The following information is provided to assist the reader to understand the invention disclosed below and the environment in which it will typically be used. The terms used herein are not intended to be limited to any particular narrow interpretation unless clearly stated otherwise in this document. References set forth herein may facilitate understanding of the present invention or the background of the present invention. The disclosures of all references cited herein are incorporated by reference.
Medical imaging procedures often rely on the use of contrast media that is injected into the biological structure to be imaged such that the medical imaging procedure provides more detailed information to a radiologist or other medical personnel responsible for analyzing the medical imagery. Contrast media is often injected into a patient's vasculature prior to the medical imaging procedure and the patient's renal system is thereafter tasked with clearing the contrast media from the patient's bloodstream.
According to conventional radiographic diagnostic imaging techniques such as X-ray procedures, X-rays pass through a target object and expose an underlying photographic film. The developed film then provides an image of the radio-density pattern of the object. Less radio-dense areas produce a greater blackening of the film; more radio-dense, bony tissues produce a lighter image. Effective contrast media for X-ray may be either less radio-dense than body tissues or more radio-dense. The less radio-dense agents include air and other gases; an example of a more radio-dense contrast material is a barium sulfate suspension or iodinated injectable media.
Computed tomography (CT) is superior to conventional radiography in its ability to image, with extremely high resolution, a succession of thin sections of an object at specific points, lines, or planes along the X, Y, or Z axis of the target object. However, because this procedure is also based on the detection of differences in radio-density, requirements for contrast media in CT are essentially identical with those for conventional radiography.
Magnetic resonance imaging (MRI) systems for body imaging operate on a different physical principle. Generally, MRI relies on the atomic properties (nuclear resonance) of protons in tissues when they are scanned with radio frequency radiation. The protons in the tissue, which resonate at slightly different frequencies, produce a signal that a computer uses to tell one tissue from another. MRI provides detailed three-dimensional soft tissue images.
Fluoroscopy imaging systems may provide real-time X-ray images of internal structures based on differences in the radio-density of the imaged object components. As in X-ray procedures, fluoroscopy may be enhanced by the use of more radio-dense contrast media that may be injected into the object being imaged. For instance, in angiography procedures, radio-dense contrast media may be injected into the cardiac vasculature in order to trace the path of blood through the vasculature and determine, for instance, the location of blockages in the cardiac vasculature.
Currently, injection systems used for the dispensing of a contrast media in, for instance, CT, MRI, Ultrasound and/or Angiography/Fluoroscopy medical imaging procedures include interface controls and features limited to the delivery of contrast media within the medical imaging suite. Further, most contrast media is injected into a patient's vasculature for enhancement of imaging procedures and is then physiologically cleared by the renal system through normal nephritic function. During the clearing of contrast media from the patient's body, the serum-borne contrast media places additional burden on renal function until it is cleared. In cases where a patient undergoing a medical imaging procedure using contrast media has a prior history or an unknown pre-existing condition of compromised or impaired renal function, the burden associated with clearing injected contrast media can result in further damage to the kidneys and/or other components of the renal system. Furthermore, in some severe cases, the burden associated with the clearing of iodinated contrast media has destroyed renal function in its totality.
While contrast media used in imaging procedures is generally safe for healthy patients, there are cases of iodinated contrast induced nephropathy resulting from its use in medical imaging patients, as noted above. A representative medical imaging (and optionally treatment) procedure is generally a multistage or step procedure as generally depicted in
The patient preparation then continues in an imaging suite at step 120 where the patient is placed on the imaging table, typically given some moderate sedation, and further prepared for the procedure. In a catheterization lab, this step may include generally covering the patient with sterile drapes and preparing a sterile field commonly in the groin area for access to the femoral artery. Blood tests are commonly done to measure clotting time and medication is given to provide for the right level of anticoagulation. The attendant clinical personnel and technicians also prepare various medical devices and systems for use in the procedure, open packages of sterile products and put them onto a sterile table for ready access. Step 120 also includes gaining access to the femoral artery with a sheath, a guidewire, and then a catheter. The guidewire and catheter may be maneuvered some distance before contrast needs to be injected for visualization of their position relative to the patient's vasculature.
When a clinician needs to inject contrast, the contrast imaging phase begins at step 130. Modest “puffs” of contrast are often injected to help the clinician maneuver the catheter into the correct position. Once the catheter is in the correct position, a larger bolus of contrast is typically injected to allow visualization of the vascular tree and identification of any stenosis or other abnormalities of concern. If there is a stenosis or blockage, it can often be treated during the same procedure with angioplasty or insertion of a stent, which involves additional maneuvering of catheters and contrast injections. Once the treatment is competed, no more contrast is injected.
To complete the procedure in the imaging suite at step 140, the catheters are removed from the patient and the wound is closed with stitching of the tissue that had been cut and optionally, the vessel wall. Blood tests may be drawn to ensure that there is sufficient reversal of anticoagulation for the patient to be moved to a recovery area. After being sufficiently stabilized, the patient is wheeled out of the procedure room to the recovery area. The treatment outside the recovery room at step 150 commonly includes observation and monitoring while sedation wears off. Once the patient is coherent enough to understand medical instructions, the patient and any person accompanying the patient are given follow up instructions on wound treatment. The patient then dresses and is prepared for discharge.
The foregoing process can be considered to include three phases: a first or preparation phase 161, a second or injection phase 162, and a third or recovery phase 163. First or preparation phase 161 may be considered to include those steps needed to prepare the patient for a first injection of contrast, including those steps occurring outside and inside of the imaging suite (e.g., steps 110 and 120). Second or injection phase 162 may be considered to encompass the time of first contrast injection to the time of last contrast injection (e.g., step 130). Third or recovery phase 163 may be considered to encompass the time from last injection to a time long enough after the injection phase 162 that it is clear that there are no after effects from contrast injection (including, steps 140 and 150).
Contrast induced nephropathy (CIN) may be defined as a serious degradation of kidney function in patients who have received vascular injections of, for example, iodinated contrast medium. CIN occurs more frequently in patients with known risk factors such as previous administration of contrast, diabetes mellitus, congestive heart failure, obesity, and age-related factors. The condition is relatively rare (less than 5% of the total population receiving contrast), but it occurs with higher frequency (11-50%) and severity in patients whose renal function is already impaired. In more severe cases, CIN can result in the need for dialysis, and it can sometimes result in death. Often, CIN will not become apparent until at least 24-48 hours after contrast administration. This delay in manifestation complicates real-time assessment of kidney function at the time of contrast administration.
The standard of medical care to prevent as well as to treat CIN is “hydration therapy”, which includes the intravenous infusion of normal saline at a rate of at least 100 ml/hour for 4 to 6 hours before a contrast-enhanced procedure, followed by several additional hours of intravenous saline. Oral hydration is also recommended for patients at risk of CIN, as an adjunct to intravenous therapy. Fluid volumes between 1-2 liters are believed to stimulate renal excretion of contrast media along with all the additional water.
Although hydration therapy is the standard of medical care to prevent or to treat CIN, slow hydration therapy via intravenous infusion can sometimes result in an overage of fluid in the body, progressing to edema, pulmonary effusion, congestive heart failure, and a worsening of cardio-renal function. It is expected that balancing the urinary output with intravenously infused fluid can reduce the side effects of hydration therapy. A commercial device, RENALGUARD™ (available from PLC Medical Systems, Inc. of Franklin, Mass.) attempts to perform this balancing function over a period of time shorter than the 12-24 hours required by conventional hydration therapy. A drawback of the RENALGUARD™ device is the need to introduce a drainage catheter into the urinary bladder, resulting in patient discomfort and inconvenience for the operator.
Based on the results of clinical trials, CIN can be significantly reduced by intravenous infusion of sufficient fluid volume to promote a glomerular filtration rate (GFR) in excess of 150 ml/hr. (See, for example, Stevens, et al. “A Prospective Randomized Trial of Prevention Measures in Patients at High Risk for Contrast Nephropathy,” J of the ACC, Vol. 33. No. 2, 1999, pp. 403-411.) It is currently difficult to measure GFR because of the costs associated with extracting and analyzing blood samples with laboratory equipment (for example, using the RENALYZER™ analyzer available from Provalid AB Corporation of Aldernansgatan, Sweden). A somewhat more practical way to assess kidney function is to measure urine output over time. However, measurement of urine output also requires the use of a urinary catheter to collect kidney output.
In a post hoc analysis, Buckley, et al. showed that imaging of the kidney blood flow by means of dynamic contrast enhanced MRI (DCE-MRI) provided data that correlated well with reference measures of GFR. (Buckley, et al. “Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects”, J Magi Reson Imaging, 2006 November; 24(5): 1117-23.) Further, Hackstein, et al. showed that total GFR can be measured with CT images of the abdominal aorta with minimally extended triphasic CT in patients without acute renal disorder by using a two-point Patlak plot technique. (Hackstein, et al., “Glomerular filtration rate measured by using triphasic helical CT with a two-point Patlak plot technique”, Radiology, 2004 January; 230(1):221-6.)
Given the significant health related problems which may result with contrast induced nephropathy, it is desirable to develop and implement devices, systems, and methods for predicting, preventing and/or mitigating the effects of contrast induced nephropathy. Accordingly, this disclosure is directed to devices, systems, and methods for mitigation of contrast induced nephropathy which may result from the administration of contrast media during medical diagnostic and/or therapeutic procedures such as those described hereinabove.
The devices, systems, and methods described in detail herein are directed to mitigation of contrast induced nephropathy resulting from injection of iodinated contrast during medical imaging, generally considered to be a diagnostic procedure, and/or during a treatment or therapeutic procedure. The disclosed devices, systems, and methods include patient risk assessment, risk reduction, and treatment of contrast induced physiological reactions during a medical procedure. The principles of the invention described herein are applicable to all medical procedures using any type of contrast media, for example, iodinated contrast in a cardiac catheterization laboratory procedure or a computed tomography (CT) or gadolinium based contrast in magnetic resonance imaging (MRI), as examples.
In one aspect, the present invention provides a system, including a pressurizing mechanism to pressurize a fluid including a contrast enhancement agent for delivery to a patient and a control system in operative connection with the pressurizing mechanism. The control system includes a system to adjust control of fluid injection based upon a measurement of renal function of the patient.
The control system can, for example, be operative to constrain fluid injection to reduce a likelihood of contrast induced nephropathy.
In several embodiments, the system includes an analyzing system to analyze a time enhancement curve resulting from injection of the fluid including contrasting agent to provide a measurement of renal function. The analyzing system can be in operative connection with the control system such that injection of the fluid into the patient can be controlled to reduce the likelihood of nephropathy based, at least in part, on the analysis of the time enhancement curve.
In several embodiments, the control system is operative to control injection of the fluid into the patient to reduce the likelihood of nephropathy based, at least in part, on input of patient specific parameters.
The system can further include an input system for input of patient parameters associated with renal function, the input system being in operative connection with the control system. Such patient parameters can, for example, include at least one of age, body mass index, sex, serum creatinine level in the blood plasma, blood urea nitrogen.
In a number of embodiments, the system includes a system to determine a therapy for the patient after delivery of the fluid to the patient if the patient is determined to be at risk of nephropathy. The determination of a therapy can be based, at least in part, on analysis of a time enhancement curve resulting from injection of the fluid including contrasting agent to provide a measurement of renal function. The therapy can, for example, include a hydration therapy.
In several embodiments, the control system of the present invention is distributed. The control system can also be hierarchical.
The control system can be in communicative connection with an information system (for example, including a hospital information system and/or a picture archive and communication system).
In several embodiments, the control system is in communicative connection with a contrast induce nephropathy therapy system. The therapy system can, for example, include a pump for introducing therapeutic fluids.
In a number of embodiments, the system of the present invention further includes an imaging system, which can be in operative connection with the control system.
In another aspect, the present invention provides an injector system for delivery of a fluid including a contrast enhancement agent to a patient, including: a pressurizing mechanism to pressurize the fluid; and a control system in operative connection with the pressurizing mechanism. The control system is adapted to control of fluid injection based, at least in part, upon a measurement renal function of the patient.
The control system can, for example, be operative to constrain fluid injection to reduce a likelihood of nephropathy.
The injector system can further include an input system for input of data associated with renal function. The data associated with patient renal function can, for example, include at least one of age, body mass index, sex, creatinine level, blood urea nitrogen.
The control system can, for example, be adapted to receive data of a time enhancement curve resulting from injection of the fluid including contrasting agent from the input system to determine an aspect of renal function of the patient.
In several embodiments, the control system is adapted to determine a therapy for the patient after delivery of the fluid to the patient if the patient is determined to be at risk of nephropathy. The determination of a therapy can, for example, be based, at least in part, on analysis of a time enhancement curve resulting from injection of the fluid including contrasting agent to provide a measurement of renal function. The therapy can, for example, include a hydration therapy.
In another aspect, the present invention provides a method of performing an imaging procedure, including: controlling injection of a fluid including a contrast enhancement agent based at least in part upon a determination of renal function of the patient and imaging at least a portion of the patent.
The method can include constraining fluid injection to reduce the likelihood of nephropathy.
The renal function of the patient can, for example, be determined, at least in part, based upon at least one patient parameter. The patient parameter can, for example, include at least one of age, body mass index, sex, creatinine level, and blood urea nitrogen.
The renal function of the patient can also or alternatively be determined, at least in part, based upon analysis of a time enhancement curve of the contrast enhancement agent in at least one region of interest of the patient.
The method can further include determining a therapy for the patient after delivery of the fluid to the patient if the patient is determined to be at risk of nephropathy.
In several embodiments, the determination of the therapy is based, at least in part, on analysis of a time enhancement curve resulting from injection of the fluid including contrasting agent to determine a measurement of renal function.
The therapy can, for example, include at least one of hydration therapy and introduction of at least one nephroprotective agent.
The method can further include determining a therapy for the patient before delivery of the fluid to the patient if the patient is determined to be at risk of nephropathy.
In still a further embodiment, the present invention provides a system for use in an imaging procedure, including: an injector system including a pressurizing mechanism to pressurize a fluid including a contrast enhancement agent for delivery to a patient, an imaging system, and at least one system to adjust at least one parameter of the imaging procedure based upon a measurement of renal function of the patient. The parameter can, for example, be a parameter of the injector system. The parameter can also or alternatively be a parameter of the imaging system.
Further details and advantages will become clear upon reading the following detailed description in conjunction with the accompanying drawing figures.
For purposes of the description hereinafter, spatial orientation terms, if used, shall relate to the referenced embodiment as it is oriented in the accompanying drawing figures or otherwise described in the following detailed description. However, it is to be understood that the embodiments described hereinafter may assume many alternative variations and configurations. It is also to be understood that the specific devices, features, and components illustrated in the accompanying drawing figures and described herein are simply exemplary and should not be considered as limiting.
As used herein and in the appended claims, the singular forms “a,” “an”, and “the” include plural references unless the content clearly dictates otherwise. Thus, for example, reference to “a display” includes a plurality of such displays and equivalents thereof known to those skilled in the art, and so forth, and reference to “the display” is a reference to one or more such displays and equivalents thereof known to those skilled in the art, and so forth.
As noted previously,
It may be desirable to co-locate a fluid analyzing device (not shown) within or near the medical imaging suite to receive and analyze a biological fluid sample from the patient so as to determine a level of at least one substance in the biological fluid sample prior to, during and/or after the dispensing of contrast media by, for example, dispensing device 250. Such a biological fluid sample may comprise, for example, a blood sample, urine sample, saliva sample, and/or other biological fluid samples suitable for analysis in the analyzing device. Several suitable embodiments of an analyzing device for this purpose are disclosed in United States Patent Application Publication No. 2006/0074294 to Williams, J R. et al. which is incorporated herein by reference.
Before a contrast-enhanced imaging or therapeutic procedure is performed the risk of CIN is desirably assessed. One source for accessing the risk of CIN is from the medical history and/or the results of lab tests for the patient. This assessment risk information source may, for example, result in limiting the maximum amount of contrast the patient may be given or serve as a guide to recommend an appropriate amount of contrast for the patient. Referring further to
In several embodiments, a CIN risk assessment computer program has information inputs including, but is not limited to: patient past history of contrast usage, if pre-existing renal insufficiency exists, if diabetes exists, age, if the patient is concurrently using nephrotoxic drugs, hydration level, blood pressure, if previous heart failure exists, if contrast allergy exists, if cirrhosis exists, if nephritic syndrome exists, height, weight, body surface area (BSA), creatinine level, body mass index (BMI), blood urea nitrogen (BUN), Kidney Injury Marker 1 & 2, cardiac output, recent urine volume, planned contrast based imaging procedure, and planned contrast type to be used. An information input apparatus can come in many forms such as by keyboard entry, touch screen entry, from computer network 320 which may be, for example, connected to a hospital information system (HIS), electronically stored patient charts, sensors, and local lab test equipment. In several embodiments, computer system 310 may receive real time blood sample, urine sample, saliva sample, and/or other biological fluid sample chemistry feedback to monitor the health of the renal system.
The CIN risk assessment computer program takes the various informational inputs just described and, based on algorithms and/or one or more reference table(s) of past empirical data, provides output, including, for example, an objective CIN risk factor for the patient, a recommended maximum volume of contrast that can be delivered, and/or suggested contrast dilution if any. The algorithms used may include, but are not limited to, the Cockroft-Gault formula, modification of diet in renal disease (MDRD) formula, and the use of past case results. CIN risk assessment system 300 can, for example, output CIN risk assessment information on, for example, a display screen associated with computer device 240. Such CIN risk assessment information may include, as indicated, a recommendation of the maximum amount of contrast to be given to the patient, dilution percentage (if any), as well as an objective indication of the risk of CIN based on the informational inputs. While the display screen may be a computer screen, other display technologies may be employed such as LCD, CRT, and plasma screen displays located, for example, within the control room 220 of medical imaging system 200 shown in
In certain medical procedures (for example, contrast enhanced CT or X-ray procedures), there is often little time to assess patient CIN risk or other reactions to the injected contrast agent. Since the risk of CIN may be related to previous contrast dose or “loading” of the patient or the presence of other drugs in the patient, it is desirable to know the contrast dose history for a particular patient for the clinician to use as a factor when assessing patient CIN risk. The knowledge of past contrast dose exposure (and possibly response thereto) may be especially useful when a patient must undergo multiple contrast-enhanced procedures within a relatively short time period (for example, one to two weeks) or several procedures within a moderate time period (for example, several procedures per month). For example, if a patient had a contrast enhanced procedure within the last 24 to 48 hours, depending on the patient, the renal system may be at additional risk as a result of long clearance times for some agents and recovery time for the renal system.
Another informational input to the CIN risk assessment algorithm in CIN risk assessment system 300 of
For example, if contrast dose and history exceeds some set amount, as determined by a clinician or other means such as a standard or guideline, the contrast delivery system (for example, dispensing device 250 in system 200 of
Another way to minimize the risk and incidence (CIN) is to monitor the real-time contrast load in the patient, which is the dose of contrast that still remains systemically within a patient's body, before, during, or after contrast agent administration. This real-time contrast load may, for example, be used as a parameter or informational input to the CIN risk assessment system 300 and, more particularly, the algorithm residing in computer system 310 (and/or computer device 240 in system 200 of
Contrast load assessments or measurements may be made before, during, and after an imaging procedure. For example, before the procedure, if the measured contrast load is high, the clinician may be alerted by CIN risk assessment system 300 of increased risk with further administration of contrast agent, or the clinician may receive guidance to use a different concentration or type of contrast agent. Guidance may be in the form of an “expert-system” or software based rules-engine provided as part of the CIN risk assessment program or algorithm that uses information about the patient physiologic characteristics (age, weight, sex, disease state, etc.), contrast load, and other information to provide guidance to the clinician with respect to patient risk, care, and treatment. The guidance may be based on formal rules or heuristics developed around patient treatment relative to contrast load.
During and after the procedure, for example, the clinician may be provided with real-time feedback or a recommended course of treatment or information on recommended medications to be administered to treat the high contrast dose. As another example, medications such as renal vasodilators or fluids for hydration may be automatically administered when the measured contrast load is high, or iodine dialysis equipment may be automatically activated. Nephroprotective agents such as sodium bicarbonate and/or acetylcysteine can be administered (for example, in combination with hydration with sodium chloride solution/saline). As another example, injection or delivery of additional contrast agent dose may be reduced or delayed by some recommended time to reduce risk. After the imaging procedure, the clearance rates of the contrast agent may be monitored to track renal function and provide input to any therapies or changes in patient care as a result of the measurement.
Currently contrast dose or load in the patient may be estimated in several ways. One estimation method forming part of the present invention is to directly measure the concentration, such as through the use of infrared (IR) or X-Ray sensors, chemical sensors, or from the imaging system used, such as an X-Ray or CT scanner. X-Ray contrast agents are iodine-based compounds with specific IR absorption spectra that differ from the spectra of blood or water. A “clip-on” infrared or X-ray based non-invasive sensor may be attached to the subject's finger or earlobe to obtain a local blood concentration measurement for contrast agent by measuring the level of energy absorption through some region of tissue. A suitable sensor for this purpose is disclosed in U.S. Pat. No. 5,840,026 and U.S. Patent Application Publication Nos. 2008-0097197 and 2007-0255135 incorporated herein by reference. Chemical concentration identification through infrared spectroscopy, and other imaging is well known for other applications, such as a capillary blood oximeter (or optical plethysmograph) for oxygen saturation measurements of blood.
In another embodiment, contrast concentration sensing may be performed by optical or electro-chemical sensors attached to a catheter placed within the vascular system. As blood containing the iodine based imaging compound flow over the sensor, the local concentration in the blood may be measured as a way to estimate total dose to the patient. In another embodiment, a measurement of density changes in image opacification using “Hounsfield Units” or some other equivalent image density/intensity measurement with the imaging system within some region of interest, such as in the kidneys, may be used to estimate the amount of contrast agent in the patient. Fluoroscopy or rotational angiography may be used in conjunction with an image processing system to measure these changes. Computer images maps of Hounsfield units may be used to show the excretion of contrast by kidneys and flow through the ureters into the bladder.
In addition to patient contrast load, contrast clearance rate information may also provide information that can be used to reduce the risks associated with CIN. For example, clearance rate information coupled with contrast dose and contrast dose timing information may be used to predict the time needed for sufficient levels of contrast to clear before it is safe to administer more contrast to the patient. Contrast clearance rate calculation may form part of the algorithm associated with the computer system 310 in CIN risk assessment system 300. Also, clearance rate information may be used to monitor renal function after contrast administration in addition to creatinine level measurements as a secondary check. Sudden drops in the rate of iodine or by-product excretion may indicate important changes in renal function. Clearance rates may also be monitored by sensing the level of the concentration iodine or contrast agent by-products in urine. This sensing may occur while in the bladder, or the concentration of by-products may be measured once excreted from the body through a urinary catheter or some other means. As mentioned previously, iodine or by-product concentration in the bladder or urine may be measured by IR optical, chemical, electro-chemical, or other sensing means. Measurements over time may be used to construct clearance rate time-curves that may provide insight into kidney function and provide input regarding the time required until there is sufficient recovery for further contrast enhanced imaging.
It is well-known in the medical field to perform a blood test whereby blood urea nitrogen (BUN) and creatinine levels can be measured as a method for assessing renal function and a patient's ability to safely clear contrast media. However, current medical imaging systems, such as contrast media injection equipment in existing medical imaging suites, do not typically provide for the clinical biological fluid chemistry measurements of BUN and creatinine to pre-screen and/or qualify a patient for contrast media injection. In addition, the measurements of BUN and creatinine levels are not made on a substantially real-time basis in the medical imaging suite as part of a medical imaging procedure. For example, in current inpatient hospital settings, the clinical chemistry laboratory is typically located in a different area of the hospital from the radiology department. As such, either the patient or a biological fluid sample from the patient must be forwarded to the clinical chemistry laboratory for processing. In the case where a biological fluid sample is transferred to the clinical laboratory, additional phlebotomist time and expense is incurred. Thereafter, the results must be reported and either transmitted directly to the radiologist from the lab, or indirectly to the radiologist through the referring physician prescribing the radiographic exam in the first place. Similar obstacles are encountered for patients requiring pre-qualifying biological fluid BUN/creatinine analysis prior to undergoing contrast enhanced radiographic examination in an outpatient radiology practice. In this case, the clinical laboratory and radiology office may be in separate buildings separated by large geographic distances. The foregoing described methods for determining contrast concentration sensing and/or contrast clearance rates may be provided locally in the imaging suite according to the present invention and overcome these physical limitations. Further, measurements can also be made via a point-of-care (POC) system such as the EZ CHEM™ blood analyzer system available from by E-Z-EM, Inc. of Lake Success, N.Y. or the iSTAT® handheld analyzer system (available from Abbott Laboratories of Abbott Park, Ill.).
Another feature now to be described relates to evaluating kidney function and risk of CIN contemporaneously with an imaging procedure via the non-invasive imaging of contrast medium in tissue and/or blood. Application of mathematical modeling techniques to these images and, optionally, other non-imaging information specific to the patient, provides quantitative assessment beyond what is available in current clinical practice.
In CT imaging, quantitative information about renal blood flow may be obtained from the image intensity (Hounsfield units) measured in a region of contrast enhancement. The typical time-density curve of contrast in the aorta follows the pattern illustrated in FIG. 4. A large peak of contrast density is measured as contrast media makes its way from the venous circulation, through the lungs and heart and into the arterial blood flow. A second peak is seen during the second pass of blood through the circulation. Subsequently, a gradual reduction of contrast is noted as the material is filtered from the blood by the kidneys. One or more characteristics (for example, slope) of this portion of the “washout” curve may be associated with the glomerular filtration rate or GFR achieved by the kidneys. For example, the slope of the curve will be greater in the case that contrast is being removed at the normal rate, and reduced in the case of impaired kidney function. The washout curve may, for example, be observed in a number of regions of interest (ROI's) including, but not limited to, the aorta, in the renal arteries, the ureters, and/or in the urinary bladder.
In several embodiments of the present invention, non-parametric and/or parametric models of renal function are applied in the prediction of CIN and incorporated within systemic approach for management of contrast media delivery. These embodiments of the systems and methods of the present invention can be used in both minimizing the probability of CIN and to provide a personalized treatment and/or a prophylactic paradigm as necessary. For example, this approach may be used to prospectively determine if a patient to undergo radiological examination is at risk of CIN and for the management of that patient. In several embodiments, one or more patient physiological parameters that may provide an indication of whether the patient is “at risk” (or a greater than normal risk) for CIN are first measured. For example, a measurement of the patient's serum creatinine levels and/or the blood urea to nitrogen (BUN) ratio can be made either via standard laboratory assay methods or using a bedside monitoring technology, such as the EZCHEM™ blood analyzer system available from by E-Z-EM, Inc. of Lake Success, N.Y. or the iSTAT® handheld analyzer system (available from Abbott Laboratories of Abbott Park, Ill.) as described above. Current clinical practice suggest that patients with serum creatinine levels>1.3 mg/dL are considered “at risk” of developing CIN. An initial assessment of CIN risk can be made prior to the beginning of an injection/imaging procedure. If the risk is unacceptable, a decision can be made to forego the procedure.
A better prognosticator of CIN risk than serum creatinine level or BUN alone is the glomerular filtration rate. An initial estimate of GFR may, for example, be made by consulting standard look-up tables that treat serum creatinine as an independent parameter along with, for example, BMI, age, and sex. In the methodology depicted schematically in
As described previously in connection with
Referring to
System 400 further includes an imaging system 470 which may be associated with pressuring mechanism 470 and may be, for example, a CT system, a Magnetic Resonance Imager (MRI) system, an ultrasound imaging system, or other imaging system as known in the art. Injector system 410 may be in communicative connection with imaging system 470 and one, a plurality, or all of the components of the injector system 410 and imaging system 470 may be integrated or incorporated into another or be separate components that are placed in communicative connection with each other and/or additional system components. One embodiment of distribution of the position of various elements of system 400 is illustrated in
GFR estimation equations and/or lookup tables can, for example, be programmed into CIN risk assessment algorithm or program within memory 460 of control system 430 of injector system 400. As represented by stages A and B in
As used herein with respect to an injection procedure, the term “protocol” refers generally to a group of parameters for a procedure (for example, an imaging procedure involving the injection of a contrast enhancement fluid or contrast medium) Injection parameter can, for example, include as flow rate, volume injected, injection duration, contrast agent concentration etc. that define, for example, the timing of, amount of, and/or the nature of fluid(s) to be delivered to a patient during an injection procedure. Such parameters can change over the course of the injection procedure. As used herein, the term “phase” refers generally to a group of parameters that define, for example, the timing of, amount of, and/or the nature of fluid(s) to be delivered to a patient during a period of time (or phase duration) that can be less than the total duration of the injection procedure. Thus, the parameters of a phase provide a description of the injection over a time instance corresponding to the time duration of the phase. An injection protocol for a particular injection procedure can, for example, be described as uniphasic (a single phase), biphasic (two phases) or multiphasic (two or more phases, but typically more than two phases). Multiphasic injections also include injections in which the parameters can change continuously over at least a portion of the injection procedure.
Scanner parameters that can be determined include, but are not limited to, the amount of radiation transmitted to the patient, power inputs (for example, voltage or current), timing (for example, scan start time, stop time, delay time and/or duration).
As illustrated in
After generation of injection parameters in the test injection phase, the injection is performed at stage C(b). GFR information can be extracted from a resultant time enhancement curve as set forth at stage C(c). At this point another CIN risk assessment C(d) can occur at least in part on the basis of GFR information extracted from the enhancement curve. At any point before, during, or after an injection/imaging procedure, non-imaging information regarding CIN risk can be obtained as described previously, for example, by measuring creatinine levels and/or B.U.N. and be input into the system either manually or electronically. In the risk of CIN is deemed to be unacceptable at stage C(d), the procedure can be stopped. If the risk of CIN is acceptable, a diagnostic injection protocol can be generated at stage C, considering the results of CIN risk assessment stage B and stage C(d).
In several embodiments of CIN risk assessment programs of the present invention, a “constrained protocol generation engine or system” is used. For example, in one possible implementation of such a constrained protocol generation engine or system, adaptive dilution of the contrast agent may be recommended. It is known that the osmolality of non-ionic X-Ray contrast is linearly related to the iodine concentration of the drug.
In several embodiments, an adaptation to the injection protocol's administration flow rate is determined by control system 430 of the injector system 400 to generate equivalent peak enhancement. The clinician can be alerted to the fact that a reduction in contrast enhancement may result by, for example, either clamping the injection volume or contrast concentration. The use of optimized contrast delivery systems is disclosed, for example, in Published International Patent Application Nos. WO 2006/055813, WO/2008/085421, WO/2008/082937, WO/2006/058280, PCT International Patent Application No. PCT/US2008/67982 and United States Application Publication Nos. US2008/0097197 and US2007/0255135, and can mitigate the image contrast enhancement reduction.
Once the contrast injection (stage D) is completed, a measurement of serum creatinine, GFR, B.U.N., or other functional assessment of renal capacity can, for example, be made to help in determining if the patient is likely to experience CIN complications. One parameter to assist the decision process is the analysis of time enhancement data generated via, for example, X-Ray, MR, or nuclear scanning (stage E in
Assuming the patient is at risk of developing CIN (determined at stage F of
Another technique to minimize the risk and incidence of CIN is to take measures to reduce the amount of contrast agent used during the imaging procedure. These methods include reducing blood flow, image analysis, and imaging control, or combinations thereof. All of these methods may depend on manual or automatic synchronization between the contrast injection system, such as dispensing device 250 in
A less invasive technique to reduce the amount of contrast agent injected uses image analysis techniques to allow for a minimal amount of contrast to be used. These methods include road-mapping that uses a maximum or peak image intensity hold or capture, image contrast enhancement, and dynamic subtraction techniques. Such a road-mapping system captures and holds the moments of peak enhancement and subtracts an un-enhanced image taken prior to the contrast agent injection. This technique allows for the non-enhanced structures to be subtracted from the image, and only the peak enhancement to be displayed. For all of these methods, the image analysis may be automated and/or synchronized with the injection so that the operation is transparent to the operator and no additional steps are required. For road mapping, the imaging system may be used to capture and hold the maximum contrast for a given pixel in the image. The pixels will move so that the vessel is “painted” by the slug of contrast as it is injected through, so that the entire vessel does not need to be filled at one time with the contrast agent. In addition, image stabilization techniques, as are common with hand held video cameras may be combined with the maximum intensity hold approach to help minimize artifacts due to organ and patient motion. The image capture and hold may be synchronized with the start of the injection, or synchronized with changes in image intensity in the region of interest or image intensity in vessels that are above some pre-determined threshold.
Image contrast enhancement techniques may also be used to help make lower levels of contrast agent more visible. For example, methods such as histogram equalization, adaptive histogram equalization, de-correlation stretching, or simple adaptive threshold adjustment such as top-hat filtering, or other image based filtering may be used to increase image contrast. In addition, dynamic subtraction techniques may be used to improve the dynamic range of the imaging, allowing for reduced use of contrast agent. For example, the image itself may be used as a template to show temporal increases in contrast over time which can be highlighted, rather than just the image contrast after filling. With this approach, the time-of-flight correlation of the enhancement is what is displayed. For all of these methods, the image enhancement may be synchronized with the start of the injection, or synchronized with changes in image intensity in the region of interest or image intensity in vessels that are above some pre-determined threshold.
Another technique to reduce the amount of contrast agent injected involves imaging control. For example, the intensity of the X-Ray source may be varied to match the concentration of the contrast agent used. For example, for higher concentrations of contrast agent, lower X-Ray intensity may be used. For lower concentrations of contrast agent, greater X-Ray intensity may be used. In the present invention, reduction of X-Ray intensity can be incorporated into the imaging protocol generation algorithm. Also, multiple energy X-Ray source imaging may be used to increase the sensitivity to iodine based contrast agents. Dual X-Ray energy sources with energies selected to use K-edge X-Ray absorption effects may be used to separate calcium and iodine absorption within the image. By switching X-Ray energy during imaging, image subtraction techniques may be used to enhance iodine contrast, allowing the use of lower amounts of imaging contrast agent or lower concentrations. In addition, this technique enhances removal of image artifacts from bone which are primarily composed of calcium. Further, the calcium may be also selectively enhanced, which may be advantageous for detecting calcium deposits in the cardiovascular system. The imaging system X-Ray intensity and selected source timing may be manually or automatically synchronized with the injection system. In addition, the imaging system settings for X-Ray source intensity may be set as a function of injection and patient parameters, including, but not limited to flow rate, volume, flow profile, patient weight, predicted vessel size, predicted vascular tree volume and/or size, and predicted or measured vessel blood flow rate.
As noted previously the standard of medical care to prevent as well as to treat CIN is “hydration therapy”. Hydration therapy techniques for treatment of CIN are known from United States Patent Application Publication Nos. 2006/0270971 and 2006/0253064 both to Gelfand et al. and which are incorporated herein by reference. The hydration delivery amount may be determined by a physician or other means, such as a standard or guideline. However, in accordance with this disclosure, the CIN risk assessment algorithm or program described previously within the context of
Systems 200 and 300 of
It is known in the medical field to employ a method for protecting a kidney by at least partially occluding at least one renal vein of a patient to reduce the blood flow to a kidney which concurrently increases the venous pressure of the renal vein. This methodology is described in United States Patent Application Publication No. 2004/0167415 to Gelfand et al. which is incorporated herein by reference for the disclosure relating to occlusion of a renal vein. It is further known in the medical field to prevent or mitigate contrast induced nephropathy effect by employing a by pass device which collects contrast-laden blood from the coronary sinus after contrast injection therein, and directs this blood to filtration apparatus. The filtration apparatus filters out the contrast solution and the filtered blood is returned to the patient's body. Such a methodology is described in U.S. Pat. No. 6,554,819 to Reich, the disclosure of which is incorporated herein by reference. Similar methodologies and additional apparatus for carrying out a collection and filtration methodology as described in the Reich patent are also known from the following United States documents, all incorporated herein in their entirety: U.S. Pat. No. 7,363,072 to Movahead which employs and occluding balloon catheter in the coronary vasculature; U.S. Pat. No. 7,163,520 to Bernard et al. which likewise includes the use of an occluding balloon catheter which further removal of contrast-laden blood to an external filtration apparatus; United States Patent Application Publication No. 2005/0256441 to Lotan et al. which includes the use of an occluding balloon catheter with a blood draining or removal capability; and United States Patent Application Publication No. 2006/0013772 to LeWinter et al. It is noted that the Gelfand publication referenced above does not provide for contrast removal from the blood entering the kidneys at the renal artery take-off point.
While methods are known, as evidenced by the foregoing documents, to prevent contrast media from reaching the kidneys such devices concentrate on removal of contrast media immediately downstream from the region of interest, typically at the coronary injection location (e.g., coronary sinus). These documents are not concerned with removal of the contrast media from the bloodstream or by neutralization in the bloodstream. Removal of contrast media may employ, in accordance with this disclosure, various means to extract the media from the bloodstream before it can reach the kidneys. These means differ in the location of removal as well as the method of removal. The location for contrast removal could be at any suitable point of the vasculature downstream of the region of interest of the imaging procedure up to directly proximal of the renal artery take-off within the abdominal aorta. Depending on the region of interest for a venous injection of contrast the removal process could occur in the right atrium or again at a location in the abdominal aorta before the renal artery take-off point.
Referring to
In use in an extracorporeal application, contrast removal apparatus 500 comprises an extraction device such as a catheter 506 that is connected to an extraction apparatus, such as a peristaltic pump, that actively aspirates contrast contaminated blood and channels it through a filtration (absorption, adsorption) component before returning the blood to the body. Suitable pump apparatus and filtration apparatus may be selected from the United States patents and publications incorporated by reference hereinabove. The aspiration catheter 506 may be placed proximal to the renal arteries, as illustrated, in the abdominal aorta, or in a special adaptation in one or both renal arteries simultaneously or alternately. The aspiration catheter 506 incorporates an aspiration lumen 508 and a perfusion lumen 510. The selectively placed aspiration catheter 506 can incorporate a third lumen (not shown) that allows inflation of an occlusion balloon 512 to isolate the renal blood flow. Such a third or inflation lumen is well-known in the catheter field.
As an alternative to the physical removal of contrast-containing blood and filtration thereof, it is further within the scope of this disclosure to neutralize contrast molecules in the bloodstream without removal physical removal of blood from the patient's body. Such a neutralization technique for blood flowing in the human body is disclosed generally in U.S. patent application Ser. No. 11/469,054 (published as United States Patent Application Publication No. 2008/0097339), incorporated herein in its entirety. Neutralization is achieved by chemically binding the contrast media molecules or by breaking them into non-pathogenic components. The neutralizing chemical may be exposed to the contrast contaminated blood on a coated device (as in United States Patent Application Publication No. 2008/0097339) that temporarily resides in the vasculature upstream from the kidneys. The coated surface preferentially attracts certain components of contrast molecules leaving non-nephroactive components in the bloodstream. In a further adaptation, the indwelling device eludes the chemicals necessary to break up or bind contrast molecules (again as broadly disclosed in United States Patent Application Publication No. 2008/0097339). Alternatively the mechanism of action can be of a catalytic nature where the treated surface is not depleted but rather triggers a chemical reaction of contrast with a second agent that is administered to the bloodstream. The chemicals can also be directly infused into the bloodstream at a location downstream from the area of interest for the imaging procedure.
While the embodiments of system, devices, and methods described hereinabove may be used to mitigate contrast-induced nephropathy occurring during or post a diagnostic and/or therapeutic procedure, those skilled in the art may make modifications and alterations to these embodiments without departing from the scope and spirit of the invention. Accordingly, the foregoing description is intended to be illustrative rather than restrictive.
The present application claims the benefit of U.S. Provisional Application Ser. No. 61/110,640 filed on Nov. 3, 2008, the contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3349713 | Fassbender | Oct 1967 | A |
3520295 | Kelly | Jul 1970 | A |
3523523 | Heinrich et al. | Aug 1970 | A |
3623474 | Heilman et al. | Nov 1971 | A |
3701345 | Heilman et al. | Oct 1972 | A |
3755655 | Senecal | Aug 1973 | A |
3793600 | Grosbard | Feb 1974 | A |
3812843 | Wootten et al. | May 1974 | A |
3817843 | Barrett | Jun 1974 | A |
3839708 | Bredesen et al. | Oct 1974 | A |
3888239 | Rubinstein | Jun 1975 | A |
3895220 | Nelson et al. | Jul 1975 | A |
3898983 | Elam | Aug 1975 | A |
3927955 | Spinosa et al. | Dec 1975 | A |
3941126 | Dietrich et al. | Mar 1976 | A |
3958103 | Oka et al. | May 1976 | A |
3968195 | Bishop | Jul 1976 | A |
3995381 | Manfred et al. | Dec 1976 | A |
4001549 | Corwin | Jan 1977 | A |
4006736 | Kranys et al. | Feb 1977 | A |
4038981 | LeFevre et al. | Aug 1977 | A |
4044757 | McWhorter et al. | Aug 1977 | A |
4090502 | Tajika | May 1978 | A |
4135247 | Gordon et al. | Jan 1979 | A |
4151845 | Clemens | May 1979 | A |
4187057 | Xanthopoulos | Feb 1980 | A |
4191183 | Mendelson | Mar 1980 | A |
4199000 | Edstrom | Apr 1980 | A |
4207871 | Jenkins | Jun 1980 | A |
4223675 | Williams | Sep 1980 | A |
4262824 | Hrynewycz | Apr 1981 | A |
4263916 | Brooks et al. | Apr 1981 | A |
4280494 | Cosgrove, Jr. et al. | Jul 1981 | A |
4284073 | Krause et al. | Aug 1981 | A |
4315247 | Germanton | Feb 1982 | A |
4319568 | Tregoning | Mar 1982 | A |
4340153 | Spivey | Jul 1982 | A |
4341153 | Bowser | Jul 1982 | A |
4392847 | Whitney et al. | Jul 1983 | A |
4392849 | Petre et al. | Jul 1983 | A |
4396385 | Kelly et al. | Aug 1983 | A |
4402310 | Kimura | Sep 1983 | A |
4409966 | Lambrecht et al. | Oct 1983 | A |
4434820 | Glass | Mar 1984 | A |
4434822 | Bellamy et al. | Mar 1984 | A |
4444198 | Petre | Apr 1984 | A |
4447230 | Gula et al. | May 1984 | A |
4448200 | Brooks et al. | May 1984 | A |
4474476 | Thomsen | Oct 1984 | A |
4477923 | Baumann et al. | Oct 1984 | A |
4479760 | Bilstad et al. | Oct 1984 | A |
4479761 | Bilstad et al. | Oct 1984 | A |
4479762 | Bilstad et al. | Oct 1984 | A |
4504908 | Riederer et al. | Mar 1985 | A |
4509526 | Barnes et al. | Apr 1985 | A |
4512764 | Wunsch | Apr 1985 | A |
4542459 | Riederer | Sep 1985 | A |
4544949 | Kurihara | Oct 1985 | A |
4551133 | Zegers de Beyl et al. | Nov 1985 | A |
4552130 | Kinoshita | Nov 1985 | A |
4559036 | Wunsch | Dec 1985 | A |
4563175 | LaFond | Jan 1986 | A |
4578802 | Itoh | Mar 1986 | A |
4585009 | Barker et al. | Apr 1986 | A |
4585941 | Bergner | Apr 1986 | A |
4610670 | Spencer | Sep 1986 | A |
4610790 | Reti et al. | Sep 1986 | A |
4611340 | Okazaki | Sep 1986 | A |
4612572 | Komatsu et al. | Sep 1986 | A |
4625494 | Iwatschenko et al. | Dec 1986 | A |
4626144 | Berner | Dec 1986 | A |
4633307 | Honda | Dec 1986 | A |
4634426 | Kamen | Jan 1987 | A |
4636144 | Abe et al. | Jan 1987 | A |
4655197 | Atkinson | Apr 1987 | A |
4662906 | Matkovich et al. | May 1987 | A |
4672651 | Horiba et al. | Jun 1987 | A |
4676776 | Howson | Jun 1987 | A |
4682170 | Kubota et al. | Jul 1987 | A |
4689670 | Okazaki | Aug 1987 | A |
4710166 | Thompson et al. | Dec 1987 | A |
4723261 | Janssen et al. | Feb 1988 | A |
4750643 | Wortrich | Jun 1988 | A |
4754786 | Roberts | Jul 1988 | A |
4781687 | Wall | Nov 1988 | A |
4783273 | Knutsson et al. | Nov 1988 | A |
4789014 | DiGianfilippo et al. | Dec 1988 | A |
4793357 | Lindstrom | Dec 1988 | A |
4795429 | Feldstein | Jan 1989 | A |
4798590 | O'Leary et al. | Jan 1989 | A |
4804454 | Asakura et al. | Feb 1989 | A |
4823833 | Hogan et al. | Apr 1989 | A |
4835521 | Andrejasich et al. | May 1989 | A |
4836187 | Iwakoshi et al. | Jun 1989 | A |
4838856 | Mulreany et al. | Jun 1989 | A |
4840620 | Kobayashi et al. | Jun 1989 | A |
4844052 | Iwakoshi et al. | Jul 1989 | A |
4853521 | Claeys et al. | Aug 1989 | A |
4854301 | Nakajima | Aug 1989 | A |
4854324 | Hirschman et al. | Aug 1989 | A |
4857056 | Talonn | Aug 1989 | A |
4874359 | White et al. | Oct 1989 | A |
4879880 | Harrison | Nov 1989 | A |
4880014 | Zarowitz et al. | Nov 1989 | A |
4887208 | Schneider et al. | Dec 1989 | A |
4887554 | Whitford | Dec 1989 | A |
4901731 | Millar | Feb 1990 | A |
4903705 | Imamura et al. | Feb 1990 | A |
4913154 | Ermert et al. | Apr 1990 | A |
4922916 | Ermert et al. | May 1990 | A |
4925444 | Orkin et al. | May 1990 | A |
4929818 | Bradbury et al. | May 1990 | A |
4935005 | Haines | Jun 1990 | A |
4936832 | Vaillancourt | Jun 1990 | A |
4943279 | Samiotes et al. | Jul 1990 | A |
4943779 | Pedersen et al. | Jul 1990 | A |
4943987 | Asahina et al. | Jul 1990 | A |
4946256 | Woodruff | Aug 1990 | A |
4946439 | Eggers | Aug 1990 | A |
4947412 | Mattson | Aug 1990 | A |
4950245 | Brown et al. | Aug 1990 | A |
4954129 | Giuliani et al. | Sep 1990 | A |
4965726 | Heuscher et al. | Oct 1990 | A |
4966579 | Polaschegg | Oct 1990 | A |
4976687 | Martin | Dec 1990 | A |
4978335 | Arthur, III | Dec 1990 | A |
4981467 | Bobo, Jr. et al. | Jan 1991 | A |
4995064 | Wilson et al. | Feb 1991 | A |
5002055 | Merki et al. | Mar 1991 | A |
5004472 | Wallace | Apr 1991 | A |
5009654 | Minshall et al. | Apr 1991 | A |
5010473 | Jacobs | Apr 1991 | A |
5013173 | Shiraishi | May 1991 | A |
5018173 | Komai et al. | May 1991 | A |
5032112 | Fairchild et al. | Jul 1991 | A |
5034987 | Fujimoto et al. | Jul 1991 | A |
5040537 | Katakura | Aug 1991 | A |
5053002 | Barlow | Oct 1991 | A |
5054044 | Audon et al. | Oct 1991 | A |
5056568 | DiGianfilippo et al. | Oct 1991 | A |
5059173 | Sacco | Oct 1991 | A |
5061243 | Winchell et al. | Oct 1991 | A |
5069662 | Bodden | Dec 1991 | A |
5078683 | Sancoff et al. | Jan 1992 | A |
5088981 | Howson et al. | Feb 1992 | A |
5100380 | Epstein et al. | Mar 1992 | A |
5104374 | Bishko et al. | Apr 1992 | A |
5104387 | Pokorney et al. | Apr 1992 | A |
5108365 | Woods, Jr. | Apr 1992 | A |
5111492 | Klausz | May 1992 | A |
5113905 | Pruitt et al. | May 1992 | A |
5123056 | Wilson | Jun 1992 | A |
5123121 | Broersma | Jun 1992 | A |
5125018 | Asahina | Jun 1992 | A |
5128121 | Berg et al. | Jul 1992 | A |
5133336 | Savitt et al. | Jul 1992 | A |
5135000 | Akselrod et al. | Aug 1992 | A |
5150292 | Hoffmann et al. | Sep 1992 | A |
5166961 | Brunnett et al. | Nov 1992 | A |
5180895 | Briggs et al. | Jan 1993 | A |
5180896 | Gibby et al. | Jan 1993 | A |
5190744 | Rocklage et al. | Mar 1993 | A |
5191878 | Iida et al. | Mar 1993 | A |
5196007 | Ellman et al. | Mar 1993 | A |
5199604 | Palmer et al. | Apr 1993 | A |
5207642 | Orkin et al. | May 1993 | A |
5215095 | Macvicar et al. | Jun 1993 | A |
5228070 | Mattson | Jul 1993 | A |
5230614 | Zanger et al. | Jul 1993 | A |
5242390 | Goldrath | Sep 1993 | A |
5249122 | Stritzke | Sep 1993 | A |
5249579 | Hobbs et al. | Oct 1993 | A |
5262946 | Heuscher | Nov 1993 | A |
5267174 | Kaufman et al. | Nov 1993 | A |
5269756 | Dryden | Dec 1993 | A |
5273537 | Haskvitz et al. | Dec 1993 | A |
5274218 | Urata et al. | Dec 1993 | A |
5276174 | Plotkin et al. | Jan 1994 | A |
5276614 | Heuscher | Jan 1994 | A |
5286252 | Tuttle et al. | Feb 1994 | A |
5287273 | Kupfer et al. | Feb 1994 | A |
5300031 | Neer et al. | Apr 1994 | A |
5301656 | Negoro et al. | Apr 1994 | A |
5301672 | Kalender | Apr 1994 | A |
5304126 | Epstein et al. | Apr 1994 | A |
5310997 | Roach et al. | May 1994 | A |
5311568 | McKee, Jr. et al. | May 1994 | A |
5313992 | Grabenkort | May 1994 | A |
5317506 | Coutre et al. | May 1994 | A |
5328463 | Barton et al. | Jul 1994 | A |
5329459 | Kaufman et al. | Jul 1994 | A |
5339799 | Kami et al. | Aug 1994 | A |
5349625 | Born et al. | Sep 1994 | A |
5349635 | Scott | Sep 1994 | A |
5352979 | Conturo | Oct 1994 | A |
5354273 | Hagen | Oct 1994 | A |
5361761 | Van Lysel et al. | Nov 1994 | A |
5362948 | Morimoto | Nov 1994 | A |
5368562 | Blomquist et al. | Nov 1994 | A |
5368567 | Lee | Nov 1994 | A |
5368570 | Thompson et al. | Nov 1994 | A |
5373231 | Boll et al. | Dec 1994 | A |
5376070 | Purvis et al. | Dec 1994 | A |
5378231 | Johnson et al. | Jan 1995 | A |
5382232 | Hague et al. | Jan 1995 | A |
5383058 | Yonezawa | Jan 1995 | A |
5383231 | Yamagishi | Jan 1995 | A |
5383858 | Reilly et al. | Jan 1995 | A |
5385540 | Abbott et al. | Jan 1995 | A |
5388139 | Beland | Feb 1995 | A |
5392849 | Matsunaga et al. | Feb 1995 | A |
5400792 | Hoebel et al. | Mar 1995 | A |
5417213 | Prince | May 1995 | A |
5417219 | Takamizawa et al. | May 1995 | A |
5431627 | Pastrone et al. | Jul 1995 | A |
5433704 | Ross et al. | Jul 1995 | A |
5445621 | Poli et al. | Aug 1995 | A |
5450847 | Kampfe et al. | Sep 1995 | A |
5453639 | Cronin et al. | Sep 1995 | A |
5456255 | Abe et al. | Oct 1995 | A |
5458128 | Polanyi et al. | Oct 1995 | A |
5459769 | Brown | Oct 1995 | A |
5460609 | O'Donnell | Oct 1995 | A |
5464391 | DeVale | Nov 1995 | A |
5468240 | Gentelia et al. | Nov 1995 | A |
5469769 | Sawada et al. | Nov 1995 | A |
5469849 | Sasaki et al. | Nov 1995 | A |
5472403 | Cornacchia et al. | Dec 1995 | A |
5474683 | Bryant et al. | Dec 1995 | A |
5485831 | Holdsworth et al. | Jan 1996 | A |
5489265 | Montalvo et al. | Feb 1996 | A |
5494036 | Uber, III et al. | Feb 1996 | A |
5494822 | Sadri | Feb 1996 | A |
5496273 | Pastrone et al. | Mar 1996 | A |
5507412 | Ebert et al. | Apr 1996 | A |
5515851 | Goldstein | May 1996 | A |
5522798 | Johnson et al. | Jun 1996 | A |
5531679 | Schulman et al. | Jul 1996 | A |
5531697 | Olsen et al. | Jul 1996 | A |
5533978 | Teirstein | Jul 1996 | A |
5544215 | Shroy, Jr. et al. | Aug 1996 | A |
5547470 | Johnson et al. | Aug 1996 | A |
5552130 | Kraus et al. | Sep 1996 | A |
5553619 | Prince | Sep 1996 | A |
5560317 | Bunyan et al. | Oct 1996 | A |
5566092 | Wang et al. | Oct 1996 | A |
5569181 | Heilman et al. | Oct 1996 | A |
5569208 | Woelpper et al. | Oct 1996 | A |
5573515 | Wilson et al. | Nov 1996 | A |
5579767 | Prince | Dec 1996 | A |
5583902 | Bae | Dec 1996 | A |
5590654 | Prince | Jan 1997 | A |
5592940 | Kampfe et al. | Jan 1997 | A |
5601086 | Pretlow, III et al. | Feb 1997 | A |
5611344 | Bernstein et al. | Mar 1997 | A |
5616124 | Hague et al. | Apr 1997 | A |
5681285 | Ford et al. | Oct 1997 | A |
5687208 | Bae et al. | Nov 1997 | A |
5687708 | Farnsworth et al. | Nov 1997 | A |
5713358 | Mistretta et al. | Feb 1998 | A |
5724976 | Mine et al. | Mar 1998 | A |
5739508 | Uber, III | Apr 1998 | A |
5743266 | Levene et al. | Apr 1998 | A |
5768405 | Makram-Ebeid | Jun 1998 | A |
5796862 | Pawlicki et al. | Aug 1998 | A |
5799649 | Prince | Sep 1998 | A |
5800397 | Wilson et al. | Sep 1998 | A |
5806519 | Evans, III et al. | Sep 1998 | A |
5808203 | Nolan, Jr. et al. | Sep 1998 | A |
5827219 | Uber, III et al. | Oct 1998 | A |
5827504 | Yan et al. | Oct 1998 | A |
5840026 | Uber, III et al. | Nov 1998 | A |
5843037 | Uber, III | Dec 1998 | A |
5846517 | Unger | Dec 1998 | A |
5865744 | Lemelson | Feb 1999 | A |
5881124 | Giger et al. | Mar 1999 | A |
5882343 | Wilson et al. | Mar 1999 | A |
5885216 | Evans, III et al. | Mar 1999 | A |
5902054 | Coudray | May 1999 | A |
5903454 | Hoffberg et al. | May 1999 | A |
5916165 | Duchon et al. | Jun 1999 | A |
5920054 | Uber, III | Jul 1999 | A |
5987347 | Khoury et al. | Nov 1999 | A |
5988587 | Duchon et al. | Nov 1999 | A |
6046225 | Maddock | Apr 2000 | A |
6055985 | Bae et al. | May 2000 | A |
6056902 | Hettinga | May 2000 | A |
6063052 | Uber, III et al. | May 2000 | A |
6073042 | Simonetti | Jun 2000 | A |
6099502 | Duchon et al. | Aug 2000 | A |
6149627 | Uber, III | Nov 2000 | A |
6186146 | Glickman | Feb 2001 | B1 |
6201889 | Vannah | Mar 2001 | B1 |
6221045 | Duchon et al. | Apr 2001 | B1 |
6236706 | Hsieh | May 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6306117 | Uber, III | Oct 2001 | B1 |
6313131 | Lawyer | Nov 2001 | B1 |
6317623 | Griffiths et al. | Nov 2001 | B1 |
6344030 | Duchon et al. | Feb 2002 | B1 |
6381486 | Mistretta et al. | Apr 2002 | B1 |
6385483 | Uber, III et al. | May 2002 | B1 |
6387098 | Cole et al. | May 2002 | B1 |
6397093 | Aldrich | May 2002 | B1 |
6397097 | Requardt | May 2002 | B1 |
6397098 | Uber, III et al. | May 2002 | B1 |
6402697 | Calkins et al. | Jun 2002 | B1 |
6423719 | Lawyer | Jul 2002 | B1 |
6442418 | Evans, III et al. | Aug 2002 | B1 |
6470889 | Bae et al. | Oct 2002 | B1 |
6471674 | Emig et al. | Oct 2002 | B1 |
6478735 | Pope et al. | Nov 2002 | B1 |
6503226 | Martinell Gisper-Sauch et al. | Jan 2003 | B1 |
6520930 | Critchlow et al. | Feb 2003 | B2 |
6527718 | Connor et al. | Mar 2003 | B1 |
6554819 | Reich | Apr 2003 | B2 |
6556695 | Packer et al. | Apr 2003 | B1 |
6572851 | Muramatsu et al. | Jun 2003 | B2 |
6574496 | Golman et al. | Jun 2003 | B1 |
6575930 | Trombley, III et al. | Jun 2003 | B1 |
6597938 | Liu | Jul 2003 | B2 |
6626862 | Duchon et al. | Sep 2003 | B1 |
6635030 | Bae et al. | Oct 2003 | B1 |
6643537 | Zatezalo et al. | Nov 2003 | B1 |
6652489 | Trocki et al. | Nov 2003 | B2 |
6656157 | Duchon et al. | Dec 2003 | B1 |
6673033 | Sciulli et al. | Jan 2004 | B1 |
6685733 | Dae et al. | Feb 2004 | B1 |
6691047 | Fredericks | Feb 2004 | B1 |
6699219 | Emig et al. | Mar 2004 | B2 |
6731971 | Evans, III et al. | May 2004 | B2 |
6754521 | Prince | Jun 2004 | B2 |
6775764 | Batcher | Aug 2004 | B1 |
6776764 | Pinsky | Aug 2004 | B2 |
6866653 | Bae | Mar 2005 | B2 |
6866654 | Callan et al. | Mar 2005 | B2 |
6876720 | Tsuyuki | Apr 2005 | B2 |
6879853 | Meaney et al. | Apr 2005 | B2 |
6887214 | Levin et al. | May 2005 | B1 |
6889074 | Uber, III et al. | May 2005 | B2 |
6901283 | Evans, III et al. | May 2005 | B2 |
6970735 | Uber, III et al. | Nov 2005 | B2 |
6972001 | Emig et al. | Dec 2005 | B2 |
6983590 | Roelle et al. | Jan 2006 | B2 |
6994700 | Elkins et al. | Feb 2006 | B2 |
7094216 | Trombley, III et al. | Aug 2006 | B2 |
7104981 | Elkins et al. | Sep 2006 | B2 |
7108981 | Aoki et al. | Sep 2006 | B2 |
7163520 | Bernard et al. | Jan 2007 | B2 |
7266227 | Pedain et al. | Sep 2007 | B2 |
7267666 | Duchon et al. | Sep 2007 | B1 |
7267667 | Houde et al. | Sep 2007 | B2 |
7292720 | Horger et al. | Nov 2007 | B2 |
7313431 | Uber, III et al. | Dec 2007 | B2 |
7326186 | Trombley, III et al. | Feb 2008 | B2 |
7363072 | Movahed | Apr 2008 | B2 |
8428694 | Kalafut et al. | Apr 2013 | B2 |
8486017 | Masuda et al. | Jul 2013 | B2 |
20010027265 | Prince | Oct 2001 | A1 |
20010056233 | Uber et al. | Dec 2001 | A1 |
20020010551 | Wang et al. | Jan 2002 | A1 |
20020026148 | Uber | Feb 2002 | A1 |
20020091349 | Reich | Jul 2002 | A1 |
20020099254 | Movahed | Jul 2002 | A1 |
20020123702 | Cho | Sep 2002 | A1 |
20020151854 | Duchon et al. | Oct 2002 | A1 |
20020165445 | Uber et al. | Nov 2002 | A1 |
20030015078 | Taylor | Jan 2003 | A1 |
20030036694 | Liu | Feb 2003 | A1 |
20030050556 | Uber et al. | Mar 2003 | A1 |
20030120171 | Diamantopoulos et al. | Jun 2003 | A1 |
20030135111 | Meaney et al. | Jul 2003 | A1 |
20030195462 | Mann et al. | Oct 2003 | A1 |
20030212364 | Mann et al. | Nov 2003 | A1 |
20030216683 | Shekalim | Nov 2003 | A1 |
20040008028 | Horger et al. | Jan 2004 | A1 |
20040010229 | Houde et al. | Jan 2004 | A1 |
20040011740 | Bernard et al. | Jan 2004 | A1 |
20040015078 | Evans et al. | Jan 2004 | A1 |
20040025452 | McLean | Feb 2004 | A1 |
20040044302 | Bernard et al. | Mar 2004 | A1 |
20040064040 | Masuda et al. | Apr 2004 | A1 |
20040064041 | Lazzaro et al. | Apr 2004 | A1 |
20040097806 | Hunter et al. | May 2004 | A1 |
20040097875 | Bae | May 2004 | A1 |
20040162484 | Nemoto | Aug 2004 | A1 |
20040163655 | Gelfand et al. | Aug 2004 | A1 |
20040167415 | Gelfand et al. | Aug 2004 | A1 |
20040215144 | Duchon et al. | Oct 2004 | A1 |
20050004517 | Courtney et al. | Jan 2005 | A1 |
20050053551 | Badiola | Mar 2005 | A1 |
20050112178 | Stern | May 2005 | A1 |
20050256441 | Lotan et al. | Nov 2005 | A1 |
20060013772 | LeWinter et al. | Jan 2006 | A1 |
20060052764 | Gelfand et al. | Mar 2006 | A1 |
20060074294 | Williams et al. | Apr 2006 | A1 |
20060079843 | Brooks et al. | Apr 2006 | A1 |
20060096388 | Gysling et al. | May 2006 | A1 |
20060184099 | Hong | Aug 2006 | A1 |
20060211989 | Rhinehart et al. | Sep 2006 | A1 |
20060235353 | Gelfand et al. | Oct 2006 | A1 |
20060235474 | Demarais | Oct 2006 | A1 |
20060239918 | Klotz et al. | Oct 2006 | A1 |
20060253064 | Gelfand et al. | Nov 2006 | A1 |
20060253353 | Weisberger | Nov 2006 | A1 |
20060270971 | Gelfand et al. | Nov 2006 | A1 |
20060271111 | Demarais et al. | Nov 2006 | A1 |
20070016016 | Haras et al. | Jan 2007 | A1 |
20070066892 | Haras et al. | Mar 2007 | A1 |
20070078330 | Haras et al. | Apr 2007 | A1 |
20070213662 | Kalafut et al. | Sep 2007 | A1 |
20070225601 | Uber et al. | Sep 2007 | A1 |
20070255135 | Kalafut et al. | Nov 2007 | A1 |
20070282199 | Uber et al. | Dec 2007 | A1 |
20070282263 | Kalafut et al. | Dec 2007 | A1 |
20080009717 | Herrmann et al. | Jan 2008 | A1 |
20080045834 | Uber et al. | Feb 2008 | A1 |
20080046286 | Halsted | Feb 2008 | A1 |
20080097197 | Kalafut et al. | Apr 2008 | A1 |
20080097339 | Ranchod et al. | Apr 2008 | A1 |
20080101678 | Suliga et al. | May 2008 | A1 |
20080119715 | Gonzalez Molezzi et al. | May 2008 | A1 |
20130211247 | Kalafut | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
2045070 | Feb 1992 | CA |
2077712 | Dec 1993 | CA |
2234050 | Apr 1997 | CA |
1343107 | Apr 2002 | CN |
3726452 | Feb 1989 | DE |
3726452 | Feb 1989 | DE |
4121568 | Oct 1992 | DE |
4426387 | Aug 1995 | DE |
19702896 | Jul 1997 | DE |
19647701 | May 1998 | DE |
69530035 | Sep 2003 | DE |
0121216 | Oct 1984 | EP |
0129910 | Jan 1985 | EP |
0189491 | Aug 1986 | EP |
0189491 | Aug 1986 | EP |
0192786 | Sep 1986 | EP |
0245160 | Nov 1987 | EP |
0337924 | Oct 1989 | EP |
0343501 | Nov 1989 | EP |
0364966 | Apr 1990 | EP |
0365301 | Apr 1990 | EP |
0372152 | Jun 1990 | EP |
0378896 | Jul 1990 | EP |
0429191 | May 1991 | EP |
0471455 | Feb 1992 | EP |
0475563 | Mar 1992 | EP |
0595474 | May 1994 | EP |
0600448 | Jun 1994 | EP |
0619122 | Oct 1994 | EP |
0439711 | May 1995 | EP |
0650738 | May 1995 | EP |
0650739 | May 1995 | EP |
0702966 | Mar 1996 | EP |
0869738 | Oct 1998 | EP |
1262206 | Dec 2002 | EP |
2561949 | Oct 1985 | FR |
2561949 | Oct 1985 | FR |
201800 | Aug 1923 | GB |
2252656 | Aug 1992 | GB |
2328745 | Mar 1999 | GB |
58015842 | Jan 1983 | JP |
60253197 | Dec 1985 | JP |
62216199 | Sep 1987 | JP |
63290547 | Nov 1988 | JP |
1207038 | Aug 1989 | JP |
2224647 | Sep 1990 | JP |
2234747 | Sep 1990 | JP |
3055040 | Mar 1991 | JP |
4115677 | Apr 1992 | JP |
5084296 | Apr 1993 | JP |
7178169 | Jul 1995 | JP |
10211198 | Aug 1998 | JP |
2000506398 | May 2000 | JP |
2002-507438 | Mar 2002 | JP |
2003-102724 | Apr 2003 | JP |
2003-116843 | Apr 2003 | JP |
2003-210456 | Jul 2003 | JP |
2003-225234 | Aug 2003 | JP |
2004-519304 | Jul 2004 | JP |
2004298550 | Oct 2004 | JP |
8001754 | Sep 1980 | WO |
8500292 | Jan 1985 | WO |
8803815 | Jun 1988 | WO |
9114232 | Sep 1991 | WO |
9114233 | Sep 1991 | WO |
9315658 | Aug 1993 | WO |
9325141 | Dec 1993 | WO |
9415664 | Jul 1994 | WO |
9632975 | Oct 1996 | WO |
9712550 | Apr 1997 | WO |
9820919 | May 1998 | WO |
9924095 | May 1999 | WO |
0061216 | Oct 2000 | WO |
0064353 | Nov 2000 | WO |
03015633 | Feb 2003 | WO |
2004012787 | Feb 2004 | WO |
2005004038 | Jan 2005 | WO |
2005016165 | Feb 2005 | WO |
2006042093 | Apr 2006 | WO |
2006055813 | May 2006 | WO |
WO2006055813 | May 2006 | WO |
WO2006058280 | Jun 2006 | WO |
2007143682 | Dec 2007 | WO |
WO2007143682 | Dec 2007 | WO |
2008011401 | Jan 2008 | WO |
2008082937 | Jul 2008 | WO |
2008085421 | Jul 2008 | WO |
WO2008082937 | Jul 2008 | WO |
WO2008085421 | Jul 2008 | WO |
2009012023 | Jan 2009 | WO |
WO2009012023 | Jan 2009 | WO |
Entry |
---|
Sung, et al. “Urine Attenuation Ratio: A Mew CT Indicator or Renal Artery Stenosis”, AJR 2006; 187:532-540. |
Stevens, et al. “A Prospective Randomized Trial of Prevention Measures in Patients at High Risk for Contrast Nephropathy”, J of the ACC. vol. 33. No. 2, 1999. pp. 403-411. |
Hackstein, et al. “Glomerular Filtration Rate Measured by Using Triphasic Helical CT with a Two-Point Patlak Plot Technique”, Radiology, Jan. 2004; 230(1):221-6. |
Bae, et al.“Aortic and Hepatic Contrast Medium Enhancement at CT—Part I, Prediction with a Computer Model”, Radiology 1998;207:647-655. |
Jo, etal. “Renal Toxicity Evaluation and Comparison between Visipaque (Iodixanol) and Dexabrix (Ioxaglate) in patients with renal insufficiency undergoing coronary angiography”. J of the ACC. V48, No. 5, 2006. pp. 924-930. |
S.Goldfarb. “Contrast-induced nephropathy: Risk factors, pathophysiology, and prevention”. Applied Radiology (online supplement). Aug. 2005. pp. 5-16. |
Buckley, et al. Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging. Nov. 2006;24(5):1117-23. |
McCullough, P.A., et al., Contrast-Induced Nephropathy (CIN) Consensus Working Panel: Executive Summary. Rev Cardiovasc Med, 2006. 7(4): p. 177-97. |
Renalguard, PLC Medical Systems, Inc. News Release. (May 12, 2008). |
EZ Chem Brochure, E-Z-EM, Inc. (Jul. 2007). |
iSTAT 1 System Manual, Abbott Laboratories (Rev. Aug. 14, 2006). |
Non-Final Office Action mailed Dec. 12, 2014, in U.S. Appl. No. 13/186,983. |
European Search Report and Opinion mailed on Nov. 21, 2013 from EP No. 13004902.6. |
Non-Final Office Action mailed Apr. 23, 2014, in U.S. Appl. No. 12/519,040, John F. Kalafut et al., filed Dec. 29, 2006. |
Garrett, J. S., et al., “Measurement of cardiac output by cine computed tomography,” The American Journal of Cardiology, vol. 56, Issue 10, pp. 657-661, 1985. |
Gembicki, F.W., “Vector Optimization for Control with Performance and Parameter Sensitivity Indices,” PhD Thesis, Case Western Reserve University, 1974. |
Gentilini A., et al. “A new paradigm for the closed-loop intraoperative administration of analgesics in humans”, IEEE Transactions on Biomedical Engineering, vol. 49, Issue 4, pp. 289-299, 2002. |
Gerlowski L.E. and Jain R.K., “Physiologically Based Pharmacokinetic Modeling: Principles and Applications,” Journal of Pharmaceutical Sciences, vol. 72, pp. 1104-1125, Oct. 1983. |
Goss, J. E., et al., “Power injection of contrast media during percutaneous transluminal coronary artery angioplasty,” Catheterization and Cardiovascular Diagnosis, vol. 16, pp. 195-198 1989. |
Grant, S.C.D. et al., “Reduction of Radiation Exposure to the Cardiologist during Coronary Angiography by the Use of a Remotely Controlled Mechanical Pump for Injection of Contrast Medium,” Catheterization and Cardiovascular Diagnosis, vol. 25, Issue 2, pp. 107-109, Feb. 1992. |
Guyton, A.C., “Circulatory Physiology: cardiac output and regulation,” Saunders, Philadelphia, pp. 173, ISBN: 07216436004, 1985. |
Hansen, P.C, Regularization tools: a MATLAB package for analysis and solution of discrete ill-posed problems, Numerical Algorithms, vol. 6, Issue 1, pp. 35, 1994. |
Hansen, P.C., “The truncated SVD as a method for regularization,” BIT Numerical Mathematics, vol. 27, Issue 4, pp. 534-55, 1987. |
Hansen, P.C., et al., “An adaptive pruning algorithm for the discrete L-curve criterion,” Journal of Computational and Applied Mathematics, vol. 198, Issue 2, pp. 9, 2007. |
Harris P., H. D. “The Human Pulmonary Circulation,” Edinburgh, Churchill Livingstone, (Appendix I), 1986. |
Hayes, M.H., “Statistical Digital Signal Processing and Modeling,” New York, New York: Wiley and Sons, pp. 154-177, 1996. |
Heiken, J.P. et al., “Dynamic Contrast-Enhanced CT of the Liver: Comparison of Contrast Medium Injection Rates and Uniphasic and Biphasic Injection Protocols,” Radiology, vol. 187, No. 2, May 1993, pp. 327-331. |
International Preliminary Report on Patentability, International Search Report, and Written Opinion for International Patent Application No. PCT/US00/10842 issued May 22, 2001. |
International Preliminary Report on Patentability International Search Report, and Written Opinion for International Patent Application No. PCT/US2007/026194 issued Jun. 30, 2009. |
Non-Final Office Action mailed Jul. 15, 2014 in related U.S. Appl. No. 11/691,823. |
Non-Final Office Action mailed Jul. 14, 2014 in related U.S. Appl. No. 12/519,213. |
Sablayrolles, J-L, “Cardiac CT: Experience from Daily Practice,” Advance CT, A GE Healthcare Publication, Aug. 2004. |
Non-Final Office Action mailed Dec. 12, 2008, in U.S. Appl. No. 11/691,823, John F. Kalafut et al., filed Mar. 27, 2007. |
Rosen, B.R. et al., “Perfusion Imaging with NMR Contrast Agents,” Magentic Resonance in Medicine, vol. 14, No. 2, pp. 249-265, May 1, 1990. |
PHYSBE a classic model of the human circulatory system available from The Math Works, Inc. of Natick, Massachusetts, accessed at www.mathworks.com/products/demos/simulink/physbe, May 31, 2005, pp. 11. |
Østergaard, L., et al., “High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part 1: Mathematical approach and statistical analysis,” Magnetic Resonance in Medicine, vol. 36, Issue 5, pp. 715-725, 1996. |
Østergaard, L., et al., “High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results,” Magn Reson Med, vol. 36, Issue 5, pp. 726-736, 1996. |
Non-Final Office Action mailed Feb. 15, 2012, in U.S. Appl. No. 12/519,040, John F. Kalafut, filed Jun. 12, 2009. |
Parker, K.J. and Tuthill T.A., “A Particulate Contrast Agent With Potential for Ultrasound Imaging of Liver,” Ultrasound in Medicine & Biology vol. 13, Issue 9, pp. 555-566, Sep. 1987. |
Non-Final office Action mailed Mar. 12, 2013, in U.S. Appl. No. 13/655,525, John F. Kalafut et al., filed Oct. 19, 2012. |
Non-Final Office Action mailed Nov. 5, 2012, in U.S. Appl. No. 13/186,983, John F. Kalafut et al., filed Jul. 20, 2011. |
Non-Final Office Action mailed Oct. 18, 2012, in U.S. Appl. No. 12/519,213, John F. Kalafut et al., filed Jun. 15, 2009. |
Supplementary European Search Report mailed Apr. 15, 2011 in European Patent Application No. 07867951.1. |
Supplementary European Search Report mailed Aug. 19, 2010 in European Patent Application No. 05852259.0. |
Supplementary European Search Report mailed Dec. 9, 1998 in European Patent Application No. EP 96936079.0. |
Supplementary European Search Report mailed Jul. 23, 2013 in European Patent Application No. 08771789.8. |
Tyco Healthcare Group LP v. MEDRAD. Inc. Complaint, Case No. 1:06-cv-00763, Nov. 8, 2006. |
Wada, D.R. and Ward, D.S., “Open loop control of multiple drug effects in anesthesia”, IEEE Transactions on Biomedical Engineering, vol. 42, Issue 7, pp. 666-677, 1995. |
Wada, D.R. and Ward, D.S., “The hybrid model: a new pharmacokinetic model for computer-controlled infusion pumps”, IEEE Transactions on Biomedical Engineering, vol. 41, Issue 2, pp. 134-142, 1994. |
Yamashita, Y. et al., “Abdominal Helical CT: Evaluation of Optimal Doses of Intravenous Contrast Material—A Prospective Randomized Study,” Radiology, vol. 216, Issue 3, pp. 718-723, Sep. 1, 2000. |
International Preliminary Report on Patentability International Search Report, and Written Opinion for International Patent Application No. PCT/US2008/067982 issued Jan. 19, 2010. |
International Preliminary Report on Patentability International Search Report, and Written Opinion for International Patent Application No. PCT/US2009/047168 issued Jan. 5, 2011. |
International Preliminary Report on Patentability, International Search Report, and Written Opinion for International Patent Application No. PCT/US2011/041802 issued Dec. 28, 2012. |
International Preliminary Report on Patentability, International Search Report, and Wrtitten Opinion for International Patent Application No. PCT/US2005/042891 issued May 30, 2007. |
International Preliminary Report on Patentability for International Application No. PCT/EP2005/007791, International Bureau of WIPO, Geneva, Switzerland, issued on May 22, 2007. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2005/041913 issued May 22, 2007. |
Non-Final Office Action mailed Apr. 26, 2013, in U.S. Appl. No. 12/519,040, John F. Kalafut, filed Jun. 12, 2009. |
International Search Report for International Patent Application No. PCT/US96/15680 mailed Jan. 28, 1997. |
Ireland, M.A., et al., “Safety and Convenience of a Mechanical Injector Pump for Coronary Angiography,” Catheterization and Cardiovascular Diagnosis, vol. 16, Issue 3, pp. 199-201, 1989. |
Jacobs, J.R., “Algorithm for optimal linear model-based control with application to pharmacokinetic model-driven drug delivery,” IEEE Transactions on Biomedical Engineering, vol. 37, Issue I, pp. 107-109, 1990. |
Koh, T.S., et al., “Assessment of Perfusion by Dynamic Contrast-Enhanced Imaging Using a Deconvolution Approach Based on Regression and Singular Value Decomposition,” IEEE Transactions on Medical Imaging, vol. 23, Issue 12, pp. 1532-1542, Dec. 2004. |
Korosec, F.R., “Basic Principles of Phase-contrast, Time-of-flight, and Contrast-enhanced MR Angiography”, pp. 1-10, 1999. |
Korosec, F.R., “Physical Principles of Phase-Contrast, Time-of-Flight, and Contrast-Enhanced MR Angiography,” 41st Annual Meeting of American Association of Physicists in Medicine, Jul. 25-29, 1999. |
Krause, W., “Application of pharmacokinetics to computed tomography: injection rates and schemes: mono-, bi-, or multiphasic?,” Investigative Radiology, vol. 31, Issue 2, pp. 91-100, Feb. 1996. |
Krieger, R. A., C02-Power-Assisted Hand-Held Syringe: Better Visualization during Diagnostic and Interventional, vol. 19, Issue 2, pp. 123-128, Feb. 1990. |
Liebel-Flarsheim Company, “Angiomat 6000 Digital Injection System—Operator's Manual”, Document No. 600950, Rev. 1, 1990. |
Mahnken, A. H., et al., “Determination of cardiac output with multislice spiral computed tomography: a validation study,” Investigative Radiology, vol. 39, Issue 8, pp. 451-454, Aug. 2004. |
Mahnken, A. H., et al., “Measurement of cardiac output from a test-bolus injection in multislice computed tomography,” European Radiology, vol. 13, Issue 11, pp. 2498-2504, Nov. 2003. |
Mark V/Mark V Plus Injector Operation Manual KMP 805P Rev. B. MEDRAD, Inc, 1990. |
McClellan, J.H., “Parametric Signal Modeling,” Chapter 1 in Advanced Topics in Signal Processing, Pentice-Hall, Englewood Cliffs, NJ, 1988. |
MCT and MCT Plus Injection Systems Operation Manual KMP 810P, MEDRAD, Inc. 1991. |
Neatpisarnvanit, C. and Boston, J.R., “Estimation of plasma insulin from plasma glucose”, IEEE Transactions on Biomedical Engineering, vol. 49, Issue 11, pp. 1253-1259, 2002. |
Bae, K.T., et al., “Peak contrast enhancement in CT and MR angiography: when does it occur and why? Pharmacokinetic study in a porcine model,” Radiology, vol. 227, pp. 809-816, Jun. 2003. |
Bae, K.T., et al., “Uniform vascular contrast enhancement and reduced contrast medium volume achieved by using exponentially decelerated contrast material injection method,” Radiology, vol. 231, Issue 3, pp. 732-736, 2004. |
Baker, A.B., and Sanders, J.E., “Fluid Mechanics Analysis of a Spring-Loaded Jet Injector,” IEEE Transactions on Biomedical Engineering, vol. 46, No. 2, Feb. 1999. |
Becker, C.R., et al., “Optimal contrast application for cardiac 4-detector-row computed tomography,” Investigative Radiology, vol. 38, Issue 11, pp. 690-694, Nov. 2003. |
Cademartiri, F. and Luccichenti, G., et al. “Sixteen-row multislice computed tomography: basic concepts, protocols, and enhanced clinical applications,” Seminars in Ultrasound, CT and MRI, vol. 25, Issue 1, pp. 2-16, 2004. |
Cademartiri, F., et al., “Intravenous contrasts material administration at 16-detector row helical CT coronary angiography: test bolus versus bolus-tracking technique,” Radiology, vol. 233, Issue 3, pp. 817-823, Dec. 2004. |
Coleman and Branch, “Optimization Toolbox for Use with MATLAB, User's Guide,” T. Mathworks, Editor 2007. |
Dardik, H. et al., “Remote Hydraulic Syringe Actuator,” Arch. Surg., vol. 115, Issue 1, Jan. 1980. |
Dawson, P. and M. Blomley, “The value of mathematical modelling in understanding contrast enhancement in CT with particular reference to the detection of hypovascular liver metastases,” European Journal of Radiology, vol. 41, Issue 3, pp. 222-236, Mar. 2002. |
European Search Report mailed Feb. 21, 2012 in European Patent Application No. 11001045.1. |
European Search Report mailed Jan. 30, 2003 in European Patent Application No. 02020247.9. |
European Search Report mailed Jun. 17, 1996 in European Patent Application No. 95202547.6. |
Final Office Action mailed Jun. 17, 2013, in U.S. Appl. No. 12/519,213, John F. Kalafut et al., filed Jun. 15, 2009. |
Final Office Action mailed Jun. 19, 2013, in U.S. Appl. No. 13/186,983, John F. Kalafut et al., filed Jul. 20, 2011. |
Final Office Action mailed Mar. 5, 2013, in U.S. Appl. No. 12/519,213, John F. Kalafut et al., filed Jun. 15, 2009. |
Final Office Action mailed Oct. 1, 2009, in U.S. Appl. No. 11/691,823, John F. Kalafut et al., filed Mar. 27, 2007. |
Final Office Action mailed Oct. 2, 2012, in U.S. Appl. No. 12/519,040, John F. Kalafut, filed Jun. 12, 2009. |
Fisher, M.E. and Teo, K.L., “Optimal insulin infusion resulting from a mathematical model of blood glucose dynamics”, IEEE Transactions on Biomedical Engineering, vol. 36, Issue 4, pp. 479-486, 1989. |
Fleischmann, D. and Hittmair, K., “Mathematical analysis of arterial enhancement and optimization of bolus geometry for CT angiography using the discrete Fourier transform,” Journal of Computer Assisted Tomography, vol. 23, Issue 3, pp. 474-484, May/Jun. 1999. |
Fleischmann, D., “Contrast Medium Injection Technique,” In: U. Joseph Schoepf: “Multidetector-Row CT of the Thorax,” pp. 47-59, Jan. 22, 2004. |
Fleischmann, D., “Present and Future Trends in Multiple Detector-Row CT Applications; CT Angiography”, European Radiology, vol. 12, Issue 2, Supplement 2, Jul. 2002, pp. s11-s15. |
Gardiner, G. A., et al., “Selective Coronary Angiography Using a Power Injector,” AJR Am J Roentgenol., vol. 146, Issue 4, pp. 831-833, Apr. 1986. |
“Disposable Low-Cost Catheter Tip Sensor Measures Blood Pressure during Surgery,” Sensor, Jul. 1989. |
“Infus O.R. Multi-Drug Syringe Pump with Smart Labels”, Bard MedSystems Division Inc., pp. 2693-2696, 2005. |
“The Solution for Your IV Formulas,” Valley Lab. Inc., E-39-15, 3399, 3400, 2646. |
Awai, K., et al., “Aortic and hepatic enhancement and tumor-to-liver contrast: analysis of the effect of different concentrations of contrast material at multi-detector row helical CT.,” Radiology, vol. 224, Issue 3, pp. 757-763, 2002. |
Awai, K., et al., “Effect of contrast material injection duration and rate on aortic peak time and peak enhancement at dynamic CT involving injection protocol with dose tailored to patient weight,” Radiology, vol. 230, Issue 1, pp. 142-150, 2004. |
Bae, K.T., et al., “Multiphasic Injection Method for Uniform Prolonged Vascular Enhancement at CT Angiography: Pharmacokinetic Analysis and Experimental Porcine Method,” Radiology, vol. 216, pp. 872-880, 2000. |
Office Action mailed Jan. 3, 2014 in U.S. Appl. No. 11/691,823. |
Search Report and Supplementary European Search Report for EP05849688 dated Mar. 21, 2014. |
Blomley, M.J.K. and Dawson, P., “Bolus Dynamics: Theoretical and Experimental Aspects,” The Brit. J. of Radiology, 70, pp. 351-359, 1997. |
Flegal, K.M., et al., “Prevalence and trends in obesity among US adults,” JAMA, 2002, vol. 288, Issue 14, pp. 1-4, 1999-2000. |
Gramovish V.V., et al Quantitative estimation of myocardial perfusion in patients with chronic ischaemic heart disease using magnetic resonance imaging, Cardiology, 2004, p. 4-12, No. 89. |
Angelini, P., “Use of mechanical injectors during percutaneous transluminal coronary angioplasty (PTCA),” Catheterization and Cardiovascular Diagnosis, vol. 16, Issue 3, pp. 193-194, Mar. 1989. |
Awai, K., et al., “Aortic and hepatic enhancement and tumor-to-liver contrast: analysis of the effect of different concentrations of contrast material at multi-detector row helical CT.,” Radiology, vol. 224, Issue 3, pp. 757-63, 2002. |
Awai, K., et al., “Effect of contrast material injection duration and rate on aortic peak time and peak enhancement at dynamic CT involving injection protocol with dose tailored to patient weight,” Radiology, vol. 230, Issue 1, pp. 142-50, 2004. |
Bae, K.T., et al., “Multiphasic Injection Method for Uniform Prolonged Vascular Enhancement at CT Angiography: Pharmacokinetic Analysis and Experimental Porcine Method,” Radiology, vol. 230, Issue 1, pp. 142-50. |
Number | Date | Country | |
---|---|---|---|
20100114064 A1 | May 2010 | US |
Number | Date | Country | |
---|---|---|---|
61110640 | Nov 2008 | US |