Reflector antenna systems are widely used for a variety of modern applications. For example, reflector antenna systems are used in radio astronomy, satellite, remote-sensing, and telecommunication applications. Reflector antenna systems have various features that have contributed to their increased use including planar geometry, low mechanical complexity, and lack of a complex feeding network. The surface of traditional reflector units consists of isolated radiating elements that are illuminated by a feed unit. The radiating elements are pre-designed with a particular phase delay to re-radiate and scatter the incident wave to generate a desired wavefront.
Reflector antenna systems typically use a feed unit to illuminate the surface of the reflector unit with a signal that is center fed or offset fed. The feed unit can be configured to apply a predetermined polarization to the signal prior to illuminating the surface of the reflector unit. Depending on the configuration, for example, the signal can be Left Hand Circular Polarization (LHCP), Right Hand Circular Polarization (RHCP), etc. Additionally, the reflector unit can be configured to provide the same polarization as the feed unit. Thus, a feed unit providing LHCP would be matched with a reflector unit configured to provide LHCP.
Reflector units are typically designed to minimize cross-polarization. Once the reflector antenna system is deployed, however, its efficiency is established and further adjustments are typically not made. This can result in various disadvantages in system performance. Center-fed reflector antenna systems can create a shadow effect on the reflector unit and consequently reduce the being power received. While offset-fed systems are generally preferred over center-fed systems, the offset angle at which the feed unit is positioned can create a design difficulty because cross-polarization is more pronounced when the reflector unit is illuminated from an oblique incident angle. Consequently, the desired polarization is distorted and becomes different from the feed unit polarization, thus creating polarization mismatch.
Electronically beam-scanning reflectarray antenna systems can be used to address some polarization mismatch. The reflector unit of the electronically beam-scanning reflectarray antenna system is designed to provide the best polarization achievable for a desired theoretical polarization, such as LHCP, RHCP, linear polarization (LP) along the X-axis and LP along the Y-axis. Electronically beam-scanning reflectarray antenna systems often incorporate an offset feed unit in order to increase the overall antenna efficiency and increase gain by avoiding shadow effects. Such reflector units have the best axial ratio at the boresight, and degraded cross-polarization as the angle of the incident wave is increased. Once deployed, however, adjustments are not made to the reflector antenna system to address the resulting polarization mismatch. Thus, polarization mismatch will persist unless the reflector unit is replaced and/or reconfigured. Based on the foregoing, there is a need for an approach to reduce or eliminate polarization mismatch in reflector antenna systems.
An apparatus and method are disclosed for mitigating polarization mismatch in reflector antenna systems. According to an embodiment, the apparatus includes a feed unit configured to: generate a first wave having a first polarization, determine a polarization mismatch between the first polarization and a second polarization, and pre-distort the first wave to achieve a compensated polarization for reducing and/or eliminating a polarization mismatch, and output the pre-distorted first wave having the compensated polarization; and a reflector unit for receiving the pre-distorted first wave and reflecting at least a re-radiated wave, wherein the second polarization is associated with the reflector unit, and wherein a level of the re-radiated wave is increased as a result of the pre-distortion.
According to another embodiment, the method includes configuring a feed unit of a reflector antenna system to generate a first wave having a first polarization; determining a polarization mismatch between the first polarization and a second polarization associated with a reflector unit of the reflector antenna system; pre-distorting the first wave to achieve a compensated polarization for reducing and/or eliminating the polarization mismatch; illuminating the reflector unit with the pre-distorted first wave having the compensated polarization; and reflecting, by the reflector unit, at least a re-radiated wave, wherein a level of the re-radiated wave is increased as a result of the pre-distortion.
The foregoing summary is only intended to provide a brief introduction to selected features that are described in greater detail below in the detailed description. As such, this summary is not intended to identify, represent, or highlight features believed to be key or essential to the claimed subject matter. Furthermore, this summary is not intended to be used as an aid in determining the scope of the claimed subject matter.
Various exemplary embodiments are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which like reference numerals refer to similar elements and in which:
An apparatus and method for mitigating polarization mismatch in reflector antenna systems are described. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will become apparent, however, to one skilled in the art that various embodiments may be practiced without these specific details or with an equivalent arrangement. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the various embodiments.
The re-radiated wave 114 corresponds to the desired component of the total reflection. The re-radiated wave 114 results from resonant activity of elements of the reflector unit 120 and has Ex and Ey components that define an axial ratio which characterizes its polarization. A polarization mismatch is created when the polarization of the re-radiated wave 114 differs from the polarization of the incident wave 112. The scattered wave 116 corresponds to a non-resonant component of the total reflection which results from the physical structure of the reflector element 120. The specular wave 118 is an inevitable component of the total reflection which results from the ground plane of the reflector unit 120.
A reflection is subsequently generated by the reflector unit 230 based, at least in part, on properties such as phase delay lines, patch size, etc. Specifically, the reflection consists of a re-radiated wave 216, a scattered wave 218, and a specular wave 220. As previously discussed, the re-radiated wave 216 corresponds to the desired (or useful) component of the total reflection from the reflector unit 230. The re-radiated wave 216 results from resonant activity of elements of the reflector unit 230 and has Ex and Ey components which define an axial ratio characterizing its polarization. Since the polarization of the input wave 212 cannot be precisely reproduced when the re-radiated wave 216 is reflected, a polarization mismatch would normally be created between the polarization of the re-radiated wave 216 and that of the input wave 212. The scattered wave 218 corresponds to a non-resonant component of the total reflection resulting from the physical structure of the reflector element 230. The specular wave 220 is an unavoidable component of the total reflection which results from the ground plane of the reflector unit 230.
As previously discussed, the feed unit 210 applies a distortion to the input wave 212 in order to generate the incident wave 214 having the compensated polarization. The compensated polarization causes the re-radiated wave 216 to be reflected by the reflector unit 230 with a polarization which more accurately reflects the polarization of the input wave 212. This causes a reduction or elimination of any polarization mismatch that would have otherwise existed between the input wave 212 and the re-radiated wave 216. Thus, the re-radiated wave 216 is reflected by the reflector unit 230 with an increased (or greater) signal strength (dB). As previously discussed, the specular wave 220 is an inevitable component of the total reflection which results from the ground plane of the reflector unit 230. Thus, the level of the specular wave 220 does not change. The increased strength of the re-radiated wave 216, therefore, causes an advantageous reduction in the level of the scattered wave 218.
According to at least one embodiment, the reflector unit 230 can be configured as an active array reflector which contains a plurality of small antenna units that process the incident wave 214 to produce the re-radiated wave 216, scattered wave 218, and specular wave 220. According to further embodiments, the reflector unit 230 can be configured as a passive reflector which does not actively process and steer the input wave 214. Accordingly, the reflector unit 230 would passively reflect the components of the incident wave 214 based on its reflective properties, axial ratio of waves being reflected, etc.
The reflector unit 280 subsequently generates a reflection based, at least in part, on properties such as phase delay lines, patch size, etc. As previously discussed, the reflection consists of a re-radiated wave 266, a scattered wave 268, and a specular wave 270. The feed unit 260 applies a distortion to the input wave 262 in order to generate the incident wave 264 which has the compensated polarization. The compensated polarization causes the re-radiated wave 266 to be reflected by the reflector unit 280 with a polarization which more accurately reflects the polarization of the input wave 262. This causes a reduction or elimination of any polarization mismatch that would have existed between the input wave 262 and the re-radiated wave 266. Thus, the re-radiated wave 266 is subsequently reflected by the reflector unit 280 with an increased signal strength (dB), while the scattered wave 268 is reflected with reduced signal strength.
According to one or more embodiments, the reflector unit 280 can be configured as an active array reflector which contains a plurality of small antenna units configured to process the incident wave 264, and produce the re-radiated wave 266, scattered wave 268, and specular wave 280. Other embodiments, however, can provide for a reflector unit 280 which passively reflects the components of the incident wave 264 based on its reflective properties, axial ratio of waves being reflected, etc.
According to the embodiment illustrated in
According to one or more embodiments, a controller 318 can be provided to generate and/or control the properties of each electric field being applied to the first pin 314a and the third pin 314c, thereby generating the input wave 312. The feed unit 310 subsequently outputs an incident wave 320 (or compensated wave) having a compensated polarization to illuminate the surface of the reflector unit. Depending on the specific implementation, one or more sensors can be provided to measure different properties of the reflector antenna system. For example, the sensors can be used to measure different properties associated with the compensated wave 320, re-radiated wave, scattered wave, specular wave, etc. Information from the sensors can then be supplied to the controller 318 in order to adjust the electric fields being applied, based on real-time operation.
According to various embodiments, electric fields having predetermined amplitudes and phases can be applied to the second pin 344b and the third pin 344c to generate the input wave 312. The electric fields can be selected such that they are identical to each other, or they can have different amplitudes and phases. A controller 348 can be provided to generate and/or control the properties of each electric field being applied to the first pin 344a and the third pin 344c in order to generate the desired input wave 342. The feed unit 340 subsequently outputs a compensated wave 350 having a compensated polarization to illuminate the surface of the reflector unit. One or more sensors can also be provided to measure different properties of the reflector antenna system. The sensors can be used, for example, to measure different properties associated with the compensated wave 350, re-radiated wave, scattered wave, specular wave, etc. Information from the sensors can then be supplied to the controller 348 in order to adjust the electric fields being applied, based on real-time operation.
Each dielectric slab 414 can be selected such that it has a predetermined dielectric constant capable of achieving the desired changes in the polarization of an input wave 412. According to various embodiments, the input wave 412 can be generated at an external source and supplied to the feed unit 410. If multiple dielectric slabs 414 are utilized, their combined dielectric constants, as well as locations within the feed unit 410, are used to produce the desired changes in polarization of the input wave 412. Thus, as the input wave 412 passes through one or multiple dielectric slabs 414, the various dielectric constants change the polarization of the input wave 412 such that a compensated wave 416 having a compensated polarization is output from the feed unit 410. The compensated wave 416 is subsequently used to illuminate the surface of the reflector unit.
Each dielectric slab 454 can be selected such that it has a predetermined dielectric constant capable of achieving the desired changes in the polarization of an input wave 452 that is supplied to the feed unit. If multiple dielectric slabs 454 are utilized, the combined dielectric constants and locations within the feed unit 450, are used to produce the desired changes in polarization of the input wave 452. The various dielectric constants change the polarization of the input wave 452 such that a compensated wave 456 having a compensated polarization is output from the feed unit 450. The compensated wave 456 is subsequently used to illuminate the surface of the reflector unit. While
As illustrated in
Similar to the embodiment illustrated in
According to at least one embodiment, the first waveguide port 612 can be positioned such that it is not aligned with the second waveguide port 614, as illustrated by the dashed lines. According to such embodiments, an orthogonal pin 620 can be positioned within the feed unit 610 at a quarter wave (λ/4) distance to function as a grounding port for the first waveguide port 614, thereby reflecting the first input wave 616 outward. The second input wave 618 would be reflected by the conductive backing 622 toward the exit of the feed unit.
According to at least one embodiment, a controller 720 can be provided to apply control signals to the phased array elements 712 in order to achieve the desired phase shift for changing the polarization of the input wave. The controller 720 can be configured to apply the same control signal to all phased array elements 712, or to apply an independent control signal to each individual phased array element 712 in order to achieve the desired polarization change. Depending on the specific implementation, the controller 720 can be co-located within the feed unit 710, or it can be positioned externally from the feed unit 710.
According to at least one embodiment, the feed unit 710 can be configured to dynamically adjust the amount of distortion generated to change the phase of the input wave. For example, at least one sensor 722 can be provided to measure various properties of wave components reflected by the reflector unit. The sensors 722 can measure properties such as the strength, polarization, axial ratio, etc. of the re-radiated wave, the scattered wave, and/or the specular wave. Furthermore, the sensors 722 can be configured to detect the polarization of the compensated wave being output by the feed unit 710 to illuminate the surface of the reflector unit. According to one or more embodiments, such measurements can be fed back to the controller 720 in real time in order to determine whether polarization mismatch currently exists and the amount of mismatch. The controller 720 can subsequently make any calculations to adjust the control signals, if necessary, in order to maintain and/or improve system performance. The controller 720 can also make such calculations in order to achieve desired properties for the compensated wave or reflected wave components based on current environmental/atmospheric conditions.
At 818, the reflector unit is illuminated with the compensated wave. More particularly, the feed unit directs the compensated wave toward the surface of the reflector unit. At 820, the reflector unit reflects a re-radiated wave having an increased signal strength. As previously discussed, the compensated wave is typically reflected in the form of three component waves. The re-radiated wave is a useful component can cause the polarization mismatch with the input wave. Thus, the level of the re-radiated wave increases as the polarization mismatch is reduced and/or eliminated by the compensated wave. Depending on the configuration of the reflector unit, the compensated wave can be processed prior to being reflected when active array elements are used. The process ends at 822.
According to at least one embodiment, a factor contributing to the polarization mismatch is the axial ratio of waves reflected by the reflector unit, dielectric properties of the reflector unit, etc. This information can be supplied to the feed unit in advance. Alternatively, at 914, the axial ratio (and other properties) associated with the reflector unit is retrieved. For example, a value for the axial ratio can be stored in a storage device, such as those discussed in greater detail below, that is accessible by the feed unit. According to various embodiments, however, the axial ratio can be stored in nonvolatile storage within the controller or feed unit.
At 916, the input wave is transmitted through the phased array elements of the feed unit. At 918, the controller applies a control signal to select the particular phase and amplitude for each phased array element in order to generate the desired amount of pre-distortion. This results in a compensated wave having properties which differ from those of the input wave. At 920, the feed unit illuminates the surface of the reflector unit with the resulting compensated wave. At 922, the reflector unit reflects the compensated wave in the form of various components, including a re-radiated wave component whose signal strength is increased due to reduction or elimination of polarization mismatch resulting from the distortion introduced by the phased array elements.
Various embodiments can allow for analysis of the reflected wave components in real time and adjustment of the control signal to achieve desired results. For example, the level of the re-radiated wave and scattered wave reflected by the reflector unit can be measured at 924 using one or more sensors. Depending on the specific implementation, such measurements can be performed in order to determine whether the distortion introduced by the feed unit generates any effective improvements in the reflected wave components. At 926, it is determined whether the level of the re-radiated wave and scattered wave meet optimal gain requirements. According to at least one embodiment, for example, the levels of the reflected wave components can be continually measured while making adjustments in order to determine whether or not the signal strength of the re-radiated wave increases and/or the signal strength of the scattered wave decreases. The levels of the reflected wave components can also be measured at specific intervals. A predetermined threshold criteria can also be set for the amount of change considered to be negligible or sufficient.
If optimal gains have not been reached, control passes to 928, where a new set of parameters is determined for each phased array element. Depending on the specific implementation, however, the same set of parameters can be applied unilaterally to all of the phased array elements. At 930, the controller adjusts the control signal being supplied to the phased array elements. Depending on the specific implementation, the controller may supply control signals to beam former chips for adjusting the phase and amplitude parameters. Control then returns to 918, where the control signal is applied to each of the phased array elements. If optimal gains have been achieved at 926, the process subsequently ends at 932. According to various embodiments, however, control can optionally return to 926 in order to continually monitor the reflected wave components and/or adjust the parameters of the phased array elements.
According to the illustrated embodiment, if a corrugated waveguide will be used, then control passes to 1016. The specific waveguide having the desired number of nodes and connector types is selected in order to generate the appropriate amount of distortion. The waveguide would subsequently be inserted within the feed unit at 1020. Alternatively, if dielectric slabs will be utilized to generate the distortion, they are selected at 1018. More particularly, one or more dielectric slabs having an appropriate size and dielectric constant can be selected so that the desired amount of distortion is achieved. Upon selecting the proper dielectric slabs, they are inserted within the feed unit at 1020. As previously discussed, it is possible to utilize a single dielectric slab having appropriate properties to generate the desired distortion. However, other embodiments allow for multiple dielectric slabs to be utilized in combination for achieving the desired amount of distortion.
At 1022, an input wave is transmitted through the feed unit. As the input wave travels through the feed unit, it encounters either the corrugated waveguide or the dielectric slabs. Such an encounter causes, in part, a change in polarization of the input wave, resulting in a compensated polarization capable of reducing or eliminating the effects of the polarization mismatch. At 1024, the reflector unit is illuminated with the compensated wave. Depending on the specific reflector unit being utilized, some active processing can be performed. If the reflector unit includes active array elements, for example, such elements can process (e.g., steer) the compensated wave to generate the subsequent reflected wave components. At 1026, the reflector unit reflects a re-radiated wave component having an increased signal strength resulting from the distortion introduced within the feed unit. While
At 1116, orthogonal pins are inserted into the feed unit. As previously discussed, the pins can be inserted into any two orthogonal sides of the feed unit. Furthermore, the pins can be spaced apart from each other by a predetermined distance relative to the length of the feed unit in order to provide a phase delay. An electric field is subsequently applied to each pin at 1118. The required electric field can be determined by a controller and/or other appropriate component (e.g., computer, laptop, ASIC, FPGA, etc.). At 1120, an input wave is generated by the pins and transmitted through the feed unit. More particularly, each pin generates a wave that is reflected by either a ground pin or conductive backing. The properties of each wave are altered based, in part, on the distance from ground pin or conductive backing used to reflect it. The reflected waves are subsequently combined to form the input wave that is directed to the exit of the feed unit. The result is an incident (or compensated) wave having a compensated polarization capable of reducing or eliminating the effects of the polarization mismatch. At 1122, the reflector unit is illuminated with the compensated wave. At 1124, the reflector unit reflects, in part, a re-radiated wave component having an increased signal strength resulting from the distortion generated by the electric fields. It should be noted, however, that other wave components are also reflected from the reflector unit.
According to various embodiments, at least one sensor can be provided to measure different characteristics of the reflected wave components. For example, one sensor can be utilized to measure all of the desired characteristics. Alternatively, individual sensors can be provided to measure characteristics of each wave component, specific characters of all wave components, etc. Such measurements can be obtained, for example, at 1126 where various wave properties are optionally measured. As previously discussed, properties of any or all reflected wave components can be measured. Furthermore, properties of the compensated wave can be measured. The properties can be supplied to the controller managing the electric fields. At 1128, the electric fields are adjusted by the controller and applied to each orthogonal pin. If sensors are not utilized to monitor the reflected wave components, however, the process would end at 1130.
Various features described herein may be implemented via software, hardware (e.g., general processor, Digital Signal Processing (DSP) chip, an Application Specific Integrated Circuit (ASIC), Field Programmable Gate Arrays (FPGAs), etc.), firmware or a combination thereof. For example, such hardware/software/firmware combinations can be incorporated into the previously described controllers, sensors, etc. Additionally, components such as the feed unit and reflector antenna can include such hardware to facilitate operation thereof. As previously discussed, the feed unit can include active array elements to distort the input wave. Such hardware/software/firmware combinations can be incorporated within the feed unit, or provided externally, to control the active array elements. Various communication interfaces, including wired and/or wireless, can be used to exchange information between the feed unit and an external control device such as a computer, laptop, DSP, ASIC, FPGA, etc. Similar configurations can be incorporated into the reflector unit, particularly when active array elements are incorporated to steer and reflect the compensated wave.
The terms software, computer software, computer program, program code, and application program may be used interchangeably and are generally intended to include any sequence of machine or human recognizable instructions intended to program/configure a computer, processor, server, etc. to perform one or more functions. Such software can be rendered in any appropriate programming language or environment including, without limitation: C, C++, C#, Python, R, Fortran, COBOL, assembly language, markup languages (e.g., HTML, SGML, XML, VoXML), Java, JavaScript, etc. As used herein, the terms processor, microprocessor, digital processor, and CPU are meant generally to include all types of processing devices including, without limitation, single/multi-core microprocessors, digital signal processors (DSPs), reduced instruction set computers (RISC), general-purpose (CISC) processors, gate arrays (e.g., FPGAs), PLDs, reconfigurable compute fabrics (RCFs), array processors, secure microprocessors, and application-specific integrated circuits (ASICs). Such digital processors may be contained on a single unitary IC die, or distributed across multiple components. Such exemplary hardware for implementing the described features are detailed below.
The computer system 1200 may be coupled via the bus 1201 to a display 1211, such as a light emitting diode (LED) or other flat panel displays, for displaying information to a computer user. An input device 1213, such as a keyboard including alphanumeric and other keys, is coupled to the bus 1201 for communicating information and command selections to the processor 1203. Another type of user input device is a cursor control 1215, such as a mouse, a trackball, or cursor direction keys, for communicating direction information and command selections to the processor 1203 and for controlling cursor movement on the display 1211. Additionally, the display 1211 can be touch enabled (i.e., capacitive or resistive) in order facilitate user input via touch or gestures.
According to an exemplary embodiment, the processes described herein are performed by the computer system 1200, in response to the processor 1203 executing an arrangement of instructions contained in main memory 1205. Such instructions can be read into main memory 1205 from another computer-readable medium, such as the storage device 1209. Execution of the arrangement of instructions contained in main memory 1205 causes the processor 1203 to perform the process steps described herein. One or more processors in a multi-processing arrangement may also be employed to execute the instructions contained in main memory 1205. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions to implement exemplary embodiments. Thus, exemplary embodiments are not limited to any specific combination of hardware circuitry and software.
The computer system 1200 also includes a communication interface 1217 coupled to bus 1201. The communication interface 1217 provides a two-way data communication coupling to a network link 1219 connected to a local network 1221. For example, the communication interface 1217 may be a digital subscriber line (DSL) card or modem, an integrated services digital network (ISDN) card, a cable modem, fiber optic service (FiOS) line, or any other communication interface to provide a data communication connection to a corresponding type of communication line. As another example, communication interface 1217 may be a local area network (LAN) card (e.g. for Ethernet™ or an Asynchronous Transfer Mode (ATM) network) to provide a data communication connection to a compatible LAN. Wireless links can also be implemented. In any such implementation, communication interface 1217 sends and receives electrical, electromagnetic, or optical signals that carry digital data streams representing various types of information. Further, the communication interface 1217 can include peripheral interface devices, such as a Universal Serial Bus (USB) interface, a High Definition Multimedia Interface (HDMI), etc. Although a single communication interface 1217 is depicted in
The network link 1219 typically provides data communication through one or more networks to other data devices. For example, the network link 1219 may provide a connection through local network 1221 to a host computer 1223, which has connectivity to a network 1225 such as a wide area network (WAN) or the Internet. The local network 1221 and the network 1225 both use electrical, electromagnetic, or optical signals to convey information and instructions. The signals through the various networks and the signals on the network link 1219 and through the communication interface 1217, which communicate digital data with the computer system 1200, are exemplary forms of carrier waves bearing the information and instructions.
The computer system 1200 can send messages and receive data, including program code, through the network(s), the network link 1219, and the communication interface 1217. In the Internet example, a server (not shown) might transmit requested code belonging to an application program for implementing an exemplary embodiment through the network 1225, the local network 1221 and the communication interface 1217. The processor 1203 may execute the transmitted code while being received and/or store the code in the storage device 1209, or other non-volatile storage for later execution. In this manner, the computer system 1200 may obtain application code in the form of a carrier wave.
The term “computer-readable medium” as used herein refers to any medium that participates in providing instructions to the processor 1203 for execution. Such a medium may take many forms, including but not limited to non-volatile media, volatile media, and transmission media. Non-volatile media include, for example, optical or magnetic disks, such as the storage device 1209. Non-volatile media can further include flash drives, USB drives, microSD cards, etc. Volatile media include dynamic memory, such as main memory 1205. Transmission media include coaxial cables, copper wire and fiber optics, including the wires that comprise the bus 1201. Transmission media can also take the form of acoustic, optical, or electromagnetic waves, such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media include, for example, a USB drive, microSD card, hard disk drive, solid state drive, optical disk (e.g., DVD, DVD RW, Blu-ray), or any other medium from which a computer can read.
In one embodiment, the chip set 1300 includes a communication mechanism such as a bus 1301 for passing information among the components of the chip set 1300. A processor 1303 has connectivity to the bus 1301 to execute instructions and process information stored in, for example, a memory 1305. The processor 1303 may include one or more processing cores with each core configured to perform independently. A multi-core processor enables multiprocessing within a single physical package. Examples of a multi-core processor include two, four, eight, or greater numbers of processing cores. Alternatively or in addition, the processor 1303 may include one or more microprocessors configured in tandem via the bus 1301 to enable independent execution of instructions, pipelining, and multithreading. The processor 1303 may also be accompanied with one or more specialized components to perform certain processing functions and tasks such as one or more digital signal processors (DSP) 1307, or one or more application-specific integrated circuits (ASIC) 1309. A DSP 1307 typically is configured to process real-world signals (e.g., sound) in real time independently of the processor 1303. Similarly, an ASIC 1309 can be configured to performed specialized functions not easily performed by a general purposed processor. Other specialized components to aid in performing the inventive functions described herein include one or more field programmable gate arrays (FPGA) (not shown), one or more controllers (not shown), or one or more other special-purpose computer chips.
The processor 1303 and accompanying components have connectivity to the memory 1305 via the bus 1301. The memory 1305 includes both dynamic memory (e.g., RAM, magnetic disk, re-writable optical disk, etc.) and static memory (e.g., ROM, CD-ROM, DVD, BLU-RAY disk, etc.) for storing executable instructions that when executed perform the inventive steps described herein to controlling a set-top box based on device events. The memory 1305 also stores the data associated with or generated by the execution of the inventive steps.
While certain exemplary embodiments and implementations have been described herein, other embodiments and modifications will be apparent from this description. Accordingly, the various embodiments described are not intended to be limiting, but rather are encompassed by the broader scope of the presented claims and various obvious modifications and equivalent arrangements.
Number | Name | Date | Kind |
---|---|---|---|
3230537 | Bartholoma | Jan 1966 | A |
3453633 | Phillips | Jul 1969 | A |
3622884 | Kent | Nov 1971 | A |
3775769 | Heeren | Nov 1973 | A |
4109253 | Chu | Aug 1978 | A |
4144535 | Dragone | Mar 1979 | A |
4398200 | Meier | Aug 1983 | A |
4523160 | Pioussios | Jun 1985 | A |
4982198 | Shafai | Jan 1991 | A |
6323819 | Ergene | Nov 2001 | B1 |
8077103 | Acosta et al. | Dec 2011 | B1 |
8289221 | Finucane | Oct 2012 | B1 |
9939585 | Monte | Apr 2018 | B1 |
10218076 | Bhardwaj | Feb 2019 | B1 |
20030025641 | Tits | Feb 2003 | A1 |
20050237266 | Durham et al. | Oct 2005 | A1 |
20070296641 | Cook | Dec 2007 | A1 |
20090109111 | McGonigle | Apr 2009 | A1 |
20120162010 | Georgiadis | Jun 2012 | A1 |
20130099990 | Bresciani et al. | Apr 2013 | A1 |
20130187830 | Warnick et al. | Jul 2013 | A1 |
20150097747 | Hwang | Apr 2015 | A1 |
20150381265 | Runyon | Dec 2015 | A1 |
20170207541 | Wu | Jul 2017 | A1 |
20180026365 | Driscoll | Jan 2018 | A1 |
20180026686 | Gerdin | Jan 2018 | A1 |
20190025422 | Edinger | Jan 2019 | A1 |
20210305707 | Gimersky | Sep 2021 | A1 |
20220037793 | Hou | Feb 2022 | A1 |
Number | Date | Country |
---|---|---|
15161718 | Oct 2015 | WO |
Entry |
---|
International Search Report and Written Opinion issued in International Application No. PCT/US2019/059747, dated Jan. 15, 2020. |
Number | Date | Country | |
---|---|---|---|
20200153105 A1 | May 2020 | US |