This application claims priority from our German application DE 20 2010 015 749.8, which is hereby incorporated by reference.
The present invention relates to a mixed flow fan which outputs air partly in an axial direction and partly in a radial direction.
Such a mixed-flow or “diagonal” fan is known from DE 41 27 134 B4 and corresponding U.S. Pat. No. 5,695,318, HARMSEN, issued 9 Dec. 1997. The fan has a housing that defines, together with the fan wheel of the mixed flow fan, an air flow conduit, within which the fan blades provided on the fan wheel rotate. The fan wheel is also often referred to as an “impeller.”
The enveloping curve of the fan wheel has, for example, a frusto-conical shape, or the shape of a spherical cap. If the drive motor is an external-rotor motor, the hub of the fan wheel is nonrotatably connected to the external rotor of the motor. There remains, between the outer side of the external rotor and the outer side of the fan wheel, an annular cavity, on whose periphery are provided pockets for insertion of balancing weights. It is well known, in the rotating machine art, that rotors wobble the least, and operate most smoothly, when the rotor's center of mass coincides with the central axis of the rotor, and supplemental balancing weights are inserted, when necessary, to adjust for undesired asymmetries which may occur due to manufacturing variations and the like.
It is an object of the invention to provide a novel mixed-flow fan structure.
According to the invention, this structural object is achieved with an external-rotor drive motor in which the rotor includes a tubular ferromagnetic yoke, embedded at one point in material of the impeller of the fan, and defining a central cavity in the impeller, into which fits a generally cup-shaped yoke having a permanent magnet arrangement inside, with the result that the permanent magnet arrangement magnetically interacts with the internal stator of the motor, and the tubular yoke and the cup-shaped yoke together serve as a ferromagnetic return path for the external-rotor motor.
The tubular ferromagnetic yoke performs, on the one hand, a magnetic function for the motor and, on the other hand, forms a kind of mechanical reinforcing backbone for the impeller; these functions do not interfere with one another. At the same time, this part also acts as a cooling element for the motor, which dissipates heat outward, and thereby tends to prevent or counteract formation of hot spots in the interior of the impeller.
Another manner of achieving the stated object is to structure the fan wheel with blades projecting outward from a generally concave or hemi-spherical hub formed with a first plurality of pockets for insertion of balancing weights, in a first plane near the air inlet end, and a second plurality of pockets for insertion of balancing weights, in a second plane near the air discharge or outlet end of the fan wheel, and to connect the respective portions, formed with the balancing pockets, by a first plurality of generally curved longitudinal ribs and at least one second rib, extending circumferentially, and connecting together the longitudinal first ribs. The facts that, on the one hand, ribs are provided in the annular cavity and extend therein from inside to outside and, on the other hand, that at least one rib proceeding in a circumferential direction is provided, which rib connects at least some of the ribs proceeding from inside to outside into a kind of ribbed vault, for example such as a reticulated vault, define between the ribs many small pockets that, in contrast to large pockets as found in the prior art, do not cause strong turbulence. The reason this novel structure was chosen is that strong turbulence would decelerate the fan wheel, and thereby cause a considerable power loss, which would decrease the fan performance and cause the external-rotor motor and its electronics to reach their upper performance limit already at low rotation speeds, so that the fan performance would be low.
In a mixed flow fan of this kind, the improved fan wheel can be manufactured with little outlay, for example as a cast or an injection-molded part, and once the fan wheel has been connected to the rotor of the external-rotor motor, it needs only to be balanced, which in this case is particularly simple, because balancing pockets for two parallel, spatially-separated, balancing planes (each orthogonal to the rotor axis) are reachable from the air-discharge side of the fan wheel. Procedures for two-plane balancing are known, for example from the document published Jan. 18, 2011 at the National Instruments website, www.ni.com, entitled “Two-Plane Balancing Using LabVIEW PDA and NI CF-6004 CompactFlash Data Acquisition Card.”
A further manner of achieving the stated object is to structure the external-rotor motor with an internal stator and an external rotor, the rotor including a tubular ferromagnetic yoke formed near the air inlet end with a splayed or widened end which is accessible, during the assembly process, from the air inlet side of the fan wheel. A smaller-diameter cup-shaped ferromagnetic yoke, which accommodates, in its interior, a permanent magnet arrangement, is adapted to be press-fitted into one end of the tubular yoke. The tubular yoke and the cup-shaped yoke together serve as a magnetic return path for the permanent magnet arrangement. Assembly of the fan is made substantially easier as a result of this configuration, since introduction of the cup-like ferromagnetic yoke into the tubular ferromagnetic yoke sometimes requires considerable force, which could result in damage to the impeller; and because the tubular ferromagnetic yoke is accessible from the outer side of the impeller, it can be braced directly from the outer side of the impeller so that, with this structure, no deforming mechanical forces are exerted on the impeller during assembly, and damage to the impeller is thus reliably avoided.
Further details and advantageous refinements of the invention are evident from the exemplifying embodiments, in no way to be understood as a limitation of the invention, that are described below and depicted in the drawings.
Fan 40 has a housing 42 in which a fan rotor 43, which is usually referred to as an “impeller,” is arranged. A plastic part 46 is installed in housing 42 on inlet side 44. This part defines the outer edge or wall of an air conduit 50 that extends from inlet 44, in a frusto-conical manner, to an air discharge outlet 52. Housing 42 has an upper part 53 that is connected, via connecting elements 45, to a base part 47 through which an electrical connector lead 49 extends outward. Base part 47 is highlighted in gray.
The inner edge or wall of air conduit 50 is defined by the approximately dome-shaped or spherical-cap-shaped outer surface 56 of fan rotor 43 (
Fan rotor 43 has at the bottom, in
Blades 58 are preferably arranged in an overlapping configuration. Together with fan rotor 43, they form the impeller of fan 40. The impeller is preferably manufactured by plastic casting. Mounted in it is a portion of a tubular yoke 63, made of ferromagnetic material, that extends almost to the upper side of impeller 43. Part 63 is part of a magnetic return path for a rotor magnet 66 that is shown in
At its outer (left) end in
Tubular part 63 is also referred to as a “circular blank.” It defines, within its inner surface, a cavity 68 having a wall 70. Provided on wall 70 are flat elevations or bosses 71 that can have, for example, a height of approximately 0.1 to approximately 0.3 mm and a diameter of, for example, 5 mm. Approximately six elevations 71 are usually sufficient; in
As
In order to enable press-fitting, tubular part 63 is braced by means of a counterforce F2 that engages against the outwardly projecting rim 67 of part 63. This rim 67 is therefore not located in the interior of impeller 43, i.e. is not cast into it, so that a retainer (not shown) can engage against the rim 67 and can exert counterforce F2 onto part 63.
Impeller 43 has for this reason, on its upper (in
When external rotor 81 is press-fitted, its outer side 73 is what is principally pressed into the flat elevations or bumps 71 and thereby securely connected to tubular part 63. Rotor magnet 66 is mounted, in a suitable manner, in the interior of cup-shaped part 72.
In
The bottom of yoke part 72 is labeled 77. A shaft 90 is mounted on it, by means of a welded bushing 80 (see also
A cup-shaped yoke 72, made of ferromagnetic material, shown in
Impeller 43 has, on the right in
Blades 58 are preferably arranged in an overlapping configuration. Together with support structure 54, they form impeller 43 of fan 40. Impeller 43 is preferably manufactured by plastic molding and, if applicable, could also be assembled from a plurality of parts, for example by splitting in an axial direction.
Impeller 43 has, on its inner side, a cylindrical extension 70′ (see
Provided in connecting part 74 are second balancing pockets 76 (
This kind of configuration of fan 40 thus makes it possible to balance impeller 43 from a single side, namely the air-discharge side visible in
Fan blades 58 can also have an S-shaped profile 80 on their leading edges (
As
Fan 40 is driven by an electronically commutated external-rotor motor (ECM) 75. Magnetic yoke 72 of the rotor is, as described, connected to cylindrical extension 70′ of connecting part 74. It is, in turn, drivingly connected to a shaft 90 that is journaled in a bearing tube 92, in this case by means of two ball bearings 94, 96 that are tensioned against one another by means of a compression spring (not shown). Magnetic yoke 72 rotates around longitudinal axis 78 during operation.
Motor 75 has an internal stator 100 that is mounted on the outer side of bearing tube 92. Located in this instance below internal stator 100 is a circuit board 102 on which electronic components for motor 75 can be arranged. Bearing tube 92 is connected to a flange plate 106 that is in turn connected to external housing 42 in a suitable manner, usually by way of struts 103, one of which is visible in
In practice, the bearing tube 92, struts 103, flange 106, and fan housing 42 can be formed as a one-piece pressure-cast aluminum part or a one-piece plastic part. A multi-part embodiment is also possible.
Because external-rotor motor 75 is arranged in the interior of impeller 43, it is relatively poorly cooled. An additional fan arrangement 120 similar to a disk is therefore preferably provided above motor 75, and in this case is driven directly by shaft 90. It sits directly on external rotor 72 and draws in air through openings 122 that are provided there (see
This air first flows through motor 75 and cools it. During operation, mixed flow fan 40 of
From motor 75, the cooling air flows through openings 122 of cup-shaped part 72 to air disk 120, which is configured as a radial blower wheel. It reinforces the effect of the second pressure and draws air through openings 122.
Air disk 120 can either be manufactured directly (e.g. by injection molding) on impeller 43 upon manufacture of the latter, or can be mounted on impeller 43. Cooling air is blown out radially from air disk 120 through exit openings 126 (
Mixed flow fan 40 has, on its air inlet side 44, adjacent disk 120, a low pressure that is usually somewhat lower than the first pressure, since air is being drawn in there to inlet opening 44. This drawn-in air flows through exit openings 126 and generates there, as a result of the Venturi effect, an additional negative pressure that intensifies the flow of cooling air through motor 75 and thereby further improves the cooling thereof. The pressure generated on exhaust side 52 by the fan itself also additionally intensifies the cooling effect.
As
Extending perpendicular to first ribs 130 (here, in a circumferential direction) are second ribs 132, 134 which form, with first ribs 130, a kind of ribbed vault and are connected to the first ribs at intersection points 142. First ribs 130 and second ribs 132, 134 form, with each other, small cavities 136 that, during the operation of fan 40, cannot cause any substantial turbulence and therefore cannot cause any large losses.
First ribs 130 have angular spacings of approximately 5° to approximately 20°. As
The configuration of ribs 130, 132, 134 thus results, without substantial additional cost, in an improvement in the performance of mixed flow fan 40, since turbulence in the interior of impeller 66 becomes greatly reduced.
Many variants and modifications are of course possible, within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
20 2010 015 749 U | Nov 2010 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2829287 | Soler Font Eduardo | Apr 1958 | A |
5591008 | Wrobel et al. | Jan 1997 | A |
5695318 | Harmsen | Dec 1997 | A |
6168734 | Botros | Jan 2001 | B1 |
7063507 | Hsieh | Jun 2006 | B2 |
7112906 | Chou et al. | Sep 2006 | B2 |
20080063542 | Oguma | Mar 2008 | A1 |
20080131283 | Elsaesser et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
41 36 293 | May 1992 | DE |
41 27 134 | Feb 1993 | DE |
102006-057087 | Jun 2008 | DE |
202010 013 785 | Feb 2011 | DE |
WO 2011-038 884 | Apr 2011 | WO |
Entry |
---|
Nat'l Instruments,“Two-Plane Balancing Using LABVIEW PDA etc” Jan. 18, 2011, pp. 1-7, available at website www.NI.com. |
Number | Date | Country | |
---|---|---|---|
20120177515 A1 | Jul 2012 | US |