Not Applicable.
The invention applies to heart surgery, especially heart valve repair or replacement such as the repair of a mitral valve. In the case of a damaged valve, surgery is typically conducted to replace or repair the valve through an incision. For this operation, operating room assistant personnel may use a valve rake to keep a valve region round and stable for suturing.
Besides manually holding the valve rake, fixed mechanisms have been used to suspend a rake in a desired position. During cardiac surgery, a sternal retractor is typically mounted over the patient carrying retractor blades to separate overlying tissues to allow access to a surgical site. The frame of the sternal retractor has been used to support mechanical rakes, as in U.S. Pat. No. 5,772,583, for example.
To avoid complicated position adjustment mechanisms, it is also known to employ a flexible shaft for carrying the valve rakes. However, manipulation to obtain the desired position may require significant skill and may be inconvenient and time consuming. Furthermore, the size, thickness, and length requirements for flexible structures that can also provide sufficient stability for the desired holding characteristics has also resulted in large mechanisms that consume needed space within the surgical area, especially since several valve rakes may be needed simultaneously. Thus, it is desirable to provide adjustment mechanisms that are small and robust while being easy to adjust to a desired position and lock into place with minimal effort.
Due to limited space at a surgical site, only a limited number of retraction devices can be used at the same time. The width or a retraction finger or rake must be small enough to permit insertion into an incision. When the retraction finger tugs at a side of the incision opening, it usually creates a triangular-shaped space in the overlying tissue layer(s). Even after retraction using the known retraction fingers to visualize a mitral valve during mitral valve repair, for example, the anterolateral commissure and the posterolateral commissure may still be obscured by muscle tension or fatty tissue. It would be desirable to increase visualization without increasing the number of stabilizer arms being used.
The invention provides fast, simple, and secure adjustment in a compact design that maintains available space for surgical access while enabling a user to finely control a universal position adjustment which can be locked using a single knob. It also provides a rake structure that includes a malleable sub-finger extending from a side of a main retraction finger to extend the retraction force onto tissues disposed to the side of the main finger.
In one aspect of the invention, a retraction apparatus for surgical procedures comprises a holder configured to mount to a fixed rail of a sternal retractor. A held rake element comprises a strap segment having a proximal end slidably received in a slot in the holder. The rake element has a primary rake finger at a distal end of the strap segment configured to grasp and retract tissue at a surgical site and a sub-finger extending perpendicularly via a bendable wing from a side of the primary rake finger adapted to retract adjacent tissue around the surgical site.
This first embodiment of a retraction apparatus is shown in greater detail in
To facilitate sliding of finger 32 in a direction generally towards and away from the surgical site, the slot between carriage block 35 and wedge piece 36 is slanted and curves downward as defined by a sloping surface 42 on carriage block 35 and a sloping surface 43 on wedge piece 36.
Traveler 34 has an internal passageway 50 to receive the fixed rail of the sternal retractor. A top hole 51 in carriage block 35 is round and receives a round axle portion formed by lower extensions on carriage block 35 and wedge piece 36 so that the holder can rotate within hole 51. Carriage block 35 has a pair of flanges 52 that reside within passageway 50 to capture an edge of hole 51. When screw knob 37 is tightened, an upward movement of carriage block 35 (see
Lock levers 70 and 71 are mounted through respective pivot holes 72 and 73. Projecting lock tabs 74 and 75 variably extend through respective windows 76 and 77 into rail passage 61 and ball socket 62, respectively, by rotating lock levers 70 and 71. Thus, lever 70 is used to lock or release the holder for sliding along the rail of the sternal retractor.
In the released position of lever 71, ball 63 is allowed to rotate in any direction within ball socket 62 and arm 65 is allowed to slide within opening 64. When lever 71 is moved to its lock position, lock tab 75 prevents further rotation of ball 63 and compresses ball 63 so that arm 65 can no longer slide.
Opening 64 may include contour ridges 80 to maintain the alignment of arm 65. In addition, opening 64 may define an internal detent bump 81 for snapping into any one of a series of spaced openings 82 in arm 65.
This application is a continuation of PCT Application No. PCT/US2018/024733, filed Mar. 28, 2018, based on and claiming priority to U.S. Provisional Application No. 62/477,470, filed Mar. 28, 2017, both of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3227156 | Gauthier | Jan 1966 | A |
3463144 | Hammond | Aug 1969 | A |
4048987 | Hurson | Sep 1977 | A |
4337762 | Gauthier | Jul 1982 | A |
5052374 | Alvarez-Jacinto | Oct 1991 | A |
5875782 | Ferrari | Mar 1999 | A |
6309349 | Bertolero | Oct 2001 | B1 |
6464634 | Fraser | Oct 2002 | B1 |
20040193018 | Thalgott | Sep 2004 | A1 |
20060052671 | McCarthy | Mar 2006 | A1 |
20070270654 | Pignato | Nov 2007 | A1 |
20120271120 | Seex | Oct 2012 | A1 |
20130245384 | Friedrich | Sep 2013 | A1 |
20170065268 | Sindram | Mar 2017 | A1 |
Entry |
---|
PCT Written Opinion of International Searching Authority, PCT/US18/24733, dated May 10, 2018. |
Number | Date | Country | |
---|---|---|---|
20200015799 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62477470 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2018/024733 | Mar 2018 | US |
Child | 16582105 | US |