The present disclosure relates generally to refrigerant fluid processing systems and, in particular, to a condenser outlet manifold and system for separating phases of a mixed refrigerant.
Gases, such as natural gas, are often liquefied for storage and transport. Systems for liquefying gases typically chill the gas through indirect heat exchange with a refrigerant in a heat exchanger (which is typically inside a “cold box”). Efficiency in terms of energy usage is a primary issue for liquefaction systems. Use of a mixed refrigerant in the refrigeration cycle(s) for the system increases efficiency in that the warming curve of the refrigerant more closely matches the cooling curve of the gas.
The refrigeration cycle for the liquefying system will typically include a compression system for conditioning or processing the mixed refrigerant. Processing of the mixed refrigerant may include separating liquid and vapor phases so that they may be directed to portions of the heat exchanger to provide more efficient cooling. Examples of such systems are provided in commonly owned U.S. Pat. No. 9,441,877 to Gushanas et al., U.S. Patent Application Publication No. US 2014/0260415 to Ducote, Jr. et al. and U.S. Patent Application Publication No. US 2016/0298898 to Ducote, Jr. et al., the contents of each of which are hereby incorporated by reference.
A mixed refrigerant compression system typically includes one or more stages, with each stage including a compressor, a condenser and a separation and liquid accumulator device. Vapor exiting the compressor is cooled in the condenser, and the resulting two-phase or mixed phase stream is directed to the separation and liquid accumulator device, from which vapor and liquid exit for further processing and/or direction to the liquefaction heat exchanger.
With reference to
While the components of
There are several aspects of the present subject matter which may be embodied separately or together in the devices and systems described and claimed below. These aspects may be employed alone or in combination with other aspects of the subject matter described herein, and the description of these aspects together is not intended to preclude the use of these aspects separately or the claiming of such aspects separately or in different combinations as set forth in the claims appended hereto.
In one aspect, a system for condensing and phase separating a refrigerant fluid includes a condenser inlet header configured to receive a stream of refrigerant vapor. The condenser inlet header also has a condenser header outlet. The system also has a condenser having a vapor inlet in fluid communication with the condenser header outlet and a mixed phase fluid outlet. The condenser is configured to receive vapor through the vapor inlet and to produce a mixed phase fluid stream that exits the condenser through the mixed phase outlet. An elongated manifold separator including multiple mixed phase inlets is in fluid communication with the mixed phase outlet of the condenser. The manifold separator is configured to separate mixed phase refrigerant fluid received through the mixed phase inlet into vapor and liquid and includes a vapor outlet through which a resulting vapor stream exits the manifold separator and a liquid outlet through which a resulting liquid stream exits the manifold separator. A vapor collection header having an inlet is configured to receive a vapor stream from the manifold separator vapor outlet and also has a vapor collection header outlet. A liquid collection header having an inlet is configured to receive a liquid stream from the manifold separator liquid outlet and also has a liquid collection header outlet.
In another aspect, a manifold separator has an elongated body defining a separation chamber and includes multiple mixed phase inlets configured so that a mixed phase refrigerant fluid is received within the separation chamber. The body also includes a vapor outlet configured so that a vapor stream may exit the separation chamber and a liquid outlet configured so that a liquid stream may exit the separation chamber.
In still another aspect, a liquefaction system includes a liquefaction heat exchanger having one or more refrigeration passages, a warm end and a cold end. The liquefaction heat exchanger is configured to receive a feed gas at the warm end, to liquefy the gas, and to dispense the liquefied gas from the cold end. The liquefaction system also includes a compression system having a condenser inlet header configured to receive a stream of refrigerant vapor. The condenser inlet header also has a condenser header outlet. The system also has a condenser having a vapor inlet in fluid communication with the condenser header outlet and a mixed phase fluid outlet. The condenser is configured to receive vapor through the vapor inlet and to produce a mixed phase fluid stream that exits the condenser through the mixed phase outlet. An elongated manifold separator including multiple mixed phase inlets is in fluid communication with the mixed phase outlet of the condenser. The manifold separator is configured to separate mixed phase refrigerant fluid received through the mixed phase inlet into vapor and liquid and includes a vapor outlet through which a resulting vapor stream exits the manifold separator and a liquid outlet through which a resulting liquid stream exits the manifold separator. A vapor collection header having an inlet is configured to receive a vapor stream from the manifold separator vapor outlet and also has a vapor collection header outlet that is in fluid communication with one of the one or more refrigeration passages of the heat exchanger. A liquid collection header having an inlet is configured to receive a liquid stream from the manifold separator liquid outlet and also has a liquid collection header outlet that is in fluid communication with one of the one or more refrigeration passages of the heat exchanger.
A mixed refrigerant condensing and separating system is indicated in general at 50 in
A condenser receives the vapor from the condenser inlet distribution header 54. As an example only, the condenser may include a pair of heat exchangers indicated in general at 58a and 58b. Of course an alternative number of heat exchangers may be used for the condenser, including one heat exchanger or more than two heat exchangers.
Heat exchangers 57 are preferably air cooled heat exchangers (ACHX) that feature multiple tube bundles 60a, 60b, 60c and 60d in air cooler bays 58a and 58b. The tube bundles of the heat exchangers receive the vapor from condenser inlet distribution header 54 via piping lines 62a, 62b, 62c and 62d. As an example only, suitable ACHX include CSC, HAPPY, ESEX and TRI-THERMAL forced draft and induced draft models available from Chart Industries, Inc. of Canton, Ga.
The terms line, piping and pipe are used interchangeably throughout the disclosure and indicate structure capable of carrying a stream of fluid.
The heat exchangers may instead be water cooled, or other types of condensers or heat exchangers known in the art may alternatively be used.
The resulting two-phase or mixed phase outlet streams from the condenser tube bundles 60a, 60b, 60c and 60d are routed to an elongated condenser outlet manifold separator 64 via piping or lines 66a, 66b, 66c and 66d. The manifold separator includes a body that defines an interior separation chamber which receives the mixed phase stream from piping 66a-66d through corresponding inlets formed in the manifold separator body. While the manifold separator is shown as having a generally pipe-shaped body (with closed ends) and thus a cylindrical separation chamber, the manifold may alternatively use other geometries.
Upon arrival in the manifold separator 64, the two-phase or mixed phase streams separate into liquid, which collects in the bottom of the manifold separator, and vapor, which collects in the headspace above the liquid in the manifold separator.
Vapor from the headspace of the elongated manifold separator 64 travels via vapor outlet pipes 68a and 68b to a vapor collection header 72 after exiting the separation chamber of the manifold separator through vapor outlets formed in the top portion of the manifold separator body. The liquid from the bottom of the manifold separator 64 travels via liquid outlet pipes 74a and 74b to a liquid collection header 76 after exiting the separation chamber of the manifold separator through liquid outlets formed in the bottom portion of the manifold separator body.
The vapor is routed from the vapor collection header 72 to a corresponding passage in the liquefaction heat exchanger/cold box 52 via piping 78 for use in liquefying a gas passing through the heat exchanger, or cooling in preparation for such use. The liquid from the liquid collection header 76 is routed to a mixed refrigerant liquid surge drum or vessel 82 via piping 84. As indicated at 86 in
The liquid surge drum 82 may be of horizontal (as illustrated) or vertical design and is not restricted in its location. It can be located independently at grade, in a pipe rack or module, or inside a cold box, so long as it is located such that its highest intended liquid fill level is below the elevation of the manifold separator 64.
A pressure equalization line, indicated at 90 in
The manifold separator 64 is equipped with at least one mixed phase inlet per bundle 60a-60d with a minimum of two inlets total from the bundles in each of the bays 58a and 58b. The inlet may be a bare nozzle or it may optionally be equipped with a separator inlet device 92a-92d (
Another example of separator inlet device is a baffle plate separator inlet device, an example of which is indicated in general at 92a in
Another example of a separator inlet device is a half pipe separator inlet device, an example of which is indicated in general at 92a in
For each condenser bay, the manifold separator inlets or inlet nozzles are preferably similarly positioned, such as being placed at the outer edges of each bundle or the outer edges of each bay (as illustrated in
The vapor and liquid outlet nozzles of the manifold separator 64 (which communicate with lines 68a-68b and 74a-74b, respectively) are placed in the long distances between the inlet nozzles (which communicate with lines 66a-66d). These outlet nozzles are sized for the full flow of each phase from the two closest inlet nozzles.
The vapor outlets of the manifold separator may optionally be equipped with outlet nozzles with (or without) vapor/liquid disengagement devices 94a and 94b, which may be, as examples only, mesh pads, vane packs or other mist elimination devices known in the art including, but not limited to, the KNITMESH, KNITMESH V-MISTER, MELLACHEVRON and SHELL SWIRLTUBE mist eliminators available from Sulzer Chemtech of Winterthur, Switzerland.
As illustrated in
As illustrated in
An example of a prior art mixed refrigerant compression system within which the manifold separator and the mixed refrigerant condensing and separating systems described above may be used is presented in
While
The above embodiments of the manifold separator of the disclosure therefore serve as a multi-inlet, multi-outlet horizontal separator along the length of the condenser (air cooler bank in the illustrated embodiments). Essentially, the manifold separator performs the separation function of the conventional mixed refrigerant accumulator, while the mixed refrigerant liquid surge drum performs the liquid storage function of the conventional mixed accumulator.
The proportions and orientation of the manifold separator 64 may be varied from what is shown in
While achieving the same or similar vapor/liquid separation as the system of
While the preferred embodiments of the disclosure have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made therein without departing from the spirit of the disclosure, the scope of which is defined by the following claims.
This application claims the benefit of U.S. Provisional Application No. 62/558,706, filed Sep. 14, 2017, the contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4181174 | Grenier | Jan 1980 | A |
5597037 | Asada et al. | Jan 1997 | A |
5724833 | Devers | Mar 1998 | A |
6318116 | Gabel et al. | Nov 2001 | B1 |
20100031697 | Hinde et al. | Feb 2010 | A1 |
20150316333 | Davies et al. | Nov 2015 | A1 |
20160271542 | Huff et al. | Sep 2016 | A1 |
20170010043 | Ducote, Jr. et al. | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
303754 | Feb 1982 | DE |
H 04-29703 | Jan 1992 | JP |
H0618165 | Jan 1994 | JP |
H07243760 | Sep 1995 | JP |
2000320933 | Nov 2000 | JP |
2000337732 | Dec 2000 | JP |
2003004343 | Jan 2003 | JP |
2004211949 | Jul 2004 | JP |
2004308968 | Nov 2004 | JP |
2008196721 | Aug 2008 | JP |
4191847 | Dec 2008 | JP |
2015-034637 | Feb 2015 | JP |
2016180548 | Oct 2016 | JP |
WO-2013076971 | May 2013 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority for PCT Appl. No. PCT/US2018/050891 dated Dec. 6, 2018. |
European Office Action dated Oct. 21, 2022 for European Application No. 18783211.8. |
Notice of Reasons for Rejection for Japanese Patent Application No. 2020-515111 dated Jul. 8, 2022. |
Number | Date | Country | |
---|---|---|---|
20190078820 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62558706 | Sep 2017 | US |