1. Field of the Invention
The present invention relates generally to a rotor design for an internal batch mixer, and more particularly to such a rotor having internal reinforcing ribs.
2. Description of the Prior Art
Large internal batch mixers are used in a variety of applications, one being the mixing of rubber products for tire manufacturing. Such mixers include a pair of rotors which rotate counter to each other within a complementary shaped mixing chamber. The rotors are typically hollow and are water cooled.
Typical examples of such prior art batch mixers are shown in U.S. Pat. No. 5,782,560 to Hatanaka et al.; U.S. Pat. No. 6,494,607 to Valsimis et al.; and U.S. Pat. No. 4,834,543 to Nortey.
These rotors are manufactured from large castings and typically have a central axially extending cavity. It has been known within the prior art to provide straight core ribs which protrude into the internal cavity of the rotors and extend in straight lines parallel to the longitudinal axis of the rotor. A typical example of such prior art rotors with straight core ribs is illustrated in
A typical failure mode of rotors of the batch mixers of the type just described is a fatigue failure in the areas of highest stress ultimately resulting in a crack extending through the wall of the rotor and allowing water from the water cooled core to leak into the mixing chamber thus contaminating the rubber mixture or other material being mixed in the batch mixer. There is a continuing need for improvements in rotor design that will extend the working life of such rotors prior to failure.
The present invention provides a rotor for use in an internal batch mixing machine, the rotor including a rotor body having a first end and a second end, and having a central rotational axis and an axial length from the first end to the second end. The rotor body is generally hollow and has an axially extending cavity or core defined within the body. A plurality of mixing wings are defined on an outer surface of the rotor body. A plurality of internal reinforcing ribs of generally spiral or curved configuration are defined on the rotor body and project into the cavity.
In another embodiment of the invention an integrally cast rotor for an internal batch mixing machine has a longitudinal axis of rotation and has an internal longitudinally extending cavity or core. The rotor includes at least two integrally cast internal reinforcing ribs projecting into the cavity and extending longitudinally along paths curved about the longitudinal axis of the rotor.
Numerous objects, features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the following disclosure when taken in conjunction with the accompanying drawings.
The Prior Art Mixer Of
As shown in
The ingredients to be mixed are initially introduced into a hopper 30, while the ram 24 is raised, so that the ingredients can enter a chute 32 communicating with the hopper 30 and leading down into the central region 29 of the mixing chamber 26. Then the ram is lowered to push the ingredients down into the mixing chamber and to retain them therein. This ram is shown being operated by a fluid-actuated drive cylinder 34, mounted at the top of the overall housing 35 of the mixing machine 20. The fluid cylinder 34, which may be hydraulic or pneumatic, contains a double-acting piston 36 with a piston rod 38 connected to the ram 24 for lowering and raising the ram. The ram is secured to the lower end of the piston rod 38 below the bottom end 39 of the cylinder 34. Actuating fluid under the desired pressure is fed through a supply line 40 into the upper portion of the cylinder 34 for urging the piston 36 downwardly to the lowered operating position 24′. After the mixing operation has been completed, the ram is retracted back up to its raised position by actuating fluid fed into the cylinder 34 below the piston 36 through a supply line not seen in
The mixed and homogenized materials are discharged from the bottom of the mixing chamber 26 through a discharge opening normally closed by a door 42 which is held in its closed position during mixing operation by a locking mechanism 44. The door 42 when released by the locking mechanism 44 is swung down around a hinge shaft 46. The door is swung, for example, by a pair of hydraulic torque motors, not shown, mounted on opposite ends of the hinge shaft 46.
There are conventional sealing collars 54 (
In
In a typical application a mixer having a 620 liter volume has a rotor approximately 6 feet long with a rotor diameter of approximately 2 feet. Typical rotor speed is from 30 to 60 rpm. For tire manufacturing a typical “batch” is made up of approximately 1,100 lbs. of rubber mixed with 20 gallons of oil, plus carbon black and pigments. Typically mixing time is 1½ minutes.
Rotor With Spiral Core Ribs
The rotor body 101 has a central longitudinal axis 106 about which the rotor 100 rotates. Rotor 100 can be described as having an axial length 108 from the first end 102 to the second end 104.
The rotor body 101 is generally hollow and has an axially extending cavity or core 110 defined within the body 101. The core 110 is shown in dashed lines in
The rotor body 101 has defined thereon a plurality of mixing wings which preferably includes first and second long wings 112 and 114 and first and second short wings 116 and 118. The wings are of generally spiral configuration and are integrally cast with a body 101. In
As best seen in the cross-sections of
Similarly, as can be seen in viewing
As is best seen in the cross-sectional views of
The cast body 101 typically maintains a wall thickness of 4¼ to 4½ inches along the length of the wings. In one embodiment, each of the spiral ribs has a thickness in the circumferential direction of 1½ to 2 inches as seen in the cross-section views of
As shown in
With reference to
In the embodiment illustrated, each of the reinforcing ribs 120, 122, 124 and 126 is located mid-span between the longer and shorter diameters.
As illustrated, the shown preferred embodiment of rotor 100 includes four reinforcing ribs located substantially 90° apart.
It is possible to have less than four ribs or more than four ribs. For example, the rotor 100 could be built with only the two diametrically opposed reinforcing ribs 120 and 124. If there is only one reinforcing rib per wing such as in the alternative just described, it is preferable that the first reinforcing rib 120 lead the leading edge portion 130 of first wing 112 by an acute angle 142 in the range of from about 30° to about 50°. (See
When four ribs are used as shown in
The spiral configuration of the core ribs 120, 122, 124 and 126 may be described as corresponding to or generally paralleling the spiral configuration of the wings themselves, although it will be understood that they need not be exactly parallel.
As is apparent from
The reinforcing ribs 120, 122, 124 and 126 are continuous across the lobe transfer area, but since they generally follow the mid span of the wings, and since the short wings spiral in opposite directions from the long wings, there is a discontinuity or change of direction of curvature of the ribs as they pass across the lobe transfer area 146. This can be determined by following the location of the ribs in
Depending upon the internal configuration of the inner cavity 110, the spiral core ribs 120, 122, 124 and 126 need not extend the entire length of the wings, although they will extend over a substantial majority of the length of the wings.
The far end or drive end of the central cavity 110 is typically closed by a weld plug 111.
As shown in
The axial siphon tube 148 may for example be made up of a 3 inch nominal diameter outer tube 160 and a 1½ inch nominal diameter inner tube 154. A spacer 164 made of a polymeric material, and preferably an ultra high molecular weight polymeric material, is received about the inner tube 154 adjacent the right hand end thereof in
Adjacent the water end 102 of rotor 100 in
The water from inlet 150 flows through an axially innermost concentric pipe 154 of siphon tube 148 flowing out the right hand end thereof and then reversing as indicated by arrows 156.
In viewing the cross-sectional views of
The water flows back from right to left through these water return cavity segments 110A, 110B, 110C and 110D then flows radially inward through return holes such as 158 into an annulus between the innermost tube 154 and an outer tube 160, which annulus returns the water to water return or outlet line 152.
The purpose of the circulating water is to cool the rotor and in turn cool the rubber mixture being mixed so that the mixer can operate as long as possible without overheating the rubber. It is believed that the presence of core ribs also improves this cooling function.
It will be appreciated that there is a rotary union (not shown) between the rotor 100 and the header 151. The siphon tube 148 is fixed to and rotates with the rotor 100. The header 151 does not rotate.
As will be appreciated by those skilled in the art, the rotor body 101 which is a large integrally cast steel member, will typically have a hole in the initial casting which is plugged with a circular piece of metal which is welded in place and is generally referred to as a casting plug 162, a typical location of which is shown for example in
At this point it is helpful to contrast the location and shape of the spiral core ribs 120, 122, 124 and 126 with the straight core ribs of the prior art illustrated in
The straight core ribs of
The use of the spiral core ribs constructed generally as described above provides a surprisingly reduced concentration of stresses in the rotor 100, particularly in the areas of highest stress concentration such as lobe transfer area 146, with a correspondingly surprising increase in life expectancy of the rotor.
This has been shown by finite element analysis comparing both spiral core ribs and straight core ribs to no core ribs, which has shown a decrease in stress for the spiral core ribs as compared to no core ribs of 32.5%, as contrasted to only a 19.1% decrease in stress of straight core ribs as contrasted to no core ribs. This is shown on the following Table 1.
The crack size shown on the horizontal axis corresponds to crack sizes which would be located during non-destructive testing of a rotor to determine whether the rotor could be put back in service or rebuilt.
Due to the significantly reduced internal stresses within the rotor with spiral core ribs, a rotor with a given detected crack size has a significantly greater remaining life if the rotor has spiral core ribs than if it has either straight core ribs or no core ribs.
The calculations resulting in the curves of
The presence of the spiral core ribs strengthens the rotor thus reducing the stresses therein. The location of the spiral core ribs leading the leading edge of the wings is believed to optimize this effect since the leading edge area of the wings encounter the highest stresses when engaging the material being mixed.
Given the data of
For example, the labor costs to swap out a mixer is approximately $125,000. The cost for a set of two new rotors is $140,000. A mixer is typically down for a week to be replaced, and in a typical plant one week's production of a mixer is worth approximately $1,000,000.
With current technology utilizing no core ribs a set of rotors will typically be rebuilt one time at a cost of $90,000 as compared to $180,000 to purchase a new set of rotors. It is believed that with the reduced stresses provided by spiral core ribs it will be possible to do two rebuilds on a rotor thus saving an additional $90,000 as compared to the cost of purchasing a new set of rotors.
Also, through the use of spiral core mixers the unexpected catastrophic failures which lead to plant shutdown will be reduced.
Accordingly, it is an advantage of the present invention to provide an improved rotor design for an internal batch mixing machine.
Another advantage of the present invention is the provision of a rotor design having decreased stresses and thus increased life, being more resistant to the growth of fatigue induced cracks in the casting of the rotor.
Still another advantage of the present invention is the provision of a rotor design having spiral or curved core ribs.
Still another advantage of the present invention is the provision of a rotor design having an axial siphon tube engaged by a plurality of inwardly extending core ribs thus providing a plurality of separate water return cavity segments.
Thus it is seen that the apparatus of the present invention readily achieves the ends and advantages mentioned as well as those inherent therein. While certain preferred embodiments of the invention have been illustrated and described for purposes of the present disclosure, numerous changes in the arrangement and construction of parts may be made by those skilled in the art, which changes are encompassed within the scope and spirit of the present invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1324170 | Pletscher et al. | Dec 1919 | A |
1930285 | Robinson | Oct 1933 | A |
2559418 | Ford | Jul 1951 | A |
3110754 | Witort et al. | Nov 1963 | A |
3403894 | Matsuoka et al. | Oct 1968 | A |
3795121 | Cressman | Mar 1974 | A |
3972529 | McNeil | Aug 1976 | A |
4284358 | Sato et al. | Aug 1981 | A |
4300838 | Sato et al. | Nov 1981 | A |
4395132 | Wyffels | Jul 1983 | A |
4500209 | Steiner et al. | Feb 1985 | A |
4506983 | Marr | Mar 1985 | A |
4714350 | Nortey | Dec 1987 | A |
4730934 | Schwing | Mar 1988 | A |
4744668 | Nortey | May 1988 | A |
4834543 | Nortey | May 1989 | A |
4871259 | Harada et al. | Oct 1989 | A |
5000426 | Campana et al. | Mar 1991 | A |
5427449 | Christenson et al. | Jun 1995 | A |
5520455 | Yamada et al. | May 1996 | A |
5672006 | Hanada et al. | Sep 1997 | A |
5712010 | Russek et al. | Jan 1998 | A |
5782560 | Hatanaka et al. | Jul 1998 | A |
5984516 | Inoue et al. | Nov 1999 | A |
6224251 | Kuratsu et al. | May 2001 | B1 |
6481492 | Zhu et al. | Nov 2002 | B1 |
6494607 | Valsamis et al. | Dec 2002 | B2 |
6530422 | Zhu et al. | Mar 2003 | B2 |
6820654 | Lindsay | Nov 2004 | B2 |
6902311 | Khouri et al. | Jun 2005 | B1 |
6918839 | Holemans et al. | Jul 2005 | B2 |
20010050880 | Regalia | Dec 2001 | A1 |
20020163852 | Valsamis et al. | Nov 2002 | A1 |
20040089976 | Bradley et al. | May 2004 | A1 |
20050087251 | Sumitomo | Apr 2005 | A1 |
20060098527 | Limper et al. | May 2006 | A1 |
20060104154 | Inoue et al. | May 2006 | A1 |
20070070802 | Mortimer et al. | Mar 2007 | A1 |
20070291579 | Huffstetler et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
0 262 917 | Apr 1988 | EP |
07303824 | Nov 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20070291579 A1 | Dec 2007 | US |