Mixer and processes incorporating the same

Information

  • Patent Grant
  • 10065157
  • Patent Number
    10,065,157
  • Date Filed
    Monday, October 14, 2013
    10 years ago
  • Date Issued
    Tuesday, September 4, 2018
    5 years ago
Abstract
The present invention relates to a mixer, an apparatus comprising the mixer and a reactor, and processes incorporating the same. The mixer comprises an inlet (104) to a chamber (102), wherein the chamber inlet angle is less than 90°. The mixer further comprises an expander zone (106) that expands outwardly at an expander angle of less than 90°. The mixer may be coupled to a reactor at its outlet, which may closely approximate the size of the reactor inlet due to the expander (106).
Description
FIELD

The present invention relates to an efficient and effective mixer, an apparatus comprising the mixer and a reactor, and processes incorporating the same.


BACKGROUND

Hydrofluorocarbon (HFC) products are widely utilized in many applications, including refrigeration, air conditioning, foam expansion, and as propellants for aerosol products including medical aerosol devices. Although HFC's have proven to be more climate friendly than the chlorofluorocarbon and hydrochlorofluorocarbon products that they replaced, it has now been discovered that they exhibit an appreciable global warming potential (GWP).


The search for more acceptable alternatives to current fluorocarbon products has led to the emergence of hydrofluoroolefin (HFO) products. Relative to their predecessors, HFOs are expected to exert less impact on the atmosphere in the form of a lesser or no detrimental impact on the ozone layer and their much lower GWP as compared to HFC's. Advantageously, HFO's also exhibit low flammability and low toxicity.


As the environmental, and thus, economic importance of HFO's has developed, so has the demand for precursors utilized in their production. Many desirable HFO compounds, e.g., such as 2,3,3,3-tetrafluoroprop-1-ene or 1,3,3,3-tetrafluoroprop-1-ene, may typically be produced utilizing feedstocks of chlorocarbons or chlorofluorocarbons, and in particular, chlorinated propenes.


Unfortunately, many chlorinated propenes may have limited commercial availability, and/or may only be available at potentially prohibitively high cost, due at least in part to the propensity of the conventional processes typically utilized in their manufacture to result in the production of large quantities of secondary products, i.e., waste and/or by-products. Any such secondary products produced not only have to be separated from the final product and disposed of, but also, can result in system fouling prior to doing so. Both of these outcomes can introduce substantial expense, further limiting the commercial potential of processes in which the production of such secondary products is not reduced or eliminated. Further, these problems become exacerbated on process scale-up, so that large scale processes can become cost prohibitive quickly.


In many conventional processes for the production of chlorinated propenes, formation of excessive secondary products can be difficult to avoid since many such processes require only partial conversion of the limiting reagents. Greater conversions can result in the production of large quantities of secondary products. Excessive conversion, in turn, can be caused by backmixing of reactants and/or products.


Various mixers have been developed in efforts to minimize backmixing of reactants that may occur prior to entry into the reactor; however, none of these are without detriment. For example, mixers have been provided having the same diameter as the reactor so that backmixing zones are not created at the junction there between. When coupled with appropriate introduction of reactants, these mixers have proven effective, but can yet be suboptimal.


First, building a mixer with the same large diameter, e.g., up to 8 feet, as many reactors for the production of chlorinated propenes can be costly. Furthermore, the use of large diameter mixers can make the desired flow distribution within the mixer difficult to obtain due to the drop in pressure and velocity of the reactants upon entry into the mixer from their respective feed lines.


It would thus be desirable to provide improved mixers for use in methods wherein limiting reactants are desirably utilized. More particularly, mixers that provide quick and thorough mixing of two or more reactants, while yet also minimizing back mixing of the mixed feed stream and thus providing a reduction in the amount of secondary products that are produced would be welcomed in the art. Further advantage would be seen if such mixers could be provided cost effectively, i.e., on a smaller scale than the reactors with which they are desirably utilized.


BRIEF DESCRIPTION

A mixer that provides such advantages is provided herein. More specifically, the mixer incorporates an expander zone, wherein the inner diameter thereof expands outwardly at an angle of less than 90° relative to a longitudinal axis of the expander zone. In this way, a mixer can be provided having an inlet diameter smaller than its exit diameter, so that when coupled to a reactor, any backmixing zone that may otherwise be provided by disparate geometries between the mixer outlet and reactor inlet can be minimized or eliminated. The mixer may also incorporate one or more chambers, flow pattern development zones, and/or mixing zones that can act alone or together to improve the flow and/or mixing of the reactants therein so that uniform and efficient mixing is provided by the mixer. As a result, desired conversions may be substantially maintained, formation of secondary products may be minimized and/or fouling may be reduced or eliminated. And so, in addition to the cost savings that may be provided by manufacturing a mixer having a smaller inlet diameter than a reactor inlet diameter, savings are further provided by minimizing, or avoiding entirely, the costs associated with separating and disposing of, secondary products and/or process downtime to clean foulants from the system.


In one aspect of the present invention, a mixer is provided. The mixer comprises at least one inlet to at least one chamber, and an expander zone. The angle created by a longitudinal axis of the chamber and a longitudinal axis of the inlet (hereinafter the ‘chamber-inlet angle’, or a in FIG. 1A) is less than 90°, or may be from 30° to 80°. The inner diameter of the expander zone (De) expands outwardly at an angle (hereinafter the ‘expander angle’ or β in FIG. 1A) less than 90°, or less than 45°, or less than 20°, or less than 15°, or even less than 10° relative to a longitudinal axis of the expander zone. The chamber has an inner diameter (Dc) that is at least 1.25, or at least 2 times greater than the inner diameter of its inlet (Dci). In some embodiments, the inner diameter of the chamber (Dc) may be from 2-10 times greater than the inner diameter of its inlet (Dci).


The chamber also desirably comprises an outlet, and in those embodiments wherein multiple chambers/inlets are utilized, the outlets thereof are desirably arranged concentrically, i.e., so that two concentrically placed outlets create an annular space there between. The ratio of the cross sectional area of each annular space (Aa) to the area of the inner most chamber outlet (Aco, innermost) is desirably between 1 and 3, i.e., Aa/Aco is between 1 and 3. The chamber inner diameter (Dc) may taper to the inner diameter of the chamber outlet (Dco), or, the chamber inner diameter (Dc) may decrease at a 90° angle to provide the chamber outlet.


The chamber outlet has an inner diameter (Dco) that is at least 2 times greater than the inner diameter of the chamber inlet (Dci). The outlet has an inner diameter (Dco) that is less than the chamber inner diameter (Dc), e.g., the ratio of the chamber inner diameter (Dc) to the outlet inner diameter (Dco) may be at least 1, or at least 1.1, or at least 1.2. Desirably, the ratio of the inner diameter of the chamber (Dc) to the inner diameter of its outlet (Dco) is less than 10, or less than 8, or less than 6, or less than 5, or less than 4. In some embodiments, the ratio of the inner diameter of the chamber (Dc) to the inner diameter of its outlet (Dco) is from 1.1 to 8 or from 1.2-4. In some embodiments, the inner diameter of the chamber (Dc) and the inner diameter of its outlet (Dco) may be approximately the same.


In some embodiments, the mixer may additionally comprise a flow pattern development zone and/or a mixing zone. If utilized, the flow pattern development zone may be an extension of the chamber outlet(s), i.e., may be a series of concentrically placed tubes creating an inner tube and a series of annular spaces. The length of any flow pattern development zone (Lfpd) may desirably be substantially the same as, or greater than, the diameter of the outermost tube (Dfpd) within the flow development zone. If both a mixing zone and a flow pattern development zone are utilized, the mixing zone is desirably downstream of the flow pattern development zone. In any case, the mixing zone may desirably comprise a single tube having an inner diameter (Dm) less than or equal to that of the outermost chamber outlet (Dco, outermost), or the outermost tube of the flow pattern development zone (Dfpd), as the case may be. The combined mixing zone and flow pattern development zone, if any, has a length (Lfpd+Lm) 3 times greater, or 9 times greater, than the inner diameter (Dm) of the mixing zone.


The advantageous features and dimensional relationships of the mixer may be taken advantage of when the mixer is utilized in connection with a reactor, and indeed, additional dimensional relationships between the mixer and reactor inlet have been discovered that further assist in realizing, or further leveraging, the full benefits of both. And so, in another aspect, there is provided an apparatus comprising a reactor having an inlet with an inner diameter (Dr) and a mixer comprising at least one inlet to at least one chamber, wherein the chamber outlet inner diameter (Dco), flow pattern development zone inner diameter (Dfpd) and/or mixing zone inner diameter (Dm) is/are less than that of the reactor inlet inner diameter (Dr). The ratio of the inner diameter of the reactor (Dr) to the chamber outlet inner diameter (Dcp), flow pattern development zone inner diameter (Dfpd) and/or mixing zone inner diameter (Dm) is desirably from 2 to 5, or from 3 to 4. The mixer also comprises an expander zone having an inner diameter (De) that expands outwardly at an angle of less than 90°, or less than 45°, or less than 20°, or less than 10°. The reactor may have an inner diameter of more or less than 4 feet. The reactor and/or mixer may comprise one or more bends of 90 degrees or greater, to accommodate the desired design and length thereof easily in the available manufacturing space.


Since the present apparatus are expected to provide time and cost savings to the gaseous processes in which they are utilized, such processes are also provided. Processes comprising a limiting reagent find particular benefit.


In another aspect, processes for mixing at least two reagents for a chemical process are provided. The processes comprise providing the at least two reactants to an apparatus comprising a reactor having an inner diameter (Dr) and a mixer comprising at least one inlet to at least one chamber, wherein the chamber outlet inner diameter (Dco), flow pattern development zone inner diameter (Dfpd) and/or mixing zone inner diameter (Dm) is/are less than that of the reactor inlet inner diameter (Dr). The ratio the inner diameter of the reactor (Dr) to the outermost chamber outlet inner diameter Dco and/or the mixing zone inner diameter (Dm) is desirably from 2 to 6, or from 3 to 5. The mixer also comprises an expander zone having an inner diameter (De) that expands outwardly at an angle of less than 90°, or less than 45°, or less than 20°, or less than 10°.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings, wherein:



FIG. 1A is a schematic representation (not to scale) of one embodiment of the mixer comprising one inlet/chamber and an expander zone;



FIG. 1B is a top view of the schematic representation of the embodiment shown in FIG. 1A;



FIG. 1C is a schematic representation (not to scale) of the mixer shown in FIG. 1, further comprising a taper from the chamber inner diameter to provide the chamber outlet;



FIG. 2A is a schematic representation (not to scale) of one embodiment of the mixer comprising two inlets/chambers and an expander zone;



FIG. 2B is a top view of one arrangement of the chamber inlets of the embodiment shown in FIG. 2A;



FIG. 2C is a top view of a further arrangement of the chamber inlets of the embodiment shown in FIG. 2A;



FIG. 3A is a schematic representation (not to scale) of one embodiment of the mixer comprising two inlets/chambers, a mixing zone and an expander zone;



FIG. 3B is a schematic representation (not to scale) of one embodiment of the mixer comprising two inlets/chambers, a flow pattern development zone and an expander zone;



FIG. 3C is a schematic representation (not to scale) of one embodiment of the mixer comprising two inlets/chambers, a flow pattern development zone, a mixing zone and an expander zone;



FIG. 4A is a schematic representation (not to scale) of one embodiment of the mixer comprising three inlets and two chambers, a flow pattern development zone, a mixing zone and an expander zone, wherein two inlets are provided on one chamber;



FIG. 4B is a schematic representation (not to scale) of one embodiment of the mixer comprising three inlets/chambers, a flow pattern development zone, a mixing zone and an expander zone, wherein a third chamber is provided within the second chamber; and



FIG. 4C is a schematic representation (not to scale) of one embodiment of the mixer comprising three inlets/chambers, a flow pattern development zone, a mixing zone and an expander zone, wherein a third chamber and corresponding inlet is provided between the flow pattern development zone and the mixing zone.



FIG. 5A shows results of a computational fluid dynamic simulation for a mixer according to one embodiment, having two inlets/chambers, a flow pattern development zone, a mixing zone and an expander zone; and



FIG. 5B shows results of a computational fluid dynamic simulation for a mixer according to one embodiment, having one inlet/chamber, a flow pattern development zone, a mixing zone and an expander zone.





DETAILED DESCRIPTION

The present specification provides certain definitions and methods to better define the present invention and to guide those of ordinary skill in the art in the practice of the present invention. Provision, or lack of the provision, of a definition for a particular term or phrase is not meant to imply any particular importance, or lack thereof. Rather, and unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art.


The terms “first”, “second”, and the like, as used herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. Also, the terms “a” and “an” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item, and the terms “front”, “back”, “bottom”, and/or “top”, unless otherwise noted, are merely used for convenience of description, and are not intended to limit the part being described limited to any one position or spatial orientation.


If ranges are disclosed, the endpoints of all ranges directed to the same component or property are inclusive and independently combinable (e.g., ranges of “up to 25 wt. %, or, more specifically, 5 wt. % to 20 wt. %,” is inclusive of the endpoints and all intermediate values of the ranges of “5 wt. % to 25 wt. %,” etc.). As used herein, percent (%) conversion is meant to indicate change in molar or mass flow of reactant in a reactor in ratio to the incoming flow, while percent (%) selectivity means the change in molar flow rate of product in a reactor in ratio to the change of molar flow rate of a reactant.


The mixer provided herein may incorporate one or more angles between components, zones, or longitudinal axes thereof that provide the mixer with improved performance relative to mixers not incorporating the angle. In each instance, the angles are defined as the lesser angle of the linear pair created by, or that would be created by, the intersection of the components, zones, or axes. For example, the chamber-inlet angle (denoted “α” in FIG. 1A) is defined as the lesser angle of the linear pair created by the intersection of the longitudinal axes of the chamber and the longitudinal axes of its inlet. Similarly, the expander angle (denoted “β” in FIG. 1A) is defined as the lesser angle of the linear pair created by the intersection of the longitudinal axis of the expander zone and a line extended from the inner diameter of the expander zone to intersect with the longitudinal axis of the expander zone. Finally, the transverse chamber-inlet angle (denoted “γ” in FIG. 1B) is defined as the lesser angle of the linear pair created by the intersection of the longitudinal axis of the inlet and a line tangential to the chamber projected on a cross sectional plane to the chamber intersecting the point where the longitudinal axis of the inlet line meets the chamber's wall.


The present invention provides a mixer for use in a gas-phase process, such as processes for the production of chlorinated propenes and/or higher alkenes. The mixer incorporates one or more design features that can i) provide for reduced backmixing of the reactants, and/or ii) minimize or eliminate plugging within the mixer. As a result, desired conversions may be substantially maintained, formation of secondary products may be minimized and/or fouling may be reduced or eliminated. Further, the advantages provided by one design feature may be leveraged, perhaps even synergistically, by combining the same with others.


More specifically, the mixer comprises an inlet fluidly connected to a chamber, wherein the chamber-inlet angle (α) is less than 90°. Desirably, the chamber-inlet angle, α, is less than 15°, or less than 80°. In some embodiments, the chamber-inlet angle (α) may be greater than 20°, or greater than 30°. In some embodiments, the chamber-inlet angle (α) may be from 30°-80°. The mixer also comprises an expander zone, wherein the inner diameter thereof expands outwardly along the length thereof at an expander angle (β) of less than 90°, or less than 45°, or less than 20°, or less than 15°, or less than 10°. Desirably, expander angle β is greater than 1°, or greater than 2°, or greater than 3°, or greater than 4°, or greater than 5°. In some embodiments, expander angle β may be from 1° to 90°, or from 2° to 45°, or from 3° to 20°, or from 4° to 15°, or from 5° to 10°. At its outlet, the expander may have an inner diameter (De) of less than 100 feet, or less than 80 feet, or less than 50 feet, or less than 20 feet. In some embodiments, the expander zone outlet inner diameter (De) may be substantially equal to the reactor inlet inner diameter (Dr)


The combination of these two features has been discovered to provide a mixer that not only provides the desired flow pattern and efficient mixing, but also is inexpensive to manufacture and robust in the challenging environments created by processes for the production of chlorinated propenes. More particularly, the provision of a chamber inlet angle α less than 90°, or from 30°-80° has been found to render the mixer more robust against fouling from contaminants and secondary products that may already be present in the reactants as they are presented to the mixer. And, the provision of an expander zone, incorporating an expander angle β of less than 90°, allows the mixer to include an inlet close in size to the typical size of feedstreams used in commercial chemical processes, but yet, an outlet that may more closely approximate the size of the inlet of a reactor to which the mixer may be coupled. As such, the pressure drop and/or backmixing that may otherwise be seen between mixers and feedstreams, or mixers and reactors, of disparate sizes can be minimized or avoided.


In some embodiments, the chamber may exhibit substantially the same geometry as the inlet, and the geometries thereof may be selected to encourage a desired flow pattern. Any flow pattern can be established and encouraged by the mixer (with the exception of back mixed flow). In some embodiments, the mixer is desirably utilized to produce a swirling flow pattern. Swirling flow patterns can be advantageous for use in many chemical processes, but in particular in processes where backmixing can be an issue. This is because swirling flow patterns tend to produce high shear at internal surfaces that can assist in the prevention of the accumulation of solids thereon. Swirling flow patterns may also only require a small head mixing chamber in comparison to the reactor diameter in order to be established. A swirling flow pattern can be induced by introduction of a feedstream into a generally cylindrical inlet, and thereafter into a generally cylindrical chamber.


The inlet and chamber may have the same, or a different, inner diameter. In some embodiments, advantage can be seen by providing the chamber with an inner diameter (Dc) at least 1.25 times greater, or at least two times greater, than the inner diameter of the inlet (Dci). In some embodiments, the inner diameter of the chamber (Dc) is desirably less than 20 times, or less than 10 times, the inner diameter of the chamber inlet (Dci). In some embodiments, the ratio of the inner diameter of the chamber (Dc) to the inner diameter of the inlet (Dci) is from 2-10. Providing the chamber and inlet with such a dimensional relationship has been found to render the chamber and inlet robust to the presence of the particulates and/or secondary products that may be present in the feedstreams as introduced therein.


The chamber also desirably comprises an outlet, which may desirably be of the same geometry as the chamber and/or inlet. The outlet may also have the same diameter, or cross sectional area, as the case may be, as the chamber and/or chamber inlet, or may have a different diameter. In some embodiments, the chamber outlet has an inner diameter (Dco) that is at least 2 times greater than the inner diameter of the chamber inlet (Dci). The outlet has an inner diameter (Dco) that is less than the chamber inner diameter (Dc), e.g., the ratio of the chamber inner diameter (Dc) to the outlet inner diameter (Dco) may be at least 1, or at least 1.1, or at least 1.2. Desirably, the ratio of the inner diameter of the chamber (Dc) to the inner diameter of its outlet (Dco) is less than 10, or less than 8, or less than 6, or less than 5, or less than 4. In some embodiments, the ratio of the inner diameter of the chamber (Dc) to the inner diameter of its outlet (Dco) is from 1.1 to 8 or from 1.2-4.


If two or more inlets/chambers are provided, the outlets of any provided proximate to each other are desirably provided as concentric rings. In this way, the innermost chamber outlet would act as an egress for one reactant. Each subsequent chamber outlet would provide an annular space between it and the chamber outlet immediately interior to it, through which an additional reactant may flow, and so forth. The ratio of the cross sectional area of each annular space (Aa) to the area of the inner most chamber outlet (Aco, innermost) is desirably between 1 and 3, i.e., Aa/Aco is between 1 and 3.


In some embodiments more than one, more than two, or more than three, or even more than 4, inlet(s)/chamber(s) are provided. In some embodiments, at least two inlets/chambers are provided. In other embodiments, more than one inlet may be provided on one or more chambers. In such embodiments, the additional inlet(s) and/or chamber(s) can have the same configuration, i.e., shape, inner dimension, chamber inlet angle, tangential chamber inlet angle, or one or more different configuration(s). For purposes of manufacturing efficacy, in those embodiments wherein multiple inlets/chambers are used, they may have the same configuration, but this is not necessary to appreciate the advantages of the invention.


In some embodiments, the mixer may be provided with additional features and/or dimensional relationships that further enhance its suitability for use in connection with processes comprising a limiting reagent. More particularly, in some embodiments, the mixer may further comprise an advantageous tangential chamber-inlet angle and/or a flow pattern development zone and/or a mixing zone.


That is, it has now been discovered that an angle γ between the chamber inlet and a line tangential to the chamber projected on a cross sectional plane to the chamber intersecting the point where the longitudinal axis of the inlet line meets the chamber's wall of less than 90°, or less than 80°, or less than 70°, or less than 60°, provides a beneficial flow to the reactant provided through the inlet. Desirably, the tangential chamber inlet angle γ is greater than 5°, or greater than 10°, or greater than 15°, or greater than 20°. In some embodiments, the tangential chamber inlet angle γ is from 5° to 90°, or 10° to 80°, or 15° to 70°, or 20° to 60°.


The flow pattern development zone, if provided, will desirably be of a shape and/or dimension that further encourages the formation and/or maintenance of the desired flow pattern of the reactant provided by the at least one inlet. In those embodiments wherein a swirling pattern is developed, the flow pattern development zone may comprise a tube within a tube design, wherein the number of tubes correspond to the number of reactants introduced via inlets/chambers upstream of the flow pattern development zone.


If, for example, only one reactant is provided via an inlet/chamber upstream of the flow pattern development zone, the flow development zone may simply be a tube having an inner diameter (Dfpd) approximately the same as the inner diameter of the chamber outlet (Dco) and be fluidly connected thereto. As another example, if three reactants are to be used in the process, and all three are desirably introduced upstream of the flow pattern development zone, three tubes of differing inner diameters would be provided about the same longitudinal axis. The innermost tube could be fluidly connected to a first chamber outlet, the annular space provided between the innermost tube and the next outlying tube could be fluidly connected to a second chamber outlet, and the annular space created by the middle tube and the outermost tube could be fluidly connected to a third chamber outlet.


In another embodiment wherein three reactants are used, two may be introduced via two inlet/chambers, and a third may be introduced according to any method known to those of ordinary skill in the art, and may be introduced, e.g., after a flow pattern development zone. This embodiment may be advantageous when a desired reactant has a lesser residence time within the mixer for any reason, e.g., the reactant is highly reactive, unstable at the temperature(s) at which the other reactants are introduced to the mixer, etc.


In embodiments wherein a flow pattern development zone is desirably included, it can have any suitable length (Lfpd) and inner diameter (Dfpd). Desirably, the length and inner diameter of the flow pattern development zone will facilitate and/or accommodate the desired flow rate of the reactants, while also encouraging or enhancing the desired flow pattern. The inner diameter (Dfpd) of the innermost tube of the flow pattern development zone may be greater than 0.25 inch, or greater than 0.5 inch, or greater than 0.75 inches, or greater than 1 inch. The inner diameter (Dfpd) of the outermost tube of the flow pattern development zone may be less than 60″ or less than 30″ or less than 24″ or less than 18″. In some embodiments, the inner diameter (Dfpd) of the innermost tube of the flow pattern development zone is from 0.25 to 60″ of from 0.5-30″, or from 0.75 to 24 inches, or from 1″ to 18″.


Any flow pattern development zone can have a length (Lfpd) such that the ratio of its length (Lfpd) to the inner diameter (Dfpd) of the innermost tube thereof is greater than 0.5, or greater than 0.75, or greater than 1.0, or greater than 1.25, or greater than 1.5. The ratio Lfpd to Dfpd, innermost, may be less than 50, or less than 40, or less than 30, or less than 20, and in some embodiments, may be less than 10. In some embodiments, Lfpd/Dfpd, innermost may be from 0.25-50, or from 0.5 to 40, or from 0.75 to 30, or from 1.0 to 20, or from 1.25 to 10.


A mixing zone may also be provided in some embodiments, and can be used to mix one or more reactants prior to entry into the expander zone. The mixing zone may be fluidly connected to the chamber outlet, or the flow pattern development zone, at the upstream end thereof, and is desirably fluidly connected to the expander zone at its downstream end. The mixing zone may be used to bring the reactants, previously introduced into separate inlets, and in some embodiments, passed through the flow pattern development zone, into contact with each other. The mixing zone is desirably of a geometry that will allow the flow pattern to be substantially maintained, and in some embodiments, may be cylindrical.


The mixing zone may advantageously have the same, or a lesser, inner diameter (Dm) as the largest immediately preceding inner diameter, i.e., if fluidly connected to one or more chamber outlets, the mixing zone is desirably substantially the same or smaller, diameter as the outermost chamber outlet. If the mixing zone is fluidly connected to a flow pattern development zone, the mixing zone will desirably be of the same geometry, and have an inner diameter, or cross sectional area, as the case may be, substantially the same as the outermost tube of the flow pattern development zone.


Any mixing zone may be of any suitable length (Lm), which may be chosen based upon the flow rate and reactivity of the reactants. Any mixing zone may have a length, Lm, of greater than 1 foot, or greater than 10 feet, or greater than 20 feet, or greater than 30 feet. Mixing zone length Lm may be less than 60 feet, or less than 50 feet, or less than 40 feet. In some embodiments, mixing zone length may be from 1 to 60 feet, or from 10 feet to 50 feet, or from 20 feet to 40 feet. The ratio of mixing zone length Lm to Dm may, e.g., be 1, or 2, or 6, or 10. Desirably, the ratio of mixing zone length Lm to mixing zone diameter Dm will be from 2 to 8.


One or more of the described features and/or dimensions may advantageously be employed in the mixer, wherein their advantages are expected to be cumulative, and perhaps synergistic. Any two, any three, any four, any five or all of the design concepts may be employed. For example, the mixer may have an chamber-inlet angle α of less than 90°, an expander zone having an expander angle β of ≤45°, and/or i) a chamber inner diameter (Dc) at least 1.25 times greater than the inner diameter of the chamber inlet (Dci), and/or ii) a chamber inner diameter (Dc) that is at least the same or greater than the inner diameter of the chamber outlet (Dco), and/or iii) a tangential chamber-inlet angle α of less than 90°, and/or iv) a flow pattern development zone, having a ratio of length (Lfpd) to the inner diameter (Dfpd) of at least 0.5 and/or a mixing zone having a ratio of length (Lm) and inner diameter (Dm) of at least 1.0.


Tables 1 and 2 show the possible dimensional relationships that may be optimized in the present mixer and possible values/ranges for each. More particularly, Table 1 contemplates the addition of any number of reactants to the mixer, and Table 2 is directed to those embodiments wherein 2 reactants are introduced via inlets/chambers (although others may be introduced by other means, into other sections of the mixer, e.g., as via injection into a port, etc.)












TABLE 1





Dimension
Embodiment 1
Embodiment 2
Embodiment 3







Number of
2 or greater
2-10
2-5 


inlets/chambers


Dc (inches)
 0.5-120
0.75-90  
1.25-60  


Dc/(Dci)
1.25-20 
1.5-20
2-10


Chamber-inlet angle,
≠90°
5°-85°
10°-80° 


α


Tangential chamber-
0° or greater
60° to 85°
70° to 80°


inlet angle, γ


Dc/Dco

1-10

1.2-8  
1.2-4  


Dfpd, innermost
0.5-60
0.5-30
1-24


Lfpd/Dfpd, innermost
0.5-30
1-20
1-10


Dfpd, outermost
NA-60
NA-50 
NA-40 


Lm (feet)

0-60

0-50
0-40


Dm (inches)
 0.5-120
1.0-60
1.0-36


Expander angle (β)
≤90°

2-45°


3-25°



De (feet)
≤100 
≤50
≤20









One exemplary embodiment of the mixer is shown in FIG. 1. As shown, mixer 100 includes chamber 102, inlet 104, and expander 106, wherein chamber inlet angle, a, is from 10-80°, or 60° and expander angle β that is desirably >0° but is <25°. FIG. 1B shows a top view of the mixer shown in FIG. 1A, showing the tangential chamber-inlet angle γ, which is desirably from 10° to 80°. In the embodiment shown in FIG. 1A, chamber outlet 108 is provided by a decrease of 90° in the chamber inner diameter. FIG. 1C shows an embodiment wherein the chamber inner diameter is tapered to provide chamber outlet 108. Mixer 100 may accommodate the introduction of one or more reagents/reactants via inlet 104. Additional reactants/reagents may be introduced at other conventional inlets provided in mixer 100, such as injection ports (not shown).


Another embodiment of the mixer is shown in FIG. 2. Mixer 200 includes two chambers 202 and 203 and inlets 204 and 205, wherein both chambers are tapered to provide chamber outlets 208 and 209, respectively. FIG. 2B shows a top view of mixer 200, wherein inlets 204 and 205 are arranged so as to appear superimposed when viewed from the top of mixer 200. FIG. 2C shows an alternative arrangement of inlets 204 and 205 to that shown in FIGS. 2A and 2B. Mixer 200 can accommodate the introduction of one or more reactants via inlet 204, one or more reactants via inlet 205, and any number of additional reactants introduced by, e.g., injection ports (not shown) as may be provided in mixer 200.


Additional embodiments of the mixer are shown in FIG. 3. In addition to the features shown in FIG. 2, the embodiment of mixer 300 shown in FIG. 3A incorporates mixing zone 310. The outlet 308 of chamber 302 and outlet 309 of chamber 303 are arranged concentrically, both ending at the inlet of mixing zone 310. Mixing zone 310 is fluidly connected to expander zone 306.


As shown in FIG. 3B, mixer 300 comprises includes flow pattern development zone 312. As with the embodiment shown in FIG. 3A, outlet 308 and outlet 309 are arranged concentrically, with outlet 308 providing the innermost tube of flow pattern development zone 312. Outlet 309, in combination with outlet 308, provides annular space 313. Outlet 308, outlet 309, and annular space 313 each terminate at, and are fluidly connected with, expander zone 306. In this case, mixing occurs in the expander zone. Mixer 300 can accommodate the introduction of one or more reactants via inlet 304, one or more reactants via inlet 305, and any number of additional reactants introduced by, e.g., injection ports (not shown) as may be provided in mixer 300.


In the embodiment shown in FIG. 3C, mixer 300 includes both flow pattern development zone and mixing zone 310. The outlets of chambers 302 and 303 are arranged as shown and described in connection with FIG. 3B. And so, in operation of mixer 300 shown in FIG. 3C, one or more reactants may be injected through inlet 304 and one or more reactants may be provided through inlet 305. The desired flow pattern, as may be encouraged by the chamber inlet angle α and tangential chamber-inlet angle γ, may further develop within flow pattern development zone 312. The reactants would then be mixed within mixing zone 310.



FIG. 4A-4C show additional embodiments of the mixer, comprising three inlets. In the embodiment shown in FIG. 4A, mixer 400 includes three inlets and two chambers, with two inlets 405 and 414 being provided to chamber 403. FIG. 4B shows a further embodiment wherein a third chamber 415 is provided, arranged about the same concentric axis as chambers 402 and 403, but lying within chamber 403. FIG. 4C shows an embodiment of mixer 400 including a third chamber 415, wherein chamber 415 is arranged about the same concentric axis as chambers 402 and 403, and between flow pattern development zone 412 and mixing zone 410. In other embodiments, third chamber 415 could be provided downstream from, and about the same concentric axis as, chambers 402 and 403, but upstream from flow pattern development zone 412. Mixer 400 as shown in FIG. 4A-4C include both flow pattern development zone 412 and mixing zone 410, although this need not be the case, and any of the embodiments of mixer 400 shown in FIG. 4A-4C may be provided only with chambers 402, 403 and 415 and expander zone 406.


In some embodiments, the outlet of the mixer may desirably be operably disposed relative to the reactor that would desirably receive the mixed reactants, i.e., the mixer outlet may be directly coupled to a reactor inlet, or may be coupled to any other conduit capable of fluidly coupling the mixer outlet with the reactor inlet. Any such conduit is desirably configured so as to be substantially the same shape as the fluid flow from the reactor, e.g., to be substantially tubular or conical. Any such conduit will also desirably be placed about the same longitudinal axis as the outlet of the mixer.


Whether directly attached to the reactor, or to a conduit there between, the advantages provided may be realized or enhanced by using certain reactor features and/or dimensions to assist in the design of the mixer. The incorporation of the expander into the present mixer allows an advantageous inlet arrangement to be used, having an inner diameter that more closely approximates the inner diameter of the feedstream source line, while yet having an outlet that more closely approximates the reactor inlet inner diameter.


Table 2, below, provides a correlation between dimensions and features of the mixer with common reactor sizes with which the mixer may advantageously be used, for an exemplary process wherein two reactants are introduced to two inlet/chambers. Table 2 is by no means exhaustive, and those of ordinary skill will be able to extrapolate the dimensions and ranges given to any type of reactor, having any dimensions, and to any type of process.













TABLE 2







Approximate Reactor ID
4″
8′




















Reactor Dimensions





ID (Dr), in
3.826
96



Length, in
70.87
231



Mixer Dimensions



Chamber/inlet number
2
2



Mixer head ID (inch)
2
28



Inlet 1 ID
(0.1-0.5)
(4-12)



Chamber 1 (central) outlet



ID
0.25-0.75
4-12



Inlet 2 ID
0.1-0.5
4-12



Chamber 2 (outer) outlet



ID
0.6-1.4
9-27



Flow pattern development zone,
3-9
12-48 



Length (in)



Mixing zone, Length (in)
 6-18
12-72 



Expander Zone



Angle from longitudinal axis
 1-20
1-20










The mixer can be attached to a reactor with various configurations. In order to provide a desired residence time, a reactor for the production or chlorinated propenes may typically be quite long, and so one or more sections of the reactor and/or mixer may be nonlinear, i.e., one or more zones thereof may comprise bends of 45° or greater, or 90° or greater, or even 135° or greater. In some embodiments, the reactor and/or mixer may comprise multiple bends, and in such embodiments, may even take the form of a serpentine pattern. Incorporating bends into the reactor and/or mixer allows the desired lengths to be utilized for each zone, while yet minimizing the manufacturing footprint required for the reactor and the mixer.


The present mixer/reactor apparatus provides significant advantages when used in connection with chemical processes comprising a limiting reagent for which it was designed, and such processes are also provided. Incorporating the present mixer or mixer/reactor apparatus into such a process can reduce, or even eliminate backmixing that may occur in conventional mixers, so that substantial variances in conversions are not seen. Indeed, processes performed using the present mixer and/or apparatus can be provided with minimized production of secondary products and/or decomposition products such that variances of less than 2%, or even less than 1%, from the desired conversion, are seen. A reactor provided with such mixer described here may be operated at substantially longer run-time and hence allowed larger capacity than otherwise. Selectivity may also be substantially maintained, or is expected to decrease by no more than 2%. Such reactions may also typically include at least one limiting reactant having desired conversions that are far from exhaustion, e.g., conversions of less than 80%, or less than 40%, or even less than 20%.


The efficiencies provided by the present mixers and apparatus can be further leveraged by providing the chlorinated and/or fluorinated propene and higher alkenes produced therein to further downstream processes. For example, 1,1,2,3-tetrachloropropene produced using the described reactors can be processed to provide further downstream products including hydrofluoroolefins, such as, for example, 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) or 1,3,3,3-tetrafluoroprop-1-ene (HFO-1234ze). Improved methods for the production of hydrofluoroolefins, 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) or 1,3,3,3-tetrafluoroprop-1-ene (HFO-1234ze), are thus also provided herein.


The conversion of chlorinated and/or fluorinated propene and higher alkenes to provide hydrofluoroolefins may broadly comprise a single reaction or two or more reactions involving fluorination of a compound of the formula C(X)mCCl(Y)n(C)(X)m to at least one compound of the formula CF3CF═CHZ, where each X, Y and Z is independently H, F, Cl, I or Br, and each m is independently 1, 2 or 3 and n is 0 or 1. A more specific example might involve a multi-step process wherein a feedstock of 1,1,2,3 tetrachloropropene is fluorinated in a catalyzed, gas phase reaction to form a compound such as 2-chloro-3,3,3-tri-fluoropropene. The 2-chloro-2,3,3,3-tetrafluoropropane is then dehydrochlorinated to 2,3,3,3-tetrafluoropropene via a catalyzed, gas phase reaction.


EXAMPLE 1


FIGS. 5A and 5B shows two mixers designed to provide a swirling flow pattern to the reactants provided thereto. In both embodiments, mixer 500 incorporates angle α of 45°, angle β of 7°, and angle γ of 60°. The flow rate of the reactant provided via inlet 504, methyl chloride, is 215.4 kg/hr, while the flow rates of the reactant mixture provided via inlet 505 in the embodiment of mixer 500 shown in FIG. 5A, carbon tetrachloride and perchloroethylene, are 236.5 kg/hr and 10.2 kg/hr, respectively. In the embodiment of mixer 500 shown in FIG. 5B, the reactant mixture provided via inlet 505 in FIG. 5A is provided via an injection port (not shown) in FIG. 5B upstream of the flow pattern development zone. The inner diameter of the outermost chamber outlet (Dco), the outermost tube of the flow pattern development zone, and the mixing zone is 1.5″. The flow development zone length (Lfpd) is 8 inches and the mixing zone (Lm) is 12 inches.


The results of a computational fluid dynamic simulation are also shown in FIGS. 5A and 5B. More specifically, as shown in FIG. 5A, the embodiment of mixer 500 comprising 2 inlets and chambers results in only the formation of a small area of backmixing, indicated by the shaded area within expander zone 506. Although the backmixing area produced by the embodiment of mixer 500 shown in FIG. 5B is larger, the embodiment of mixer 500 is nonetheless advantageous due to the inclusion of expander zone 506. That is, mixer 500 shown in FIG. 5B is expected to be much less expensive to manufacture than a mixer not comprising an expander zone, i.e., wherein the mixer outlet closely approximates the inner diameter of a reactor inlet.

Claims
  • 1. A mixer for use in a chemical process comprising; A first chamber having a first chamber inlet and a first chamber outletA second chamber having a second chamber inlet and a second chamber outlet;A flow pattern development zone comprising a first tube within a second tube wherein the first tube is fluidly connected to the a first chamber outlet and the second tube is fluidly connected to the a second chamber outlet; andAn expander zone having an outer diameter substantially equal to that of the second chamber outlet and/or second tube of the flow pattern development zone and an inner diameter that expands outwardly at an expander angle (β) of less than 90°;Wherein the chamber inlet angle (α) of at least one of the first or second chamber inlet(s) is less than 90°, the first chamber outlet is arranged concentrically within the second chamber outlet, the flow pattern development zone is upstream of the expander zone and the first tube of the flow pattern development zone ends at an inlet of the expander zone;wherein the chamber-inlet angle (α) is from 30 to 80°;wherein the angle (γ) between the chamber inlet and a line tangential to the chamber projected on a cross sectional plane to the chamber intersecting the point where the longitudinal axis of the inlet line meets the chamber's wall is 20° to 60°; andwherein the mixer further comprising a mixing zone downstream of the flow pattern development zone and upstream of the expander zone, wherein the mixing zone has an outer diameter substantially equal to that of the flow pattern development zone and the first tube of the flow pattern development zone ends at the outlet of the mixing zone.
  • 2. The mixer of claim 1, wherein the expander angle (β) is less than 20°.
  • 3. The mixer of claim 1, wherein the inner diameter of the at least one of the first or second chambers is at least 1.25 times greater than the inner diameter of its respective chamber inlet.
  • 4. The mixer of claim 1, wherein the inner diameter of at least one of the first or second chamber is greater than the inner diameter of its respective outlet.
  • 5. The mixer of claim 1, wherein an annular space is created by the first and second chamber outlets and the ratio of the cross sectional area of the first chamber outlet to the cross sectional area of the annular space is between 1 and 3.
  • 6. The mixer of claim 1, wherein the length of the flow pattern development zone is at least 0.5 times the diameter of the second chamber outlet.
  • 7. The mixer of claim 1, wherein the inner diameter of the mixing zone is less than or equal to the inner diameter of the second tube of the flow pattern development zone.
  • 8. The mixer of claim 4, wherein the inner chamber of at least one of the first or second chambers is tapered to provide its respective chamber outlet.
  • 9. The mixer of claim 1, wherein the mixing zone comprises a single tube fluidly connected to the outermost chamber outlet and/or outermost tube of the flow pattern development zone, wherein the length of the mixing zone is substantially the same as or greater than the inner diameter of the mixing zone.
  • 10. An apparatus comprising A reactor having an inner diameter of greater than 0.1 feet and less than 36 feet; and the mixer according to claim 1 having an inlet with an inner diameter of less than the reactor inner diameter.
  • 11. The apparatus of claim 10, wherein the ratio of the inner diameter of the chamber outlet of the mixer to the inner diameter of the reactor is from 2 to 5.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2013/064825 10/14/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/066083 5/1/2014 WO A
US Referenced Citations (187)
Number Name Date Kind
1504443 Gibbons Aug 1924 A
2119484 Levine et al. May 1938 A
2179378 Metzger Nov 1939 A
2207193 Groll Jul 1940 A
2299441 Vaughan et al. Oct 1942 A
2302228 Kharasch et al. Nov 1942 A
2370342 Zellner Feb 1945 A
2378859 Martin Jun 1945 A
2379551 Talley Jul 1945 A
2435983 Schmerling Feb 1948 A
2449286 Fairbairn Sep 1948 A
2588867 Morris Mar 1952 A
2630461 Sachsse et al. Mar 1953 A
2688592 Skeeters Sep 1954 A
2762611 Monroe Sep 1956 A
2765359 Pichler et al. Oct 1956 A
2964579 Weller et al. Dec 1960 A
2973393 Monroe Feb 1961 A
3000980 Asadorian Sep 1961 A
3094567 Eaker Jun 1963 A
3112988 Coldren et al. Dec 1963 A
3444263 Fernald May 1969 A
3446859 Weil May 1969 A
3502734 Baird Mar 1970 A
3525595 Zirngibl et al. Aug 1970 A
3551512 Loeffler Dec 1970 A
3558438 Schoenbeck Jan 1971 A
3615202 Stern Oct 1971 A
3651019 Asscher Mar 1972 A
3676508 Krekeler Jul 1972 A
3819731 Pitt Jun 1974 A
3823195 Smith Jul 1974 A
3872664 Lohmann Mar 1975 A
3914167 Ivy Oct 1975 A
3920757 Watson Nov 1975 A
3926758 Smith Dec 1975 A
3948858 Weirsum Apr 1976 A
3954410 Pohl et al. May 1976 A
4038372 Colli Jul 1977 A
4043766 Gernhardt Aug 1977 A
4046656 Davis et al. Sep 1977 A
4051182 Pitt Sep 1977 A
4145187 Oliver Mar 1979 A
4319062 Boozalis et al. Mar 1982 A
4381187 Sederquist Apr 1983 A
4513154 Kurtz Apr 1985 A
4535194 Woodard Aug 1985 A
4550752 Manders Nov 1985 A
4614572 Holbrook Sep 1986 A
4644907 Hunter Feb 1987 A
4650914 Woodard Mar 1987 A
4661648 Franklin Apr 1987 A
4702809 Mueller Oct 1987 A
4714792 Mueller et al. Dec 1987 A
4716255 Mueller Dec 1987 A
4726686 Wolf Feb 1988 A
4727181 Kruper Feb 1988 A
4849554 Cresswell et al. Jul 1989 A
4894205 Westerman Jan 1990 A
4902393 Mueller Feb 1990 A
4999102 Cox Mar 1991 A
5057634 Webster Oct 1991 A
5132473 Furutaka Jul 1992 A
5171899 Furutaka Dec 1992 A
5178844 Carter et al. Jan 1993 A
5246903 Harley Sep 1993 A
5254771 Cremer Oct 1993 A
5254772 Dukat Oct 1993 A
5254788 Gartside Oct 1993 A
5262575 Dianis Nov 1993 A
5315044 Furutaka May 1994 A
5367105 Miyazaki et al. Nov 1994 A
5414166 Kim May 1995 A
5504266 Tirtowidjojo et al. Apr 1996 A
5684219 Boyce Nov 1997 A
5689020 Boyce Nov 1997 A
5811605 Tang Sep 1998 A
5895825 Elsheikh Apr 1999 A
5986151 Van Der Puy Nov 1999 A
6111150 Sakyu Aug 2000 A
6118018 Savidakis Sep 2000 A
6160187 Strickler Dec 2000 A
6187976 Van Der Puy Feb 2001 B1
6229057 Jackson et al. May 2001 B1
6235951 Sakyu et al. May 2001 B1
6472573 Yamamoto Oct 2002 B1
6518467 Tung et al. Feb 2003 B2
6538167 Brown Mar 2003 B1
6545176 Tsay Apr 2003 B1
6551469 Nair Apr 2003 B1
6610177 Tsay Aug 2003 B2
6613127 Galloway Sep 2003 B1
6683216 Zoeller Jan 2004 B1
6825383 Dewkar Nov 2004 B1
6924403 Barnes et al. Aug 2005 B2
6958135 Filippi Oct 2005 B1
7117934 Lomax Oct 2006 B2
7140558 McCracken Nov 2006 B2
7172733 Gauthier Feb 2007 B2
7189884 Mukhopadhyay Mar 2007 B2
7226567 Olbert Jun 2007 B1
7282120 Braun Oct 2007 B2
7297814 Yada et al. Nov 2007 B2
7345209 Mukhopadhyay Mar 2008 B2
7371904 Ma et al. May 2008 B2
7378559 Verwijs May 2008 B2
7396965 Mukhopadhyay Jul 2008 B2
7511101 Nguyen Mar 2009 B2
7521029 Guetlhuber Apr 2009 B2
7588739 Sugiyama Sep 2009 B2
7659434 Mukhopadhyay Feb 2010 B2
7674939 Mukhopadhyay Mar 2010 B2
7687670 Nappa Mar 2010 B2
7695695 Shin Apr 2010 B2
7714177 Mukhopadhyay May 2010 B2
7836941 Song Nov 2010 B2
7880040 Mukhopadhyay Feb 2011 B2
7951982 Mukhopadhyay May 2011 B2
8058486 Merkel et al. Nov 2011 B2
8058490 Strebelle Nov 2011 B2
8071825 Johnson et al. Dec 2011 B2
8071826 Van Der Puy Dec 2011 B2
8076521 Elsheikh Dec 2011 B2
8084653 Tung Dec 2011 B2
8115038 Wilson Feb 2012 B2
8123398 Teshima Feb 2012 B2
8158836 Pigamo Apr 2012 B2
8232435 Sievert Jul 2012 B2
8258353 Tirtowidjojo Sep 2012 B2
8258355 Merkel Sep 2012 B2
8357828 Okamoto et al. Jan 2013 B2
8367867 Zardi et al. Feb 2013 B2
8383867 Mukhopadhyay Feb 2013 B2
8395000 Mukhopadhyay Mar 2013 B2
8398882 Rao Mar 2013 B2
8487146 Wilson Jul 2013 B2
8558041 Tirtowidjojo et al. Oct 2013 B2
8581011 Tirtowidjojo et al. Nov 2013 B2
8581012 Tirtowidjojo et al. Nov 2013 B2
8614361 Suzuki Dec 2013 B2
8614363 Wilson et al. Dec 2013 B2
8907148 Tirtowidjojo et al. Dec 2014 B2
8926918 Tirtowidjojo et al. Jan 2015 B2
8933280 Tirtowidjojo et al. Jan 2015 B2
8957258 Okamoto et al. Feb 2015 B2
9056808 Tirtowidjojo et al. Jun 2015 B2
9067855 Grandbois et al. Jun 2015 B2
20010018962 Joshi et al. Sep 2001 A1
20020087039 Tung et al. Jul 2002 A1
20020110711 Boneberg et al. Aug 2002 A1
20060150445 Redding Jul 2006 A1
20060292046 Fruchey Dec 2006 A1
20070197841 Mukhopadhyay Aug 2007 A1
20070197842 Tung Aug 2007 A1
20070259296 Knoepfel Nov 2007 A1
20070265368 Rao et al. Nov 2007 A1
20080021229 Maughon Jan 2008 A1
20080073063 Clavenna et al. Mar 2008 A1
20080118018 Schrauwen May 2008 A1
20080207962 Rao Aug 2008 A1
20090018377 Boyce Jan 2009 A1
20090030249 Merkel et al. Jan 2009 A1
20090088547 Schamshurin et al. Apr 2009 A1
20090099396 Mukhopadhyay Apr 2009 A1
20090117014 Carpenter May 2009 A1
20090203945 Mukhopadhyay Aug 2009 A1
20090270568 Strebelle et al. Oct 2009 A1
20100041864 Kadowaki et al. Feb 2010 A1
20100185029 Elsheikh Jul 2010 A1
20100263278 Kowoll et al. Oct 2010 A1
20110087056 Tirtowidjojo et al. Apr 2011 A1
20110155942 Pigamo et al. Jun 2011 A1
20110172472 Sakyu Jul 2011 A1
20110218369 Elsheikh et al. Sep 2011 A1
20110251425 Penzel Oct 2011 A1
20120065434 Nose Mar 2012 A1
20140081055 Tirtowidjojo Mar 2014 A1
20140163266 Tirtowidjojo et al. Jun 2014 A1
20140179962 Tirtowidjojo et al. Jun 2014 A1
20140323775 Grandbois et al. Oct 2014 A1
20140323776 Grandbois et al. Oct 2014 A1
20140336425 Tirtowidjojo et al. Nov 2014 A1
20140336431 Tirtowidjojo et al. Nov 2014 A1
20140371494 Tirtowidjojo et al. Dec 2014 A1
20150045592 Grandbois et al. Feb 2015 A1
20150057471 Tirtowidjojo et al. Feb 2015 A1
20150217256 Tirtowidjojo et al. Aug 2015 A1
Foreign Referenced Citations (71)
Number Date Country
609022 Jun 1974 CH
101215220 Jul 2008 CN
101492341 Jul 2009 CN
101544535 Sep 2009 CN
101597209 Dec 2009 CN
101754941 Jun 2010 CN
101913979 Dec 2010 CN
101913980 Dec 2010 CN
101955414 Jan 2011 CN
101982227 Mar 2011 CN
102001911 Apr 2011 CN
102249846 Nov 2011 CN
102351637 Feb 2012 CN
857955 Dec 1952 DE
209184 Apr 1984 DE
235631 May 1986 DE
102005044501 Mar 2007 DE
102010022414 Dec 2011 DE
0164798 Dec 1985 EP
0453818 Oct 1991 EP
1018366 Dec 2000 EP
1097984 May 2001 EP
1546709 Nov 1968 FR
471186 Aug 1937 GB
471187 Aug 1937 GB
471188 Aug 1937 GB
857086 Dec 1960 GB
1134585 Nov 1968 GB
1381619 Jan 1975 GB
1548277 Jul 1979 GB
1979004869 Jan 1979 JP
54079207 Jun 1979 JP
S54-135712 Oct 1979 JP
08-119885 May 1996 JP
2001213820 Aug 2001 JP
2006272267 Oct 2006 JP
2007021396 Feb 2007 JP
2008063314 Mar 2008 JP
2009000592 Jan 2009 JP
2009046653 Mar 2009 JP
2001151708 Jun 2011 JP
2011144148 Jul 2011 JP
52247 Dec 1966 LU
899523 Jan 1982 SU
8201728 May 1982 WO
9906314 Feb 1999 WO
0138271 May 2001 WO
0138275 May 2001 WO
2005016509 Feb 2005 WO
2007079431 Jul 2007 WO
2007079435 Jul 2007 WO
2007096383 Aug 2007 WO
2008054781 May 2008 WO
2009015304 Jan 2009 WO
2009067571 May 2009 WO
2009087423 Jul 2009 WO
2011060211 May 2011 WO
2011065574 Jun 2011 WO
2012011844 Jan 2012 WO
2012081482 Dec 2012 WO
2012166393 Dec 2012 WO
2012166394 Dec 2012 WO
2013082410 Jun 2013 WO
2014046970 Mar 2014 WO
2014046977 Mar 2014 WO
2014066083 May 2014 WO
2014100039 Jun 2014 WO
2014100066 Jun 2014 WO
2014134233 Sep 2014 WO
2014134377 Sep 2014 WO
2014164368 Oct 2014 WO
Non-Patent Literature Citations (43)
Entry
Michigan Technological Univ., “Free-Radical Chlorination with Sulfuryl Chloride”, Nov. 15, 2001, 1-7.
Bai, et al., “Isomerization of Tetrachloropropene to Promote Utilization Ratio of Triallate Raw Materials”, Petrochemical Technology & Application, 2007, 25(1).
Boualy, et al., “Kharasch Addition of Tetrachloromethane to Alkenes Catalyzed by Metal Acetylacetonates”, “Kharasch Addition of Tetrachloromethane to Alkenes Catalyzed by Metal Acetylacetonates”.
Chai, et al., “Study of Preparation of 1,1,1,3-tetrachloropropane”, Zhejiang Chemical Industry, 2010, pp. 1-3, 41(5).
Cristiano, et al., “Tetraalkylphosphonium Trihalides. Room Temperature Ionic Liquids As Halogenation Reagents”, J. Org. Chem., 2009, pp. 9027-9033, 74.
Evstigneev, et al., “Initiated Chlorination of Tetrachloropropane”, Khim. Prom., 1984, pp. 393-394, 16(7).
Fields, et al., “Thermal Isomerization of 1,1-dichlorocyclopropanes”, Chemical Communications, Jan. 1, 1967, p. 1081, 21.
Galitzenstein, et al., “The Dehydrochlorination of Propylene Dichloride”, Journal of the Society of Chemical Industry, 1950, pp. 298-304, 69.
Gault, et al., “Chlorination of Chloroform”, Comptes Rendus Des Seances De L'Academie des Sciences, 1924, pp. 467-469, 179.
Gerding, et al., “Raman Spectra of aliphatic chlorine compounds: chloroethenes an chloropropenes”, Recueil Jan. 1, 1955, pp. 957-975, 74.
Hatch, et al., “Allylic Chlorides. XV. Preparation and Properties of the 1,2,3Trichloropropenes”, JACS, Jan. 5, 1952, pp. 123-126, 74.
Hatch, et al., “Allylic Chlorides. XVIII. Preparation and Properties of 1,1,3-tricholoro-2-fluoro-1-propene and 1,1,2,3-tetrachloro-1-propene”, JACS, Jul. 5, 1952, pp. 3328-3330, 74(13).
Herzfelder, “Substitution in the Aliphatic Series”, Berichte Der Deutschen Chemischen Gesellschaft, May-Aug. 1893, pp. 1257-1261, 26(2).
Huaping, et al., “Procress in Synthesis of 1,1,1,3-tetrachloropropane”, Guangzhou Chemicals, 2011, , pp. 41-42, 39 (5).
Ivanov, et al., “Metal phthalocyanine-Catalyzed Addition of polychlorine-Containing Organic Compounds to C=C Bonds”, Russian Chemical Bulletin, International Edition, Nov. 2009, pp. 2393-2396, 58(11).
Kang, et al., “Kinetics of Synthesis of 1,1,1,3,3-pentachlorobutane Catalyzed by Fe—FeCl3”, Chemical Research and Application, Jun. 2011, pp. 657-660, 23(6).
Kharasch, et al., “Chlorinations with Sulfuryl Chloride.I. The Peroxide-Catalyzed Chlorination of Hydrocarbons”, JACS, 1939, pp. 2142-2150, 61.
Khusnutdinov, et al., “CCI4 Attachment to Olefins Catalyzed by Chromium and Ruthenium Complexes. Impact of Water as a Nucleophilic Admixture”, Oil Chemistry, 2009, pp. 349-356, vol. 4.
Kruper, et al., “Synthesis of alpha-Halocinnamate Esters via Solvolytic Rearrangement of Trichloroallyl Alcohols”, J Org Chem, 1991, pp. 3323-3329, 56.
Leitch, “Organic Deuterium Compounds: V. The chlorination of propyne and propyne D-4”, Canadian Journal of Chemistry, Apr. 1, 1953, pp. 385-386, 30(4).
Levanova, et al., “Cholorination of Chloroolefins C3—C4”, 2002, 496-498.
Levanova, et al., “Thermocatalytic Reactions of Bromochloropropanes”, Russian Journal of Physical Chemistry, Jan. 1, 1983, pp. 1142-1146, 57.
McBee, et al., “Utilization of Polychloropropanes and Hexachloroethane”, Industrial and Engineering Chemistry, Feb. 1, 1941, pp. 176-181, 33(2).
Mouneyrat, “Effect of Chlorine on Propyl Chloride in the Presence of Anhydrous Aluminum Chloride”, Bulletin de la Societe chimique de france, Societe francaise de chimie, Jan. 1, 1899, pp. 616-623, 21(3).
Munoz-Molina, et al., “An Efficient, Selective and Reducing Agent-Free Copper Catalyst for the Atom-Transfer Radical Addition of Halo Compounds to Activated Olefins”, Inorg. Chem., 2010, pp. 643-645, 49.
Nair, et al., “Atom Transfer Radical Addition (ATRA) of Carbon Tetrachloride and Chlorinated Esters to Various Olefins Catalyzed by CP/Ru(PPh3)(PR3)CI Complexes”, Inorganica Chimica Acta, 2012, pp. 96-103, 380.
Nguyen, et al., “Condensation de chloroforme avec des olefins fluorees en milieu basique”, Journal of Fluorine Chemistry, Dec. 1, 1991, pp. 241-248, 55(3).
Nikishin, et al., “Reactions of Methanol and Ethanol with Tetrachloroethylene”, Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, Dec. 1966, pp. 2188-2192, 12.
Ochi, et al., “Preparation of Chloropropenes by Photochemical Dehydrochlorination of 1,2-Dichloropropane”, Chemical Abstracts, Jul. 17, 1989, p. 574, 111(3).
Pozdnev, et al., “Chlorination of chloroform and the conversion of methylene chloride manufacture still residues”, Khim., Khim. Tekhnol., 1970, 70(4).
Rotshtein, et al., “Isomer Distribution on Chlorination of Chloropropanes”, Z. Organicheskoi Khimii, 1966, pp. 1539-1542, 2(9).
Semenov, “Selectivity of Photochemical Chlorination of Chloromethane in the Liquid Phase”, Prikladnei Khimii, 1985, pp. 840-845, 58(4).
Shelton, et al., “Addition of Halogens and Halogen Compounds to Allylic Chlorides. I. Addition of Hydrogen Halides”, Journal of Organic Chemistry, 1958, pp. 1876-1880, 23.
Skell, et al., “Reactions of BrCl with alkyl radicals”, Tetrahedron letters, 1986 pp. 5181-5184, 27(43).
Skell, et al., “Selectivities of pi and sigma succinimidyl radicals in substitution and addition reactions, Response to Walling, Wl-Taliawi and Zhao”, JACS, Jul. 1, 1983, pp. 5125-5131, 105(15).
Stevens, “Some New Cyclopropanes with a Note on the Exterior Valence Angles of Cyclopropane”, JACS, Vo. 68, No. 4, 1945, 620-622.
Tanuma, et al., “Partially Fluorinated Metal Oxide Catalysts for a Friedel-Crafts-type Reaction of Dichlorofluoromethane with Tetrafluoroethylene”, Catal. Lett., 2010, pp. 77-82, 136.
Tobey, et al., “Pentachlorocyclopropane”, Journal of the American Chemical Society, Jun. 1, 1996, pp. 2478-2481, 88 (11).
Urry, et al., “Free Radical Reactions of Diazomethane with Reactive Bromopolychloroalkane”, JACS, May 5, 1964, pp. 1815-1819, 86(9.
Wang Chin-Hsien, “Elimination Reactions of polyhalopropanes under emulsion catalytic conditions to give Halopropenes”, Synthesis, Jan. 1, 1982, pp. 494-496, 1982(6).
Zhao, et al., “Research Progress on Preparation Technology of 1,1,2,3-Tetrachloropropene”, Zhejiang Chemical Industry, 2010, pp. 8-10, 41(6).
Zheng, et al., “Preparation of the low GWP alternative 1,3,3,3-tetrafluoropropene”, Zhejiang Huagong, 2010, pp. 5-7, 41(3).
Japanese Publication No. 2015-536816 Office Action dated Jan. 9, 2018.
Related Publications (1)
Number Date Country
20160158715 A1 Jun 2016 US
Provisional Applications (1)
Number Date Country
61718920 Oct 2012 US