The present invention relates to the general field of inline exhaust fan assemblies, and more particularly to mixed flow fan assemblies.
In a mixed flow fan assembly, the primary exhaust gas/air flow enters the impeller axially, i.e., parallel to the impeller shaft axis, and is discharged from the impeller with both axial and radial velocity components. The objective of the present invention is to provide a mixed flow fan assembly with greater static efficiency and reduced noise output, thereby reducing the energy required to run the fan at an equivalent performance level. The fan assembly described herein is designed to operate upstream of a discharge nozzle, such as the induction nozzle described in U.S. patent application Ser. No. 13/067,269, the disclosure of which is incorporated herein by reference.
The present invention modifies the standard design of a mixed flow fan in four ways:
(1) The back plate of the fan wheel is provided with blades or contours so as to draw fresh ambient air through a multi-purpose port in the fan housing, over a direct drive fan motor, and down into the fan wheel shroud through an aperture at the common centerline. This ambient air flow serves three purposes: (a) cooling the fan motor, as well as a variable frequency drive (VFD), if present; (b) maintaining positive pressure in the motor enclosure so as to segregate it from potentially contaminated primary exhaust flowing through the annular space around it; (c) diluting the primary effluent and increasing the volumetric flow rate of air/gas exiting the fan discharge, thereby increasing static efficiency.
(2) One or more openings are provided in the base of the fan housing or between the fan housing and the plenum or roof curb on which it is mounted. Fresh ambient air is induced through the opening(s) by the venturi effect of the primary exhaust exiting the fan wheel shroud. This induced air flow will enter the area surrounding the fan wheel shroud and the inlet bell and balance the low pressure generated in this region by the increased velocity of the primary exhaust exiting the fan wheel shroud. Otherwise, this low pressure region will draw some of the primary exhaust from the impeller outlet back down below the impeller inlet, causing recirculation of a portion of the primary exhaust airstream and consequent loss of efficiency. By minimizing primary exhaust recirculation and adding induced ambient air, the volumetric flow rate is increased to produce greater static efficiency.
(3) Impeller blades are designed with airfoil profiles, with an overlap of substrate at the trailing edge creating a single-thickness trailing edge, which can be shaped and/or perforated to reduce operational fan noise.
(4) In order to axially redirect the radial and tangential velocity vectors of the primary exhaust leaving the fan wheel shroud, full length straightening vanes are provided in the annular space within the fan housing. Each straightening vane transitions from a curved leading edge to a substantially axial trailing edge, thereby transitioning the primary airflow to an axial flow as it exits the fan housing. This reorientation of the primary airflow velocity results in a greater volumetric flow rate and increased overall static efficiency of the fan assembly.
The foregoing summarizes the general design features of the present invention. In the following sections, specific embodiments of the present invention will be described in some detail. These specific embodiments are intended to demonstrate the feasibility of implementing the present invention in accordance with the general design features discussed above. Therefore, the detailed descriptions of these embodiments are offered for illustrative and exemplary purposes only, and they are not intended to limit the scope either of the foregoing summary description or of the claims which follow.
Referring to
The upper portion of the fan housing 11 is internally divided into an axially central cylindrical motor enclosure 23 surrounded by an annular cylindrical exhaust plenum 16. The motor enclosure 23 contains an in-line fan motor 12, which is mounted on a vertical mounting plate 24, thereby enabling the bottom of the motor enclosure 25 to remain open. A multi-purpose port 13 accesses the interior of the motor enclosure 23 through the exterior of the fan housing 11 and the exhaust plenum 16.
In the lower portion of the fan housing 11 below the motor enclosure 23 is the fan wheel 18, which comprises a shroud 19, a back plate 21, and a wheel cone 33. Multiple impeller blades 20 are attached to both the wheel cone 33 and the shroud 19. The shroud 19 has an inverted bell shape comprising a sphero-conical section, which opens at its lower end into a substantially frusto-conical inlet bell 14. The upper opening of the inlet bell 14 has a slightly smaller circumference than that of the lower opening of the shroud 19, so that the fan wheel 18 can rotate without interference. The lower end of the inlet bell 14 opens into the mounting plenum 15, through which the primary exhaust gas/air flows upward into the fan housing 11.
In operation, the fan motor 12 imparts rotation to the fan wheel 18 via a motor-impeller shaft coupling 27. The rotating impeller blades 20 draw the primary exhaust flow upward through the inlet bell 14 and the fan wheel shroud 19, from which the exhaust flow is accelerated upward into the annular exhaust plenum 16 and discharges through the top of the fan housing 11.
Referring to
One of the problems with mixed flow fans is that the venturi effect of the exhaust flow exiting from the wheel shroud 19 up into the annular exhaust plenum 16 creates a low pressure region in the lower portion of the fan housing 11 around the exteriors of the wheel shroud 19 and the inlet bell 14 (as best seen in
The present invention 10 addresses this problem by creating openings in and/or around the base 17 of the fan housing 11. In the embodiment illustrated in
Another problem associated with mixed flow fan designs is the loss of efficiency due to radial and tangential velocity components of the primary exhaust flow exiting the fan wheel shroud 19. The present invention addresses this problem by providing multiple straightening vanes 28, which extend radially from the perimeter of the motor enclosure 23 through the annular exhaust plenum 16 to the fan housing 11. As shown in
Referring now to
Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that many additions, modifications and substitutions are possible, without departing from the scope and spirit of the present invention.
This application claims the benefit of the filing date of Provisional Application No. 61/718,349, filed Oct. 25, 2012.
Number | Name | Date | Kind |
---|---|---|---|
3584968 | Keith | Jun 1971 | A |
3719032 | Cash | Mar 1973 | A |
4089618 | Patel | May 1978 | A |
4344370 | Smith | Aug 1982 | A |
4806076 | Andrews | Feb 1989 | A |
5439349 | Kupferberg | Aug 1995 | A |
5938527 | Oshima | Aug 1999 | A |
6112850 | Secrest et al. | Sep 2000 | A |
6431974 | Tetley et al. | Aug 2002 | B1 |
6509081 | Diamond | Jan 2003 | B1 |
6676503 | Hill et al. | Jan 2004 | B2 |
7241214 | Sixsmith | Jul 2007 | B2 |
7547249 | Seliger et al. | Jun 2009 | B2 |
Number | Date | Country | |
---|---|---|---|
20140119892 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
61718349 | Oct 2012 | US |