The present invention generally relates to fluid delivery systems, and more particularly to a pump-driven fluid delivery system, and still more particularly to a pump-driven fluid delivery system having an external bypass circuit for alleviating pump stresses when dispensing fluids at different pressures and/or volumes.
Sprayers, such as broadcast sprayers are used across an array of applications, including farms, golf courses and residential properties, to apply water or other liquids, such as pesticides including herbicides, insecticides and the like. As such, these sprayers may need to cover a large area and, therefore, generally include large tanks strapped to a vehicle, such as an all-terrain vehicle (ATV) or golf cart, or may be mounted onto a tow-behind trailer. Typically in use, these tanks are filled with a selected fluid composition that is to be applied. By way of example, pesticide solutions may be anywhere from about 1% to about 10% active chemical in water. In one scenario, a user may spray a diluted herbicide solution, such as to target thistle. However, to apply a second pesticide solution, such as a diluted insecticide to fruit trees, the user will first have to completely empty the tank of the herbicide solution before rinsing the tank of any residual chemicals and finally refilling the tank with the desired insecticide solution. As may be readily apparent from the above, there are numerous drawbacks to such systems. For example and without limitation, such drawbacks may include waste of chemicals, the need for controlled disposal of unused chemicals, the time consuming need to thoroughly clean the tank between applications and the potential for cross-contamination and application of unwanted chemicals after incomplete or unsuccessful cleaning of the tank.
To alleviate some of the above-referenced drawbacks of broadcast sprayers, systems have been developed which segregate the chemical portion from the water/diluent portion of the system. In such systems, the chemical is stored in a smaller, separate tank than the large water tank. Metering devices may then add chemical to a flow of water prior to emission from a wand or boom sprayer. In this manner, the chemical remains isolated from the water tank, thereby minimizing or avoiding possible contamination of the water source. However, heretofore systems require complex plumbing regimes and interconnectivities of the various components making such systems difficult to use and burdensome to operate and clean.
Broadcast sprayers have also been configured as variable pressure sprayers which may selectively spray fluid from either a spray wand or through a boom-and-nozzle arrangement where multiple nozzles may be supported on a boom. Due to the multiple nozzles within the boom-and-nozzle arrangement, fluid must be delivered at high pressure so as to enable proper spraying at each of the individual nozzles. However, a spray wand uses a single nozzle and may become damaged if it receives high pressure fluid. To that end, current systems typically use pumps with a high pressure cut out switch. These systems are configured with a recirculation manifold whereby excess flow from the pump is diverted back to the supply tank. A valve and pressure gauge is provided on the manifold so the user can tune the percentage of flow going back to the tank while maintaining adequate pressure for the lower flow application (spray wand). Without providing for this recirculation pressure bleed off in the low flow application, pressure would build quickly and rapidly cycle the pressure cut off switch. A situation that is detrimental to both the switch and the pump. However, such a system should not be used in two-tank systems as the mixed fluid exiting the pump would be recycled to the water tank, thereby contaminating the water tank and changing the concentration of the chemical that is being sprayed.
Thus, there remains a need for a sprayer that segregates the chemical tank from the water tank but is also more easily plumbed, operated and cleaned. There remains a further need for a variable pressure sprayer wherein the mixed fluid is not recycled to the diluent tank when operating at reduced spraying pressure. The present invention satisfies this as well as other needs.
In view of the above and in accordance with an aspect of the present invention, the present invention is generally directed to a sprayer system comprising a first tank configured to hold a diluent; a mounting bracket mounted to the first tank; and a second tank removably mounted to the first tank and configured to hold a liquid concentrate. A mixing manifold is mounted to the mounting bracket and has a first inlet fitting configured to receive a fixed amount of diluent from the first tank and a second inlet configured to receive a selectively adjustable amount of liquid concentrate from the second tank. The fixed amount of diluent and selectively adjustable amount of concentrate are combined to form a mixed solution. The mixing manifold includes a mixed solution outlet and a positive displacement pump is mounted to the mounting bracket and has a suction port fluidly coupled to the mixed solution outlet. A pressure port is configured to fluidly couple with a spray device. The second tank may be separable from the first tank without requiring removal of the mixing manifold or positive displacement pump.
In a further aspect of the present invention, the positive displacement pump is a diaphragm pump and the first inlet fitting further includes a check valve configured to prevent backflow of the mixed solution toward the first tank.
In still another aspect of the present invention, the mixing manifold further includes a disc defining a first annular series of spaced-apart flow-metering holes. Successive respective flow-metering holes have an increasing hole diameter and the disc is adapted to rotate to align a selected flow-metering hole in fluid communication with the second inlet to thereby define the selectively adjustable amount of concentrate in the mixed solution. The disc may further define a second annular series of spaced-apart stop holes. Each respective stop hole within the second annular series radially aligns with a respective flow-metering hole of the first annular series. A single respective stop hole receives a stop member when the selected flow-metering hole is aligned with the second inlet. The stop member may be a ball bearing biased to engage the disc wherein a diameter of the ball bearing is slightly larger than a diameter of each of the stop holes.
In another aspect of the present invention, the first inlet fitting may further include a check valve configured to prevent backflow of the mixed solution toward the first tank and the second tank may be removably mounted to the mounting bracket on the first tank.
In still a further aspect of the present invention, the second tank may include a quick disconnect coupling configured to releasably couple a concentrate tube to a tank fitment defined on the second tank. The concentrate tube may then deliver the liquid concentrate to the mixing manifold. The quick disconnect coupling may comprise a fitment housing having a first end, a second end and a stepped bore region therebetween, wherein the first end is coupled to the tank fitment defined on the second tank. A tubing nut may be removably coupled to the second end of the fitment housing and a tubing coupling may be configured to be received within the tubing nut and abut against a mouth opening defined by the second end of the fitment housing. A plug member may have a plug end, a flanged end and a body portion therebetween. The plug end may be received in the first end of the fitment housing while the flanged end may be received within the second end of the fitment housing and the body portion may extend through the stepped bore region of the fitment housing. A biasing member may also be received within the stepped bore region, wherein the biasing member urges the plug end of the tubing coupling to seal the first end of the fitment housing when the tubing nut is removed from the second end of the fitment housing. A biasing force is stored within the biasing member by the flanged end when the tubing nut is coupled to the second end of the fitting housing, whereby fluid concentrate within the second tank can flow through the quick disconnect coupling to the mixing manifold. The body portion of the plug member may comprise a plurality of spaced apart spindles with open slots defined therebetween to permit flow of fluid concentrate therethrough.
In yet another aspect of the present invention, the sprayer system may further include a pressure by-pass circuit fluidly coupling the pressure port to the suction port. The pressure by-pass circuit may be configured to selectively regulate a fluid pressure of the mixed solution being delivered to the spray device. The pressure by-pass circuit may be either internal to the positive displacement pump or an external pathway around the positive displacement pump.
In accordance with another aspect of the present invention, the present invention is generally directed to a sprayer system comprising a first tank configured to hold a diluent; a mounting bracket mounted to the first tank; and a second tank removably mounted to the first tank and configured to hold a liquid concentrate. A mixing manifold is mounted to the mounting bracket and has a first inlet fitting configured to receive a fixed amount of diluent from the first tank and a second inlet configured to receive a selectively adjustable amount of liquid concentrate from the second tank. The fixed amount of diluent and selectively adjustable amount of concentrate are combined to form a mixed solution. The mixing manifold includes a mixed solution outlet and a positive displacement pump is mounted to the mounting bracket and has a suction port fluidly coupled to the mixed solution outlet. A pressure port may be fluidly coupled to at least one spray device. The second tank may be separable from the first tank without requiring removal of the mixing manifold or positive displacement pump. The at least one spray device may be a low pressure spray nozzle or a high pressure boom carrying two or more boom nozzles. Alternatively, the at least one spray device is a low pressure spray nozzle and a high pressure boom carrying two or more boom nozzles whereby the mixed fluid is selectively received by either the low pressure spray nozzle or the high pressure boom. The sprayer system may further include a pressure by-pass circuit fluidly coupling the pressure port to the suction port. The pressure by-pass circuit may be configured to selectively regulate a fluid pressure of the mixed solution being received by the low pressure spray nozzle. The pressure by-pass circuit may be either internal to the positive displacement pump or an external pathway around the positive displacement pump.
In accordance with yet another aspect of the present invention, an external by-pass circuit for a positive displacement pump includes a flow diverter valve coupled to the pressure port of the pump. The flow diverter has an end coupled with a high flow output and another end coupled with a low flow output. The low flow end includes a by-pass arm coupled to and input flow fitting. The flow diverter valve further includes a ball valve to direct fluid to either the high flow or low flow output. The input flow fitting is coupled to the suction port of the pump at the one end and couples with a fluid source at the other end. The input flow fitting includes a flow control arm which includes a needle valve to selectively control flow within the flow control arm. The flow control arm also includes a by-pass fitting fluidly coupled with the by-pass arm of the flow diverter valve.
Additional objects, advantages and novel aspects of the present invention will be set forth in part in the description which follows, and will in part become apparent to those in the practice of the invention, when considered with the attached figures.
Referring now to
In operation, first tank 12 includes a diluent outlet 46 having a diluent fitting 47 configured to receive one end of diluent tubing (not shown) in a substantially fluid-tight seal. The opposing end of the diluent tubing is mounted onto a first inlet fitting 48 of mixing manifold 38 (see also
With reference to
With reference to
With continued reference to
In a further aspect of the invention, bore 96 may be further include a series of steps 114, 116, 118 thereby defining bore regions 96a, 114a, 116a, 118a. Concentrate tubing coupling 100 may reside within bore region 96a such that terminal end 120 of first end 98 of concentrate tubing coupling 100 may seat against step 114. The wall thickness of terminal end 120 may be selected so that internal bore 122 of concentrate tubing coupling 100 is slightly smaller than the diameter of bore region 114a. In this manner, terminal end 120 partially occludes bore region 114a whereby flanged end 124 of plug member 126 may be engaged by concentrate tubing coupling 100 as tubing nut 94 is threaded onto fitment housing 66. Bore region 114a may be proportioned to receive flanged end 124 while step 116 has a smaller diameter than flanged end 124 whereby flanged end 124 is precluded from entering bore region 116a. Plug member 126 may further include a body portion 128 dimensioned to pass through and extend within bore regions 116a, 118a before terminating at a second end 130. Second end 130 of plug member 126 may include an O-ring seal 132 having an external diameter greater that the diameter of bore region 118a. In one aspect of the invention, body portion 128 may be comprised of a plurality of spaced-apart spindles 134 configured to define open slots 136 therebetween so as to promote fluid travel through plug member 126, as will be discussed in greater detail below.
Plug member 126 may translate along longitudinal axis L of fitment housing 66 so as to selectively plug or unplug bore region 118a and control outflow of liquid concentrate from second tank 16 to mixing matrix 38. To that end, as shown in
Fitment housing 66 may further include a biasing member, such as compression spring 138, configured to engage flanged end 124 at a first end 140 and step 118 at second end 142. In this manner, threading of tubing nut 94 and concentrate tubing coupling 100 may compress spring 138 to thereby cause potential energy to be stored within spring 138. Unthreading of tubing nut 94 and removal of concentrate tubing coupling 100 from fitment housing 66 enables spring 138 to release the stored potential energy so as to cause plug member 126 to translate along longitudinal axis L generally in the direction generally indicated by arrow 144. Plug member 126 will continue to translate until O-ring 132 engages surface 146 of fitment housing 66 whereby O-ring 132 and second end 130 of plug member 126 occlude bore region 118a. In this manner, fluid concentrate may no longer flow into concentrate tubing coupling 100. As a result, second tank 16 may be rendered substantially leak proof. Second tank 16 may then be removed from mounting bracket 14 as described above and stored with minimal to no loss of liquid concentrate.
In accordance with an aspect of the invention, following removal of second tank 16 as described above, a replacement second tank (not shown) may be mounted to mounting bracket 14. Tubing nut 94 and concentrate tubing coupling 100 may then be threaded onto a fitment housing (similar to fitment housing 66) on the replacement second tank as described above. As a result, the plug member within the fitment housing may be opened so as to allow transfer of the alternative liquid concentrate within the replacement second tank to mixing manifold 38 as described above. In a further aspect of the invention, a replacement second tank may be filled with water so as to enable flushing of the system between chemicals that are to be sprayed, thereby reducing cross-contamination or misapplication of the chemicals. Thus, sprayer system 10 may be configured to selectively spray any number of various liquid concentrates requiring only the removal and replacement of selected second tanks and remounting of tubing nut 94 and concentrate tubing coupling 100. Respective second tanks may be stored with little to no threat of leakage of respective liquid concentrates contained therein, thereby reducing waste of the concentrates. Moreover, user exposure to a concentrate is minimized as the second tank does not need to be emptied, washed and refilled every time a new liquid concentrate desired to be sprayed.
Turning now to
Mixing manifold 38 may further include disc 168 rotatably mounted atop manifold support member 152 whereby center hole 170 defined by disc 168 receives post 172 formed on manifold support member 152. Disc 168 may then be capped by upper housing subunit 148 wherein upper housing subunit 148 includes one or more openings 174 therethrough such that a portion of the outer circumference of disc 168 may be engaged by a user so as to selectively rotate disc 168 about post 172. With additional reference to
Disc 168 may also further define an inner annular series of spaced apart through-holes, such as chamfered spring stop holes 180a-180h. Each respective spring stop hole 180a-180h is configured to align radially with its respective flow metering hole 176a-176h. In operation, a selected one of holes 180a-180h is aligned with spring well 164 whereby a positive stop member, such as ball bearing 182, seats within a portion of the selected spring stop hole 180a-180h through urging of stop spring 166 resident within spring well 164. In this manner, a user may receive feedback indicating proper alignment of the selected flow metering hole 176a-176h upon seating of ball bearing 182. To change the amount of liquid concentrate added to the diluent stream, a user may rotate disc 168 whereby disc 168 may apply downward force against ball bearing 182 so as to compress stop spring 166 within spring well 164. Disc 168 may then be further rotated until the desired flow metering hole 176a-176h is aligned with internal bore 178 of fitment 62 such that ball bearing 182 seats within the desired spring stop hole 180a-180h. As most clearly shown in
As seen most clearly in
As further seen in
With reference to
Turning now to
In accordance with one aspect of the invention, flow to spray nozzle 230 or boom 232 may be selectively controlled by a selector valve 236. Flow control at each boom nozzle 234 may also be further controlled by respective ball valve 238. Spray nozzle 230 may also include a pressure reducing valve 240 which is metered to control the fluid pressure of the mixed fluid entering spray nozzle 230 so as to minimize or prevent damage to spray nozzle 230.
Positive displacement pump 42 may include a pressure by-pass circuit 242 fluidly coupling pressure port 226 with suction port 224. Pressure by-pass circuit 242 may operate to decrease the fluid pressure of the mixed fluid being delivered to spray nozzle 230 while also maintaining segregation of the mixed fluid from either first tank 12 or second tank 16. Pressure by-pass circuit 242 may be either internal to positive displacement pump 42 of may be en external pressure by-pass loop around positive displacement pump 42.
Turning now to
Turning now to
With reference to
In operation, a low pressure fluid is drawn into positive displacement pump 42 through second end 380 of input flow fitting 344 during the suction stroke of the pump. In accordance with an aspect of the present invention, this fluid is received from mixing manifold 38 and may include a liquid concentrate, such as a chemical from second tank 16, mixed within a diluent (water) from first tank 12. As described above, mixing of the fluids within mixing manifold 38 generates a discharge fluid having the liquid concentrate at a user-selected, consistent dilution. Upon further operation of positive displacement pump 42, the fluid is charged to a high pressure through the discharge stroke of the pump. This high pressure fluid is then discharged through flow diverter valve 336. Depending upon the positioning of handle 360 and ball valve 358, the high pressure fluid may exit through either high pressure fitting 364 or by-pass fitting 368. If the fluid path within flow diverter valve 336 is directed toward high pressure fitting 364, all of the high pressure fluid will flow through high pressure fitting 364 for downstream delivery to a boom sprayer 232 or other high pressure output. Alternatively, if the fluid path within flow diverter valve 336 is directed toward by-pass fitting 368, a sprayer portion of the fluid is delivered downstream through second end 370 to the low pressure output, such as a handheld wand 230, while the remainder of the fluid flow (the by-pass portion) is recycled to input flow fitting 344 through by-pass arm 372 and by-pass line 348.
In accordance with an aspect of the present invention, the amount of fluid flow received by input flow fitting 344 from flow diverter valve 336 may be selectively controlled by needle valve assembly 346. That is, needle 386 may be selectively positioned within flow control channel 384 (such as via knob 391) so as to constrict or expand to open volume of by-pass orifice 395. For instance, by advancing needle 386 toward fluid flow path 377, the open volume of by-pass orifice 395 is decreased. As a result, less fluid may be received by flow control channel 384, thus decreasing the volume of the by-pass portion and increasing the volume (and pressure) of the sprayer portion. Conversely, by retreating needle 386 away from fluid flow path 377, the open volume of by-pass orifice 395 is increased. As a result, more fluid may be received by flow control channel 384, thus increasing the volume of the by-pass portion and decreasing the volume (and pressure) of the sprayer portion. Therefore, the volume and pressure of the sprayer portion may thus be selectively controlled by needle 386 and knob 391. It should also be noted that the by-pass portion is recycled prior to positive displacement pump suction port 224 but after mixing manifold 38. Thus, the by-pass portion is fed into already mixed fluid and not either the first tank 12 or second tank 16 as is known in the art. Therefore, dilution of the liquid concentrate is not changed when alternating between high flow and low flow operations, the diluent tank 12 does not become contaminated by the chemicals of the liquid concentrate within the by-pass portion, and the liquid concentrate is not diluted in its tank 16 by the by-pass portion. As a result, the unwanted rapid cycling of the pump and its cut off switch is eliminated while also preserving the desired dilution of the liquid concentrate within the sprayed fluid without contamination of the supply tanks.
The foregoing description of the preferred embodiment of the invention has been presented for the purpose of illustration and description. It is not intended to be exhaustive nor is it intended to limit the invention to the precise form disclosed. It will be apparent to those skilled in the art that the disclosed embodiments may be modified in light of the above teachings. The embodiments described are chosen to provide an illustration of principles of the invention and its practical application to enable thereby one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. Therefore, the foregoing description is to be considered exemplary, rather than limiting, and the true scope of the invention is that described in the following claims.
This application is a continuation-in-part of pending U.S. patent application Ser. No. 15/725,937 filed Oct. 5, 2017, and entitled “MIX ON DEMAND SPRAYER,” the contents of which are fully incorporated herein.
Number | Name | Date | Kind |
---|---|---|---|
2788245 | Gilmour | Apr 1957 | A |
2991939 | Packard | Jul 1961 | A |
3491948 | Alexander | Jan 1970 | A |
3760982 | Haase | Sep 1973 | A |
3921907 | Anderson | Nov 1975 | A |
4790454 | Clark et al. | Dec 1988 | A |
4821959 | Browing | Apr 1989 | A |
5035580 | Simonette | Jul 1991 | A |
5086582 | Hamilton | Feb 1992 | A |
5397054 | Ziegs | Mar 1995 | A |
5465874 | Roach et al. | Nov 1995 | A |
5941416 | Balz et al. | Aug 1999 | A |
5984143 | Pettis et al. | Nov 1999 | A |
6206300 | Roudebush | Mar 2001 | B1 |
6604546 | Gilmore | Aug 2003 | B1 |
8313311 | Gonzalez Chapa | Nov 2012 | B2 |
20100282862 | Gilpatrick | Nov 2010 | A1 |
20110079659 | Wilken et al. | Apr 2011 | A1 |
20110142685 | Gilpatrick | Jun 2011 | A1 |
Entry |
---|
EPOWERWASH: “All About Unloader Valves,” Retrieved from: http://www.epowerwash.com/wp/archives/631; (Accessed Nov. 8, 2017). |
NorthStar ATV Spot Sprayer—10-Gallon Capacity, 1 GPM, 12 Volt; http://www.northerntool.com/shop/tools/product_200631851_200631851?cm_mmc=Google-pla&utm_source=Google_PLA&utm_medium=Lawn%20%2B%20Garden%20%3E%20Sprayers%20%3E%20Broadcast%20%2B%20Spot%20Sprayers&utm_campaign=NorthStar&utm_content=2681022&gclid=Cj0KCQjw8b_MBRDcARIsAKJE7ImwtL81IIMUbQLnG0bzly3KSQs0wh5BeQojYUjxt-ESz0hdaopvW_0aAorHEALw_wcB (Accessed Aug. 1, 2017). |
Lawn Care Sprayers; http://riverbendind.com/lawncare-sprayers/ (Accessed Aug. 1, 2017). |
Dual Tank Poly Skid Sprayers; http://www.randkpump.com/ (Accessed Aug. 1, 2017). |
Number | Date | Country | |
---|---|---|---|
20190105675 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15725937 | Oct 2017 | US |
Child | 15952416 | US |