit No. 29, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Dexcom G4, Continuous Glucose Monitoring System, User's Guide (2013). |
Exhibit No. 30, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Revised Specification for US 2007/208244A1. |
Exhibit No. 31, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Revised Specification for EP625. |
Exhibit No. 32, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Puhr, et al., Real-World Hypoglycemia Avoidance with a Predictive Low Glucose Alert Does Not Depend on Frequent Screen Views, Journal of Diabetes Science and Technology, vol. 14(1), pp. 83-86 (2020). |
Exhibit No. 33, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Rilstone, et al., The impact of CGM with a predictive hypoglycaemia alert function on hypoglycaemia in physical activity for people with type 1 diabetes: PACE study (2022). |
Exhibit No. 34, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: FreeStyle Libre 2, Flash Glucose Monitoring System, User's Manual, Abbott (2019-2021). |
Exhibit No. 35, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: FreeStyle Libre 3, Continuous Glucose Monitoring System, User's Manual, Abbott (2022). |
Exhibit No. 37, to the Second Expert Report of Professor Nick Oliver, Oct. 21, 2022: Oliver, et al., Review Article, Glucose sensors, a review of current and emerging technology, Diabetic Medicine, vol. 26, pp. 197-210 (2009). |
Abbott's Continuous Blood Glucose Monitor Approval Soon, 3 pages (2006). |
About Dexcom—Continuous Glucose Monitoring Company, 12 pages (2021) |
About the Congressional Record, Congress.gov, Library of Congress, 3 pages. |
Amendment No. 2 to the OUS Commercialization Agreement, 12 pages (2011). |
Anzhsn National Horizon Scanning Unit Horizon Scanning Report, GlucoWatch® G2 Biographer for the non-invasive monitoring of glucose levels, AHTA, 46 pages (2004). |
Bindra, D.S., et al., Design and in Vitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring, Analytical Chemistry, vol. 63, No. 17, pp. 1692-1696 (1991). |
Bode, B., et al., Alarms Based on Real-Time Sensor Glucose Values Alert Patients to Hypo- and Hyperglycemia: The Guardian Continuous Monitoring System, Diabetes Technology & Therapeutics, vol. 6, No. 2, pp. 105-113 (2004). |
Brown, A., et al., test drive—Dexcom's G4 Platinum CGM, diatribe Learn, 4 pages (2012). |
Buckingham, B., et al., Prevention of Nocturnal Hypoglycemia Using Predictive Alarm Algorithms and Insulin Pump Suspension, Diabetes Care, vol. 33, No. 5, pp. 1013-1017 (2010). |
Burton, H.D., Urging FDA to Act Promptly to Approve Artificial Pancreas Technologies, Congressional Record (Bound Edition), vol. 157, Part 13, 3 pages (2011). |
Children with Diabetes, Report from Diabetes Technology Meeting, 3 pages (2003). |
Choudhary, P., et al., Insulin Pump Therapy with Automated Insulin Suspension in Response to Hypoglycemia, Reduction in nocturnal hypoglycemia in those at greatest risk, Diabetes Care, vol. 34, pp. 2023-2025 (2011). |
Claims, Specification and Drawings for System and Methods for Providing Sensitive and Specific Alarms, 103 pages. |
Clarke, W., et al., Statistical Tools to Analyze Continuous Glucose Monitor Data, Diabetes Technology & Therapeutics, vol. 11, Supplement 1, pp. S-45-S-54 (2009). |
Clemens, a.H., et al., Development of the Biostator® Glucose Clamp Algorithm, Artificial Systems for Insulin Delivery, edited by Brunetti, P., et al., Serono Symposia Publications from Raven Press, vol. 6, 13 pages (1983). |
Close, K., Test Driving Dexcom's Short-Term Sensor (STS): A Look at Continuous Glucose Monitoring, diaTribe Learn, 2 pages (2006). |
Continuous Glucose Monitoring (CGM)/Real-Time Flash Glucose Scanning (FGS) Training for Healthcare Professionals and Patients, Association of Children's Diabetes Clinicians, 50 pages (2017). |
Cunningham, D.D., et al., In Vivo Glucose Sensing, Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications, vol. 174, Wiley, 466 pages (2010). |
Declaration of Dr. David Rodbard in Support of Petition for Inter Partes Review of Claims 1-5, 12, 19 and 23 of U.S. Pat. No. 10,702,215, Inter Partes Review No. IPR2022-00909 (2022). |
Declaration of Duncan Hall (2021) including DexCom™ STS™ Continuous Glucose Monitoring System User's Guide (2006), 64 pages. |
Dexcom Request for Confidentiality for FCC ID: PH29433, 1 page (2010). |
DexCom™ STS™ Continuous Glucose Monitoring System User's Guide, 57 pages (2006). |
Diabetes Close Up—Conferences—#2—Diabetes Technology, 8 pages (2003). |
Effectiveness and Safety Study of the DexCom™ G4 Continuous Glucose Monitoring System, ClinicalTrials.gov, 4 pages (2010). |
Facchinetti, A, et al., A New Index to Optimally Design and Compare Continuous Glucose Monitoring Glucose Prediction Algorithms, Diabetes Technology & Therapeutics, vol. 13, No. 2, pp. 111-119 (2011). |
FDA PMA Approvals, 3 pages. |
FDA Premarket Approval (PMA) for Biostator GCIIS, PMA No. P790028, 3 pages, Notice Date: Feb. 20, 1981. |
Feature Analysis, 1 page. |
Federal Register, vol. 76, No. 120, pp. 36542-36543 (2011). |
Federal Register, vol. 86, No. 211, pp. 60827-60829 (2021). |
Fogt, E.J., et al., Development and Evaluation of a Glucose Analyzer for a Glucose-Controlled Insulin Infusion System (Biostator®), Clinical Chemistry, vol. 24, No. 8, pp. 1366-1372 (1978). |
FreeStyle Navigator® Continuous Glucose Monitoring System, User's Guide, Abbott, 196 pages (2008). |
FreeStyle Navigator® Continuous Glucose Monitoring System, User's Guide, Abbott, 38 pages. |
Garg, S.K., et al., Improved Glucose Excursions Using an Implantable Real-Time Continuous Glucose Sensor in Adults with Type 1 Diabetes, Diabetes Care, vol. 27, No. 3, pp. 734-738 (2004). |
Glucowatch G2, Automatic Glucose Biographer and Auto Sensors, 70 pages (2002). |
Glucowatch® G2™ Biographer (GW2B) Alarm Reliability During Hypoglycemia in Children, Diabetes Technol Ther, 6(5), 12 pages (2004). |
Gross, T.M, et al., Performance Evaluation of the MiniMed® Continuous Glucose Monitoring System During Patient Home Use, Diabetes Technology & Therapeutics, vol. 2, No. 1, pp. 49-56 (2000). |
Grounds of Invalidity amended pursuant to CPR17.1(2)(a), Claim No. HP-2021-000025, 17 pages (2022). |
Guerra, S., et al., A Dynamic Risk Measure from Continuous Glucose Monitoring Data, Diabetes Technology & Therapeutics, vol. 13, No. 8, pp. 843-852 (2011). |
Hayter, P.G. et al., Performance Standards for Continuous Glucose Monitors, Diabetes Technology & Therapeutics, vol. 7, No. 5, pp. 721-726 (2005). |
Heinemann, L., et al., Glucose Clamps with the Biostator: A Critical Reappraisal, Horm. Metab. Res., 26, pp. 579-583 (1994). |
Heller, A., et al., Electrochemical Glucose Sensors and Their Applications in Diabetes Management, Chemical Reviews, vol. 108, No. 7, pp. 2482-2505 (2008). |
Heller, A., et al., Electrochemistry in Diabetes Management, Accounts of Chemical Research, vol. 43, No. 7, pp. 963-973 (2010). |
Heller, A., Integrated Medical Feedback Systems for Drug Delivery, AIChE Journal, vol. 51, No. 4, pp. 1054-1066 (2005). |
Hermanns, N., et al., The Impact of Continuous Glucose Monitoring on Low Interstitial Glucose Values and Low Blood Glucose Values Assessed by Point-of-care Blood Glucose Meters: Results of a Crossover Trial, Journal of Diabetes Science and Technology, vol. 8(3), pp. 516-522 (2014). |
Instructions for Use Dexcom™ STS™ Sensor, 51 pages (2006). |
International Standard, IEC 60601-1-8, Medical Electrical Equipment, 166 pages (2006). |
Javanmardi, C.A., et al., G4 Platinum Continuous Glucose Monitor, U.S. Pharmacist, 38(9), 8 pages (2013). |
Kovatchev, B.P., et al., Assessment of Risk for Severe Hypoglycemia Among Adults with IDDM, Validation of the low blood glucose index, Diabetes Care, vol. 21, No. 11, 7 pages (1998). |
Kovatchev, B.P., et al., Evaluating the Accuracy of Continuous Glucose-Monitoring Sensors, Continuous glucose-error grid analysis illustrated by TheraSense Freestyle Navigator data, Diabetes Care, vol. 27, No. 8, pp. 1922-1928 (2004). |
Kovatchev, B.P., et al., Risk Analysis of Blood Glucose Data: A Quantitative Approach to Optimizing the Control of Insulin Dependent Diabetes, Journal of Theoretical Medicine, vol. 3, 11 Pages (2000). |
Kovatchev, B.P., et al., Symmetrization of the Blood Glucose Measurement Scale and Its Applications, Diabetes Care, vol. 20, No. 11, pp. 1655-1658 (1997). |
Letter from Department of Health & Human Services re. FreeStyle Navigator Continuous Glucose Monitoring System, 7 pages (2008). |
Letter from Department of Health & Human Services re. MiniMed Continuous Glucose Monitoring System, 7 pages (1999). |
Letter to EPO re. Divisional Application of EP Application No. 13784079.9 in the name of Dexcom, Inc., 2 pages (2020). |
Ley, T., Continuous Glucose Monitoring: A Movie is Worth a Thousand Pictures, a Review of the Medtronic Guardian REAL-time system, 3 pages. |
McMurry, J.F., The Artificial Pancreas Today, Henry Ford Hospital Medical Journal, vol. 31, No. 2, Article 4, 8 pages (1983). |
Medtronic User Guide, Guardian® Real-Time Continuous Glucose Monitoring System, 184 pages (2006). |
MiniMed® 530G System User Guide, Medtronic, 317 pages (2012). |
Original Premarket Approval Application, FreeStyle Navigator Continuous Glucose Monitoring System, Section VII: Manufacturing Section, Steven Label Sensor Sheet, Validation Plan, vol. 28 of 31, TheraSense, Inc., 61 pages (2005). |
OUS Commercialization Agreement, Exhibit 10.2, 49 pages (2009). |
Palerm, C.C., et al., Hypoglycemia Detection and Prediction Using Continuous Glucose Monitoring—A Study on Hypoglycemic Clamp Data, Journal of Diabetes Science and Technology. vol. 1, Issue 5, pp. 624-629 (2007). |
Premarket Approval Application Amendment, FreeStyle Navigator Continuous Glucose Monitoring System, vol. 2 of 39, Section III, Device Description, Abbott Diabetes Care, Inc., 89 pages (2006). |
Press Release Details, DexCom Receives FDA Approval for STS™ Continuous Glucose Monitoring System, 3 pages (2006). |
Rodbard, D., A Semilogarithmic Scale for Glucose Provides a Balanced View of Hyperglycemia and Hypoglycemia, Journal of Diabetes Science and Technology, vol. 3, Issue 6, pp. 1395-1401 (2009). |
Sandham, W., et al., Blood Glucose Prediction for Diabetes Therapy Using a Recurrent Artificial Neural Network, 4 pages. |
Sparacino, G., et al., Glucose Concentration can be Predicted Ahead in Time From Continuous Glucose Monitoring Sensor Time-Series, IEEE Transaction on Biomedical Engineering, vol. 54, No. 5, pp. 931-937 (2007). |
STS® Seven Continuous Glucose Monitoring System, User's Guide, 74 pages (2007). |
Summary of Safety and Effectiveness Data for Continuous Glucose Monitor, 27 pages (2008). |
Summary of Safety and Effectiveness Data for DexCom™ STS™ Continuous Glucose Monitoring System, 20 pages (2006). |
Summary of Safety and Effectiveness Data for STS®-7 Continuous Glucose Monitoring System, 14 pages (2007). |
The CGM Resource Center References/Bibliography, 14 pages. |
The Dexcom Seven Plus Quick Start Guide, 2 pages (2010). |
TheraSense Files Premarket Approval Application for Freestyle Navigator(TM) Cont, 3 pages (2003). |
TheraSense Navigates Continuous Glucose Monitor PMA, Prepares for Flash, The Gray Sheet, vol. 29, No. 37, 2 pages (2003). |
U.S. Food & Drug Administration, Premarket Approval (PMA) for Continuous Glucose Monitoring System, PMA No. P980022, 20 pages, Notice Date: Jul. 14, 1999. |
U.S. Food & Drug Administration, Premarket Approval (PMA) for Dexcom Seven Plus System, PMA No. P050012, 3 pages. |
U.S. Food & Drug Administration, Premarket Approval (PMA) for Dexcom STS Continuous Monitors, PMA No. P050012, 8 pages, Notice Date: May 12, 2006. |
U.S. Food & Drug Administration, Premarket Approval (PMA) for Freestyle Navigator Continuous Glucose Monitor, PMA No. P050020, 6 pages, Notice Date: Apr. 1, 2008. |
United States Securities and Exchange Commission, Form 10-K, Dexcom, Inc., 55 pages (2006). |
United States Securities and Exchange Commission, Form 10-K, Dexcom, Inc., 59 pages (2005). |
United States Securities and Exchange Commission, Form S-1, Dexcom, Inc., 309 pages (2005). |
Williams, S., et al., The Guardian REAL-Time Continuous Glucose Monitoring System, U.S. Pharmacist, 32(12), 16 pages (2007). |
U.S. Appl. No. 13/684,078 (U.S. Pat. No. 8,710,993), filed Nov. 21, 2012 (Apr. 29, 2014). |
U.S. Appl. No. 14/251,542 (U.S. Pat. No. 9,289,179), filed Apr. 10, 2014 (Mar. 22, 2016). |
U.S. Appl. No. 15/016,247 (U.S. Pat. No. 9,743,872), filed Feb. 4, 2016 (Aug. 29, 2017). |
U.S. Appl. No. 15/686,153 (U.S. Pat. No. 10,136,847), filed Aug. 23, 2017 (Nov. 27, 2018). |
U.S. Appl. No. 16/197,253 (U.S. Pat. No. 10,939,859), filed Nov. 20, 2018 (Mar. 9, 2021). |
U.S. Appl. No. 13/684,078, Mar. 7, 2014 Issue Fee Payment. |
U.S. Appl. No. 13/684,078, Feb. 14, 2014 Notice of Allowance. |
U.S. Appl. No. 13/684,078, Dec. 31, 2013 Response to Non-Final Office Action. |
U.S. Appl. No. 13/684,078, Dec. 27, 2013 Non-Final Office Action. |
U.S. Appl. No. 14/251,542, Feb. 10, 2016 Issue Fee Payment. |
U.S. Appl. No. 14/251,542, Nov. 25, 2015 Notice of Allowance. |
U.S. Appl. No. 14/251,542, Oct. 30, 2015 Response to Non-Final Office Action with Terminal Disclaimer. |
U.S. Appl. No. 14/251,542, Sep. 25, 2015 Non-Final Office Action. |
U.S. Appl. No. 15/016,247, Jul. 21, 2017 Issue Fee Payment. |
U.S. Appl. No. 15/016,247, Jun. 15, 2017 Notice of Allowance. |
U.S. Appl. No. 15/016,247, Feb. 1, 2017 Terminal Disclaimer. |
U.S. Appl. No. 15/016,247, Dec. 13, 2016 Final Office Action. |
U.S. Appl. No. 15/016,247, Sep. 6, 2016 Response to Non-Final Office Action. |
U.S. Appl. No. 15/016,247, Jun. 17, 2016 Non-Final Office Action. |
U.S. Appl. No. 15/686,153, Oct. 20, 2018 Issue Fee Payment. |
U.S. Appl. No. 15/686,153, Aug. 7, 2018 Notice of Allowance. |
U.S. Appl. No. 15/686,153, Jun. 14, 2018 Response to Final Office Action with Terminal Disclaimer. |
U.S. Appl. No. 15/686,153, Jun. 13, 2018 Final Office Action. |
U.S. Appl. No. 15/686,153, Feb. 20, 2018 Response to Non-Final Office Action. |
U.S. Appl. No. 15/686,153, Sep. 22, 2017 Non-Final Office Action. |
U.S. Appl. No. 16/197,253, Jan. 28, 2021 Issue Fee Payment. |
U.S. Appl. No. 16/197,253, Oct. 28, 2020 Notice of Allowance. |
U.S. Appl. No. 16/197,253, Aug. 14, 2020 Response to Final Office Action with Terminal Disclaimer. |
U.S. Appl. No. 16/197,253, Jun. 29, 2020 Final Office Action. |
U.S. Appl. No. 16/197,253, Apr. 10, 2020 Response to Non-Final Office Action. |
U.S. Appl. No. 16/197,253, Jan. 10, 2020 Non-Final Office Action. |
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526. |
Arnold, M. A., et al., “Selectivity Assessment of Noninvasive Glucose Measurements Based on Analysis of Multivariate Calibration Vectors”, Journal of Diabetes Science and Technology, vol. 1, No. 4, 2007, pp. 454-462. |
Aussedat, B., et al., “A User-Friendly Method for Calibrating a Subcutaneous Glucose Sensor-Based Hypoglycemic Alarm”, Biosensors & Bioelectronics, vol. 12, No. 11, 1997, pp. 1061-1070. |
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33. |
Blank, T. B., et al., “Clinical Results From a Non-Invasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10. |
Boyne, M. S., et al., “Timing of Changes in Interstitial and Venous Blood Glucose Measured With a Continuous Subcutaneous Glucose Sensor”, Diabetes, vol. 52, Nov. 2003, pp. 2790-2794. |
Bremer, T. M., et al., “Benchmark Data from the Literature for Evaluation of New Glucose Sensing Technologies”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 409-418. |
Brooks, S. L., et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987/88, pp. 45-56. |
Cass, A. E., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, 667-671. |
Cheyne, E. H., et al., “Performance of a Continuous Glucose Monitoring System During Controlled Hypoglycaemia in Healthy Volunteers”, Diabetes Technology & Therapeutics, vol. 4, No. 5, 2002, pp. 607-613. |
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244. |
El-Khatib, F. H, et al., “Adaptive Closed-Loop Control Provides Blood-Glucose Regulation Using Subcutaneous Insulin and Glucagon Infusion in Diabetic Swine”, Journal of Diabetes Science and Technology, vol. 1, No. 2, 2007, pp. 181-192. |
Eren-Oruklu, M., et al., “Estimation of Future Glucose Concentrations with Subject-Specific Recursive Linear Models”, Diabetes Technology & Therapeutics vol. 11(4), 2009, pp. 243-253. |
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779. |
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004, pp. 1. |
Garg, S., et al., “Improvement in Glycemic Excursions with a Transcutaneous, Real-Time Continuous Glucose Sensor”, Diabetes Care, vol. 29, No. 1, 2006, pp. 44-50. |
Hovorka, R., et al., “Nonlinear Model Predictive Control of Glucose Concentration in Subjects with Type 1 Diabetes”, Physiological Measurement, vol. 55, Jul. 2004, pp. 905-920. |
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652. |
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719. |
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 198. |
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250. |
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304. |
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549. |
Kovatchev, B. P., et al., “Graphical and Numerical Evaluation of Continuous Glucose Sensing Time Lag”, Diabetes Technology & Therapeutics, vol. 11, No. 3, 2009, pp. 139-143. |
Kuure-Kinsey, M., et al., “A Dual-Rate Kalman Filter for Continuous Glucose Monitoring”, Proceedings of the 28th IEEE, EMBS Annual International Conference, New York City, 2006, pp. 63-66. |
Li, Y., et al., “In Vivo Release From a Drug Delivery MEMS Device”, Journal of Controlled Release, vol. 100, 2004, pp. 211-219. |
Lo, B., et al., “Key Technical Challenges and Current Implementations of Body Sensor Networks”, Body Sensor Networks, 2005, pp. 1-5. |
Lodwig, V., et al., “Continuous Glucose Monitoring with Glucose Sensors: Calibration and Assessment Criteria”, Diabetes Technology & Therapeutics, vol. 5, No. 4, 2003, pp. 573-587. |
Lortz, J., et al., “What is Bluetooth? We Explain the Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74. |
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658. |
McGarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages. |
McGarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376. |
McKean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532. |
Morbiducci, U, et al., “Improved Usability of the Minimal Model of Insulin Sensitivity Based on an Automated Approach and Genetic Algorithms for Parameter Estimation”, Clinical Science, vol. 112, 2007, pp. 257-263. |
Mougiakakou, et al., “A Real Time Simulation Model of Glucose-Insulin Metabolism for Type 1 Diabetes Patients”, Proceedings of the 2005 IEEE, 2005, pp. 298-301. |
Panteleon, A. E., et al., “The Role of the Independent Variable to Glucose Sensor Calibration”, Diabetes Technology & Therapeutics, vol. 5, No. 3, 2003, pp. 401-410. |
Parker, R., et al., “Robust H∞ Glucose Control in Diabetes Using a Physiological Model”, AIChE Journal, vol. 46, No. 12, 2000, pp. 2537-2549. |
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/88, pp. 335-346. |
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217. |
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272. |
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161. |
Rodriguez, N., et al., “Flexible Communication and Control Protocol for Injectable Neuromuscular Interfaces”, IEEE Transactions on Biomedical Circuits and Systems, vol. 1 No. 1, 2007, pp. 19-27. |
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241. |
Sakakida, M., et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158. |
Sakakida, M., et al., “Ferrocene-Mediated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322. |
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308. |
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299. |
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406. |
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184. |
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20. |
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313. |
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210. |
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301. |
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131. |
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942. |
Steil, G. M., et al., “Closed-Loop Insulin Delivery—the Path of Physiological Glucose Control”, Advanced Drug Delivery Reviews, vol. 56, 2004, pp. 125-144. |
Steil, G. M., et al., “Determination of Plasma Glucose During Rapid Glucose Excursions with a Subcutaneous Glucose Sensor”, Diabetes Technology & Therapeutics, vol. 5, No. 1, 2003, pp. 27-31. |
Sternberg, R., et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40. |
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261. |
Turner, A., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115. |
Updike, S. J., et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137. |
Velho, G., et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964. |
Wilson, G. S., et al., “Progress Toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617. |
U.S. Appl. No. 13/684,078, Notice of Allowance dated Feb. 14, 2014. |
U.S. Appl. No. 13/684,078, Office Action dated Dec. 27, 2013. |
U.S. Appl. No. 14/251,542, Notice of Allowance dated Nov. 25, 2015. |
U.S. Appl. No. 14/251,542, Office Action dated Sep. 25, 2015. |
U.S. Appl. No. 15/016,247, Notice of Allowance dated Jun. 15, 2017. |
U.S. Appl. No. 15/016,247, Office Action dated Dec. 13, 2016. |
U.S. Appl. No. 15/016,247, Office Action dated Jun. 17, 2016. |
U.S. Appl. No. 15/686,153, Notice of Allowance dated Aug. 7, 2018. |
U.S. Appl. No. 15/686,153, Office Action dated Jun. 13, 2018. |
U.S. Appl. No. 15/686,153, Office Action dated Sep. 22, 2017. |
U.S. Appl. No. 16/197,253 (U.S. Pat. No. 10,939,859), Nov. 20, 2018 (Mar. 9, 2021). |
“DexCom's 7-Day STS Continuous Glucose Monitoring System”, Jun. 1, 2007 https://newatlas.com/dexcoms-7-day-sts-continuous-glueose-monitoring-system/7376/ 1 page. |
Guardian® REAL-Time, Continuous Glucose Monitoring System, User Guide, Medtronic MiniMed, Inc., 181 pages (2006). |
Kamath et al., “Methods of Evaluating the Utility of Continuous Glucose Monitor Alerts,” Journal of Diabetes Science and Technology, 4(1):57-66 (2010). |
Alva et al., “Accuracy of a 14-Day Factory-Calibrated Continuous Glucose Monitoring System with Advanced Algorithm in Pediatric and Adult Population with Diabetes,” Journal of Diabetes Science and Technology, vol. 16(1) 70-77 (2022). |
Campbell et al., “Outcomes of using flash glucose monitoring technology by children and young people with type 1 diabetes in a single arm study,” Pediatric Diabetes, 1294-1301 (2018). |
Deshmukh et al., “Effect of Flash Glucose Monitoring on Glycemic Control, Hypoglycemia, Diabetes-Related Distress, and Resource Utilization in the Association of British Clinical Diabetologists (ABCD) Nationwide Audit,” https://doi.org/10.2337/dc20-0738, Diabetes Care, 8 pages (2020). |
Deutscher Gesundheitsbericht, Diabetes 2021, Die Bestandsaufnahme , German Diabetes Society, with English Abstract, 15 pages (2021). |
FDA, STS-7 Continuous Glucose Monitoring System, P050012/S001, May 31, 2007, 95 pages. |
Haak et al., “Use of Flash Glucose-Sensing Technology for 12 months as a Replacement for Blood Glucose Monitoring in Insulin-treated Type 2 Diabetes,” Diabetes Ther., 14 pages (2017). |
Roussel et al., “Important Drop in Rate of Acute Diabetes Complications in People With Type 1 or Type 2 Diabetes After Initiation of Flash Glucose Monitoring in France: The Relief Study,” American Diabetes Association, Diabetes Care, 1368-1376 (2021). |
File history of U.S. Appl. No. 61/551,773, filed Oct. 26, 2011. |
Harvey, et al., Clinically Relevant Hypoglycemia Prediction Metrics for Event Mitigation, Diabetes Technology & Therapeutics. Vol. 14, No. 8, pp. 719-727 (2012). |
Hughes, et al., Hypoglycemia Prevention via Pump Attenuation and Red-Yellow-Green “Traffic” Lights Using Continuous Glucose Monitoring and Insulin Pump Data, Journal of Diabetes Science and Technology, vol. 4, Issue 5, pp. 1146-1155 (2010). |
Schiavon, An online method for prevention of the risk of glycemic shock in diabetic patients from continuous glucose monitoring data, 110 pages (2010) with English translation of summary attached. |
Premarket Approval Letter with Summary of Safety and Effectiveness Data for the Freestyle Navigator Continuous Glucose Monitor, Mar. 12, 2008 [ 34 pgs.]. |
Schiavon, A method online for there prevention of the risk of glycerine shock in diabetic patients from data of monitoring continuous of the glucose [with English translation], 220 pages (2010). |
Townsend, et al., Getting Started with Bluetooth Low Energy, Tools and Techniques for Low-Power Networking, O'Reilly, 180 pages (2014). |
User Guide for the Navigator Freestyle (Mar. 2008) [38 pgs.]. |
Wang, et al., NYIT School of Engineering and Computing Sciences, A Feasible IMD Communication Protocol: Security without Obscurity, 1 page (2015). |
Ballard, “User Interface Design Guidelines for J2ME MIDP 2.0” 9 pages (2005). |
U.S. Appl. No. 61/238,657, filed Aug. 31, 2009, 198 pages. |
U.S. Appl. No. 61/238,657, filed Aug. 31, 2009, 60 pages. |
U.S. Appl. No. 61/247,541, filed Sep. 30, 2009, 69 pages. |
U.S. Appl. No. 61/297,265, filed Jan. 22, 2010, 54 pages. |
Cunningham et al., Winefordner Seried Editor, “Chemical Analysis: A Seried of Monographs on Analytical Chemistry and Its Applications—In Vivo Glucose Sensing” 50 pages (2010). |
Declaration of Thomas Edward Foster of Taylor Wessing LLP, Hill House, 1 Little New St. London EC4A 3TR (“Taylor Wessing”), in Relation to STS-7 User's Guide, Jan. 30, 2024, 160 pages. |
DexCom STS-7 Approval Order, Department of Health and Human Services, FDA, May 31, 2007, 7 pages. |
FDA Premarket Approval PMA Order for the STS-7, 3 pages, May 31, 2007. |
File History of U.S. Pat. No. 10,375,222, issued Aug. 6, 2019, 442 pages. |
Microsoft Applications for Windows Mobile 6 User Guide, 184 pages (2008). |
NFC Forum, Bluetooth® Secure Simple Pairing Using NFC Application Document NFC Forum TM, NFCForum-AD-BTSSP_ 1_1, 2014-01-09, 39 pages. |
Omre, Bluetooth Low Energy: Wireless Connectivity for Medical Monitoring, Journal of Diabetes Science and Technology, vol. 4, Issue 2, 457-463 Mar. 2010. |
Padgette et al., “Guide to Bluetooth Security, Recommendations of the National Institute of Standards and Technology,” National Institute of Standards and Technology, U.S. Department of Commerce, Special Publication 800-121 Revision 1, 48 pages, May 2017. |
Specification Bluetooth System Experience More, 134 pages, Jun. 2010. |
Specification Bluetooth System Wireless connections, 92 pages, Nov. 2003. |
Strömmer et al., “Application of Near Field Communication for Health Monitoring in Daily Life,” Proceedings of the 28th IEEE FrC09.1 EMBS Annual International Conference New York City, USA, 3246-3249, Aug. 30-Sep. 3, 2006. |
Wayback Machine internet archive of US FDA CDRH PMA Final Decisions Rendered, 21 pages, May 2007. |
Zhang et al., “Bluetooth Low Energy for Wearable Sensor-based Healthcare Systems,” 2014 Health Innovations and Point-of-Care Technologies Conference Seattle, Washington USA, 251-254, Oct. 8-10, 2014. |
A Dictionary of Computer Science, Seventh Edition, Oxford University Press, “authentication”, 3 pages (2016). |
A Dictionary of Computing, Sixth Edition, Oxford University Press, “function”, 3 pages (2008). |
Ananthi, “A Text Book of Medical Instruments,” New Age International (P) Limited, Publishers, 7 pages (2005). |
Annex A2 Documents relating to the Patent Extract from the EP Register for the Patent, EP 3988471, 6 pages (2023). |
Annex B1 Evidence relating to infringing products Dexcom G6 Start Here Guide, 21 pages (2023). |
Annex B3 User Guide LibreLinkUp, 28 pages (2023). |
Annex B4 Extract from the pricacy notice for LibreView, 7 pages (2024). |
Annex C1 Evidence relating to infringing acts Materials concerning supply of Dexcom's Products in France, 10 pages (2022). |
Annex D1 UPC Court of Appeal Feb. 26, 2024, 335/2023, 38 pages (2024). |
Annex D38 Info Technology Digest, vol. 5 Issue 5, 32 pages (1996). |
Annex D39 Best Practice for Software Asset Management, 7 pages (2023). |
Annex D40 Nagpal, “Computer Fundamentals, concepts, Systems and Applications,” 5 pages (2008). |
Annex E3 Excerpts from the “German Health Report Diabetes 2023” of the German Diabetes Society, 23 pages (2023) with English translation. |
Annex F5 Application to amend the Patent under R30 RoP, 5 pages (2024). |
Annex G2 Case law of the Boards of Appeal, I.C-4.3, 3 pages (2024). |
Annex G3 European Patent Guide, 23rd ed., chapter 3 (“Patentability”), 3.4, 6 pages (2023). |
Annex G5 Case Law of the Boards of Appeal, I-D, 4.2.0, 2 pages (2023). |
Annex G6 UPC Court of Appeal Feb. 26, 2024 NanoString Technologies v. 10x Genomics, 38 pages (2024). |
Annex G7 Decision of the Enlarged Board of the EPO, G 3/14 97 pages (2015). |
Annex G8 Willem Hoyng, “The Unified Patent Court (UPC) opens its doors! Some observations”, 42 pages (2023). |
Annex G10 Düsseldorf Local Division Oct. 18, 2023, UPC_CFI 177 2023 (MyStromer v Revolt Zycling), 19 pages (2023). |
Annex G11 Munich Local Division Apr. 23, 2024, UPC CFI 514/2023 (Volkswagen AG, Audi AG, Texas Instruments Inc. and Texas Instruments Deutschland GmbH v. Network system Technologies LLC), 10 pages (2024). |
Annex G12 Munich Local Division, Sep. 19, 2023, UPC_CFI_2/2023 (NanoString Technologies v. 10x Genomics), 107 pages (2023). |
Annex G13 Regulation 2017/745 (EU), 176 pages (2017). |
Annex G14 P. England, ‘A Practitioner's Guide to the Unified Patent Court and Unitary Patent’, Hart Publishing 2022, p. 159, 7 pages (2022). |
“Biomedical Engineering Desk Reference,” Elsevier, 5 pages (2009). |
Burr et al., Electronic Authentication Guideline, NIST Special Publication 800-63-2, NIST U.S. Dept. of Commerce, Aug. 2013, 123 pages. |
Cunningham, In Vivo Glucose Sensing, 9 pages (2010). |
Cunningham et al., “In Vivo Glucose Sensing,” Wiley & Sons, 50 pages (2010). |
Cunningham et al., “In Vivo Glucose Sensing,” Wiley & Sons, 111 pages (2010). |
Cunningham et al., “In Vivo Glucose Sensing Chemical Analysis: A Series of Monographs on Analytical chemistry and Its Applications,” Wiley & Sons, 1 page (2010). |
Custodio et al., “A Review on Architectures and Communications Technologies for Wearable Health-Monitoring Systems,” Sensors 12, 13907-13946 (2012). |
D29 Medtronic, Paradignm REAL-Time Revel™ Minimed, Part 1 132 pages, Part 2 133 pages (2009). |
Dexcom, Seven Plus CGMS Users Guide, 144 pages (2008). |
D'Imporzano, Dr., “Reaching More of the World,” Johnson & Johnson Celebrating 125 Years, Annual Report 2010, 2 pages. |
Ericksen et al., “Orthospinology Procedures, An Evidence-Based Approach to Spinal Care,” 6 pages (2007). |
FreeStyle Navigator® CGMS Indications for Use, 96 pages (2008). |
FreeStyle Navigator® CGMS Indications for Use, 196 pages (2008). |
G7 User Guide, Instructions for Use, 174 pages (2024). |
Hashimoto et al., “Examination of Usefulness of Color Indicator Function of OneTouch Ultra VueTM, Medicine and Pharmacy,” D44-D43, Opposition EP 3 988 471 B1, Hoffmann Elite, 9 pages (with English Translation) (2010). |
Huizinga et al., “Automated Defect Prevention, Best Practices in Software Management,” 6 pages (2007). |
IEEE 100 The Authoritative Dictionary of IEEE Standards Terms, Seventh Ed., “authentication”, 3 pages (2000). |
Letter to Bob Shen at Dexcom, Inc. dated May 15, 2023, FDA U.S. Food & Drug Administration, 8 pages. |
Medronic, The MiniMed Paradigm® Real-Time System, 8 pages (2005). |
Medronic, The MiniMed Paradigm® Real-Time System, Insulin Pump and CGMS, 8 pages (2008). |
Medronic, The MiniMed Paradigm® Real-Time Insulin Pump User Guide, Paradigm® 522 and 722 Insulin Pumps, 176 pages (2006). |
Medronic, Guardian® Real-Time Continuous Glucose Monitoring System, User Guide, 184 pages (2006). |
Medronic, The MiniMed Paradigm® Real-Time Sensor Features User Guide, Paradigm® 522 and 722 Insulin Pumps, 76 pages (2006). |
Medronic, Paradigm® Real-Time. Revel™ Insulin PumpUser Guide, 132 pages (2009). |
Mosa et al., “A Systematic Review of Healthcare Applications for Smartphones,” BMC Med Informatice and Secision Making, 32 pages (2012). |
Motorola, Microsoft Applications for Windows Mobile 6 User Guide, 184 pages (2008). |
Newton, Newton's Telecom Dictionary, 30th Upldated, Expanded, Aniversry Ed., “authenticate”, 4 pages (2016). |
OneTouch Handling Instructions, For self-examination glucose meter, Part 1—36 pages, Part 2—36 pages, Part 3—36 pages (with English Translation 6 pages) (2018). |
OneTouch Ultra VueTM, 3 pages (2010). |
Section 7 Calibrate Your System/Test Blood Glucose Manually, 65 pages (2008). |
Section 10 Response to Alarms, Errors, and Problems, 96 pages (2008). |
Seven Plus continuous glucose monitoring system User's Guide, Dexcom, 72 pages (2008). |
Sommerville, “Software Engineering,” 7 pages (2007). |
Stone et al., “User Interface Design and Evaluation,” The Open University, 4 pages (2005). |
Stone et al., “User Interface Design and Evaluation,” The Open University, 13 pages (2005). |
Stone et al., “User Interface Design and Evaluation,” The Open University, 153 pages (2005). |
Stoodley et al., “The Automatic Detection of Transients, Step Changes and Slope Changes in the Monitoring of Medical Time Series,” The Statistician, vol. 28 No. 3, 163-170 (1979). |
Wiklund, “Medical Device and Equipment Design,” 6 pages (1995). |
About the Congressional Record, Congress. Gov, 3 pages, Feb. 22, 2022. |
Approved Judgment, In the High Court of Justice Business and Property Courts of England and Wales Intellectual Property List (ChD) Patents Court, Case No. HP-2021-000025 & HP-2021-000026, 137 pages, Jan. 15, 2024. |
Bequette, “Continuous Glucose Monitoring: Real-Time Algorithms for Calibration, Filtering, and Alarms,” Journal of Diabetes Science and Technology, vol. 4, Issue 2, 404-418, Mar. 2010. |
Breen, The iPhone Pocket Guide, Sixth Edition, Peachpit Press, 96 pages (2012). |
Dassau et al., Real-Time Hypoglycemia Prediction Suite Using Continuous Glucose Monitoring, A safety net for the artificial pancreas, Diabetes Care, vol. 33, No. 3, 1249-1254 (2010). |
Declaration of Dr. Sayfe Kiael, Ph.D., Inter Partes Review of U.S. Pat. No. 10,375,222, 100 pages (2024). |
Declaration of David Rodbard, M.D., Petition for Inter Partes Review of U.S. Pat. No. 9,119,528, IPR2024-00840, 109 pages, May 1, 2024. |
Declaration of Lane Desborough, Petition for Inter Partes Review of U.S. Pat. No. 11,213,204, IPR2024-00853, 150 pages, May 3, 2024. |
Declaration of Sylvia D. Hall-Ellis, Ph.D., IPR2024-00840 of U.S. Pat. No. 9,119,528, Parts 1-2 (400 pages) Apr. 24, 2024. |
Department of Health & Human Services, FDA, P050012/S001, STS-7 Continuous Glucose Monitoring System, 7 pages, May 31, 2007. |
Desalvo et al., “Remote Glucose Monitoring in Camp Setting Reduces the Risk of Prolonged Nocturnal Hypoglycemia,” Diabetes Technology & Therapeutics, vol. 16, No. 1, 10 pages, DOI: 10.1089/dia.2013.0139 (2014). |
Dexcom, Leading the Way for You & Your Patients with Continuous Glucose Monitoring, 12 pages (2010). |
FDA [Docket No. FDA-2011-D-0464], Draft Guidance for Industry and Food and Drug Administration Staff: The Content of Investigational Device Exemption and Premarket Approval Applications for Low Glucose Suspend Device Systems; Availability, Federal Register / vol. 76, No. 120 / Wednesday, Jun. 22, 2011 /Notices, 2 pages. |
FDA PMAa Final Decisions Rendered for May 2007—The Wayback Machine—https://web.archive.org/web/20070630150626/http:/www.fda.gov/cdrh/pma/pmamay07.html, 21 pages, Jun. 13, 2007. |
FDA STS-7, Glucose Monitoring System—P050012/S001, The Wayback Machine—https://web.archive.org/web/20070705190828/http:/www.fda.gov:80/cdrh/pdf5/p050012s001.html, 1 page, 2007. |
FDA FreeStyle Navigator Continuous Glucose Monitoring System, P050020, 7 pages, Mar. 12, 2008. |
File History of U.S. Pat. No. 9,801,541 issued Oct. 31, 2017, 834 pages. |
Keith-Hynes et al., “The Diabetes Assistant: A Smartphone-Based System for Real-Time Control of Blood Glucose,” Electronics, 3, 609-623; doi:10.3390/electronics3040609 (2014). |
Klonoff et al., “Innovations in Technology for the Treatment of Diabetes: Clinical Development of the Artificial Pancreas (an Autonomous System),” Journal of Diabetes Science and Technology, vol. 5, Issue 3, 804-826, May 2011. |
Kowalski, “Can We Really Close the Loop and How Soon? Accelerating the Availability of an Artificial Pancreas: A Roadmap to Better Diabetes Outcomes,” Diabetes Technology & Therapeutics, vol. 11, Suppl 1, DOI: 10.1089/dia.2009.0031, S-113-S-119, 10 pages (2009). |
Ley, “Continuous Glucose Monitoring: A Movie is Worth a Thousand Pictures A Review of the Medtronic Guardian Real-time system,” https://nfb.org/images/nfb/publications/vod/vod 22 4/vodfal0702.htm, 3 pages (2021). |
McDaniel et al., “Remote Management of Cardiac Patients, The Forefront of a New Standard,” Modern Healthcare, 6 pages, Nov. 14, 2011. |
Murphy et al., “Closed-Loop Insulin Delivery During Pregnancy complicated by Type 1 Diabetes,” Emerging Treatments and Technologies, Diabetes Care, vol. 34, 406-411 (2011). |
MySentry™ User Guide, Medronic Minimed, 80 pages (2010). |
Padgette et al., “Guide to Bluetooth Security, Recommendations of the National Institute of Standards and Technology,” NET Special Publication 800421 Revision National Institute of Standards and Technology, U.S. Department of Commerce, 48 pages (2012). |
Palerm et al., “Hypoglycemia Prediction and Detection Using Optimal Estimation,” Diabetes Technology & Therapeutics, vol. 7, No. 1, 12 pages (2005). |
Pickup, “Semi-Closed-Loop Insulin Delivery Systems: Early Experience with Low-Glucose Insulin Suspend Pumps,” Diabetes Technology & Therapeutics, vol. 13, No. 7, DOI: 10.1089/dia.2011.0103, 695-698 (2011). |
Place et al., “DiAs Web Monitoring: A Real-Time Remote Monitoring System Designed for Artificial Pancreas Outpatient Trials,” Journal of Diabetes Science and Technology vol. 7, Issue 6, 1427-1435 (2013). |
Scheduling Order, Abbott Diabetes Care Inc v. Dexcom, Inc., C.A. No. 23-239 (KAJ), 14 pages, Sep. 19, 2023. |
Schiavon, “A method online For there prevention of the risk of glycerine shock in diabetic patients from data Of rmonitoring continuous of the glucose ,” Thesis (with English translation) 219 p. Apr. 20, 2010. |
Steil et al., “Feasibility of Automating Insulin Delivery for the Treatment of Type 1 Diabetes,” Diabetes, vol. 55, 3344-3350 (2006). |
The Diabetes Research in Children Network (DirecNet) Study Group, “GlucoWatch® G2TM Biographer (GW2B) Alarm Reliability During Hypoglycemia in Children*,” Diabetes Technol Ther., 6(5): 559-566 (2004). |
Weinstein et al., “Diabetes Care, ADA 2006: Spotlight on Continuous Glucose Monitoring,” JP Morgan, North America Equity Research, 16 pages, Jun. 11, 2006. |
Weinzimer et al., “Fully Automated Closed-Loop Insulin Delivery Versus Semiautomated Hybrid Control in Pediatric Patients with Type 1 Diabetes Using an Artificial Pancreas,” Emerging Treatments and Technologies, Diabetes Care, vol. 31, No. 5, 934-939 (2008). |
Wettlaufer, “merlin.net Automation of External Reports Verification Process,” A Thesis Presented to The Faculty of California Polytechnic State University, San Luis Obispo, 53 pages, Jan. 2010. |
Wilson et al., “Introduction to the Glucose Sensing Problem,” In Vivo Glucose Sensing, Edited by D. D. Cunningham and J. A. Stenken, Wiley & Sons, Inc., 27 pages, (2010). |
Wright et al., “Continuous Glucose Monitoring (CGM)/Real-Time Flash Glucose Scanning (FGS) Training for Healthcare Professionals and Patients,” Association of Children's Diabetes Clinicians, 50 pages (2017). |
Select pages from OneTouch Ultra Vue User Manual published on Oct. 1, 2009 (with English Translation), 4 pages. |
Number | Date | Country | |
---|---|---|---|
20210196156 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
61563518 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16197253 | Nov 2018 | US |
Child | 17179635 | US | |
Parent | 15686153 | Aug 2017 | US |
Child | 16197253 | US | |
Parent | 15016247 | Feb 2016 | US |
Child | 15686153 | US | |
Parent | 14251542 | Apr 2014 | US |
Child | 15016247 | US | |
Parent | 13684078 | Nov 2012 | US |
Child | 14251542 | US |