Mixer with pivotable bowl

Information

  • Patent Grant
  • 7438463
  • Patent Number
    7,438,463
  • Date Filed
    Tuesday, April 5, 2005
    19 years ago
  • Date Issued
    Tuesday, October 21, 2008
    15 years ago
Abstract
A mixer system including a bowl for receiving a material to be mixed, a mixer body having a rotatable output component, and a hinge. The bowl is pivotable about the hinge relative to the mixer body such that the bowl can be pivoted between a loading/unloading position and a closed position relative the mixer body. The mixer may include a magnetic bowl detector and the bowl may include a magnet thereon.
Description
TECHNICAL FIELD

The present application is directed to a bowl that can be pivotally coupled to a mixer, and to a mixer system having a pivotable bowl.


BACKGROUND

Mixers are used to mix and blend a wide variety of materials. The mixers typically include a mixer body having a motor that drives a generally vertically-extending mixing element, and a bowl that is located below the mixing element. The bowl receives the materials to be mixed and the lower end of the rotatable mixing element therein. The bowl is typically detachable from the mixer body to aid in loading and unloading the materials into the bowl, and to enable cleaning, repair or replacement of the bowl.


In some mixers, the mixer bowl is vertically movable relative to the body such that the bowl can be lowered away from the mixing element. The materials to be mixed can then be added to or removed from the bowl while the bowl is in its lowered position. However, even after the bowl is lowered, the location and orientation of the overhanging head portion of the mixer body relative to the bowl may limit access to the bowl to add or remove materials from the bowl.


SUMMARY

A mixer has a bowl that is pivotally coupled to the mixer body, enabling the bowl to pivot away from the mixer body, which can provide increased access to the bowl. The bowl may include a magnetic sensor actuator thereon for triggering a magnetic sensor on the mixer body when the bowl is in a certain position, such as a closed position. The magnetic sensor, or some other type of sensor, may act as a single sensor that determines when the bowl is both in a bowl closed and bowl up position. The mixer body may also include a bowl retainer or holder that includes a curved surface that interacts with a curved surface on a bowl protrusion or stabilization member, facilitating slight tilting of the bowl when moved into or out of its closed position relative to the mixer body.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of one embodiment of a mixer;



FIG. 2 is a side elevation of the mixer of FIG. 1 with head cover removed;



FIG. 3 is a perspective view of one side of a mixer bowl;



FIG. 4 is a perspective view of another side of the mixer bowl of FIG. 3;



FIG. 5 is a perspective view of a mixer bowl pivotably mounted to a mixer and in a bowl open position;



FIG. 6 is a perspective view of the arrangement of FIG. 5 with the bowl moved to a closed position;



FIG. 7 a partial perspective view of a pivot connection between a bowl and a mixer;



FIG. 8 is a partial cross section of the pivot pin of FIG. 7;



FIG. 9 is a partial perspective of a rear portion of a bowl yoke with a bowl holder;



FIG. 10 is a cross-section taken along line 10-10 of FIG. 9;



FIG. 11 is a cross-section taken along line 11-11 of FIG. 9;



FIG. 12 is a partial top view of a bowl locking bracket engaged with a mixer yoke locking pin;



FIG. 13 is a schematic view of a mixer control system; and



FIGS. 14 and 15 show an exemplary mixer bowl sensor assembly on a mixer.





DETAILED DESCRIPTION

Referring to FIGS. 1 and 2, a mixing machine 10 includes a mixer body 12 having a base portion 14, a head portion or overhang portion 16 and a support portion 18 (e.g., in the form of a column or pedestal) connecting the head portion and the base portion in a vertically spaced apart relationship. A front to back head portion axis A is shown. An output member 20 (e.g., a shaft for receiving a mixer tool such as a beater or whip) extends downward from the head portion 16 in a direction toward a bowl receiving location 22 formed between the arms 24 of a bowl receiving yoke 25 that can be moved upward and downward relative to the head portion 16 by rotation of the illustrated handle 27. In one example, the handle 27 operates a gear system within the column that is linked to the yoke 25 and the yoke 25 is mounted for sliding movement along spaced apart tracks 29 at the front side of column 18 when the handle 27 is rotated. A motor 26 may be mechanically linked to the output member 20, as by a gear system 28, for effecting rotation of the output member about a first axis 30 and orbiting movement of the output member 20 and first axis 30 about a second axis 32 (e.g., a planetary movement or planetary rotation). A power take off 34 extends outwardly from a front side of the head portion 16 and may take the form of a protruding hub or boss that is adapted for connection with mixer accessories such as meat grinders, slicers etc. Internal of the power take off 34 is a drive member that is rotated by the motor 26 via the gear system 28. Head cover 40 is shown installed in FIG. 1, but is removed in FIG. 2.


Referring now to FIGS. 3-4, a bowl 50 includes bowl body 52 with upper opening 54 for receiving material to be mixed, and substantially diametrically opposed handles 56 (not shown in FIG. 24) extending from the bowl body for carrying the bowl 50. Pivot hinge components are also provided. Notably, vertically spaced apart brackets 58 and 60 each include a respective opening 62 and 64, with openings 62 and 64 aligned circumferentially and arranged vertically one above the other. A single bracket with two outwardly projecting parts could also be used to provide the openings. In the illustrated embodiment, the body of bracket 58 completely surrounds opening 62. Opening 64 is only partially surrounded by the body of bracket 60, such that opening 64 is open at an edge facing radially outward from a center axis 66 of the bowl. However, variations are possible. The rear part of the bowl includes a stabilization bracket 68 extending therefrom at a position about midway down the depth or height of the bowl body 52. Located above and substantially in circumferential alignment with the stabilization bracket 68, a sensor actuator 70 is positioned near the upper rim 72 of the bowl. For the purpose of this application, the rear of the bowl is defined as the part of the bowl that is positioned adjacent the mixer body when the bowl is mounted in a closed position on the mixer body as shown in FIG. 6. Sensor actuator 70 and stabilization bracket 68 are circumferentially spaced from both the brackets 58 and 60, and the locking bracket 90 (described below) by about 90 degrees.


When the bowl 50 is mounted for pivot on the mixer body (FIGS. 5 and 6), the bracket openings 62 and 64 engage with a pin 74 located toward the end of one arm 24 of bowl yoke 25, the bowl yoke mounted for upward and downward movement along a mixer body column or pedestal 18. In the illustrated embodiment, the pin 74 is located on the right arm of the mixer bowl yoke (relative to a rear to forward direction of the mixer head). The mixer head is not shown in FIGS. 5-6. The illustrated pin 74 is fixed to and extends entirely through the right arm 24 of yoke 25 to provide both a vertically upward extending portion that engages with the opening 62 of upper bracket 58 and a vertically downward extending portion that engages with the opening 64 of lower bracket 60. Alternatively two separate pins, one connected into the top of the arm 24 and one connected into the bottom of the arm 24, could be used. To place the bowl 50 on the mixer body, the bowl is positioned to place the upper opening 62 over the top of the upwardly projecting part of the pin 74 and the slotted, lower opening 64 is aligned with the downwardly projecting part of the pin. When the bowl is released, the combined interaction between upper opening 62 and upper part of pin 74 and lower opening 64 and lower part of pin 74 provides a stable pivot hinge for the bowl that supports the bowl throughout its range of pivoting movement.



FIG. 5 shows the bowl 50 in an open position, away from the mixer body, and FIG. 6 shows the bowl in the closed position, adjacent the mixer body. When the bowl 50 is moved into the closed position, stabilization bracket 68 moves into a support channel or slot 82 provided on the yoke 25 of the mixer body. Sensor actuator 70 also moves into position to actuate or trigger a bowl sensor 84 located on the column 18 of the mixer body. In one embodiment, the sensor actuator 70 is a magnetic member (outputting a magnetic field) and the bowl sensor 84 is a magnetic detector, such a reed switch. However, embodiments having a non-magnetic actuator that makes contact with a bowl sensor could also be used. In the illustrated embodiment, the sensor 84 is located on the mixer body such that the sensor actuator 70 only aligns with the sensor 84 when the bowl 50 is in the closed position and the bowl yoke 25 has been moved upward into a mixing position. The output of bowl sensor 84 is provided to the control system of the mixer and the control system prevents the drive motor from operating, thereby inhibiting automated movement of the rotatable and orbital output shaft (not shown) unless the bowl 50 is detected as being in the closed and up position. Other mixer operations could be inhibited, restricted or enabled based upon the output of the bowl sensor 84.


Referring to FIGS. 14 and 15, an exemplary bowl sensor configuration is provided. Specifically, the bowl sensor 84 is located at the front of column 18, which may be a casting having a rectangular opening 300 therein. A metal plate 302 is secured over the opening as by fasteners 304. The sensor 84, which may be of externally threaded cylindrical construction with, for example, a reed switch embedded therein, protrudes through the plate 302. A nut 306 is threaded onto the protruding part of the sensor 84 to hold in place and/or to protect the sensor 84.


Locking bracket 90 (FIGS. 3 and 6), which may be provided substantially diametrically opposite to brackets 58 and 60, includes an opening 92 therein and an upwardly bent ramp part 94 extending toward the rear of the mixer bowl. As the bowl 50 is moved to the closed position, a lower surface of ramp part 94 moves over the top of a locking pin 96 located toward, and extending upward from the end of left arm 24 of yoke 25, causing the bowl 50 to tilt slightly and moving the opening 92 over the top of pin 96, at which time the bowl tilts back downward to move the opening 92 into engagement with the pin 96 as shown in FIG. 6, thereby hold the bowl 50 in the closed position. The lower surface of ramp part 94, while facing downward, extends generally upward and away from a generally horizontal part of the bracket 90. To move the bowl 50 out of the closed position, handle 56 is used to lift the locking bracket side of the bowl 50 slightly so that the opening 92 disengages from the pin 96.


Referring now to FIG. 7, an enlarged partial view of one embodiment of the pin 74 in cooperation with the brackets 58 and 60 of bowl 50 is shown. In this embodiment brackets 58 and 60 extend from a common bracket link 100. Upper part 102 of pin is tapered or rounded for ease of receiving the opening of bracket 58. Lower part 104 of pin 74 includes a cutout or cutaway 106 (best seen in the partial cross-section of FIG. 8) at its rearward facing side to provide a slight rearwardly located spacing 108 (FIG. 7) between the opening of bracket 60 and the pin part 104. This spacing 108 facilitates slight tilting of the bowl in the direction of arrow 10 when the bowl is moved to or from its closed position as described above. In one embodiment the bracket 60 may actually be in a non-contacting position relative to lower pin part 104 when the bowl is in the closed position, with bracket 60 only contacting lower pin part 104 when the bowl is pivoted out of the closed position.


Referring now to FIG. 9, an enlarged partial view of a rear portion of a bowl yoke 25 is shown. Whereas FIG. 5 provides a support channel 82 in the form of a generally C-shaped member with a rectangular channel therein, the embodiment of FIG. 9 provides a bowl retainer or holder 120 with an opening 122 that provides one or more curved surfaces therein. In particular, referring to FIG. 10, a cross section of the holder taken along line 10-10 of FIG. 9 is shown, where a stabilization member 124 that protrudes from a bowl body 52 is also shown. Notably, stabilization member 124 has a configuration different than the stabilization bracket 68 of FIG. 4. Inner surface 126 of opening 122 is generally curved from top to bottom, and the outer surface 128 of stabilization member 124 is also curved. The curvature of the two surfaces may be substantially the same. When the bowl 50 is in the closed position with member 124 in opening 122 as shown, the surface 128 of member 124 contacts the surface 126 of the opening 122 to provide some restriction against bowl movement. However, the curved surfaces permit the bowl to be readily tipped in the manner shown by arrow 130 when the bowl is moved to or from its closed position as described above. Moreover, rattling noise during mixing operations is effectively reduced, as compared to the C-shaped channel 82 and stabilization bracket 68, because any up and down movement of member 124 within opening 122 tends to result in sliding contact between the surfaces 126 and 128. As shown in FIG. 11, which shows a cross-section of the holder taken along line 11-11 of FIG. 9, the surface 126 of opening 122 may also be curved from side-to-side. Such curvature facilitates readily cleaning the surface 126. The side-to-side curvature, which may bar arcuate, may generally be slightly larger than that defined by the movement path of the member 124 during pivot of the bowl 50, thereby allowing member 124 to readily move into and out of the opening 122.


Referring now to FIG. 12, a top view of another embodiment of a bowl locking bracket 140 is shown. As compared to locking bracket 90 of FIG. 3, locking bracket 140 includes opening 142 that is oval, or otherwise elongated, instead of circular. Opening 142 is shown engaged with the locking pin 96 as would be the case when the bowl 50 is in its closed position. Notably, the oval nature of the opening 142 is in the side-to-side direction reflected by arrow 144 (also generally a radially outward direction relative to an upright axis of the bowl) to allow play in that direction, but the opening 142 is sized in front-to-rear direction 146 (also generally a direction tangential to an outer surface of the bowl body and/or perpendicular to radial direction 144) to cooperate closely with the pin 96 and restrict any significant movement in such direction 146. By forming opening 142 as an elongated slot, manufacturing tolerances for the bowl with locking bracket can be more forgiving.



FIG. 13 provides a schematic of a basic drive system that includes a control unit 200 associated with motor 26 that is in turn connected to gearing system 28 to rotate the output member 20. The bowl position sensor 84 is connected to and/or may be considered part of the control unit 200 (e.g., as by providing an electronic input thereto or as by controlling the state of a relay that allows power to be delivered to the motor 26).


It is to be clearly understood that the above description is intended by way of illustration and example only, is not intended to be taken by way of limitation, and that changes and modifications are possible. For example, as an alternative to locking pin 96, a recess in left arm 24, could be provided. Further, a locking pin 96 could be retractable into the arm 24 and spring-biased into an upward position. Still further, whereas the illustrated embodiment uses a bowl with a separate stabilization member and sensor actuator, it is contemplated that the two could be combined into a single piece, as by incorporating a magnet into the stabilization member and relocating the sensor on the mixer body if necessary. Other variations are possible.

Claims
  • 1. A mixer for receiving a pivotable mixer bowl, the mixer comprising: a mixer body having a head portion with an output component extending downward toward a bowl receiving yoke, the output component operable for planetary movement, the bowl receiving yoke movable upward and downward along a pedestal;a motor operatively connected for driving the output component;at least one hinge component on the bowl receiving yoke, the hinge component at least in part defining a substantially upright bowl pivot axis; anda control unit, including a single sensor located on the mixer body for detecting a bowl closed and up condition, the bowl closed and up position being when (i) the bowl is in its closed position and (ii) the yoke is in a raised position, the control unit operates to prevent operation of the motor until the sensor detects the bowl closed and up condition.
  • 2. The mixer of claim 1 wherein the single sensor is located on the pedestal.
  • 3. The mixer of claim 1 wherein the single sensor is a magnetic detector.
  • 4. The mixer of claim 1, further comprising a bowl pivotably mounted to the hinge component for movement between the bowl closed position and a bowl open position relative to the mixer body, the bowl includes a magnet thereon that provides a magnetic field to trigger the sensor if both (i) the bowl is in its closed position and (ii) the yoke is in the raised position.
  • 5. The mixer of claim 1 wherein the at least one hinge component is located on the bowl receiving yoke and comprises a first pin part extending upward from the bowl yoke and a second pin part extending downward from the bowl receiving yoke.
  • 6. The mixer of claim 5 wherein the first pin part and the second pin part are formed by opposite ends of a common pin that extends through the bowl receiving yoke.
  • 7. The mixer of claim 5 wherein the first pin part and the second pin part are formed by separate pins.
  • 8. The mixer of claim 1 wherein the bowl receiving yoke includes a bowl holder having an opening thereon, an inner surface of the bowl holder is curved at least from top-to-bottom.
  • 9. The mixer of claim 8 including a bowl pivotably mounted thereon for movement between the bowl closed position and a bowl open position, the bowl includes a stabilization member extending therefrom, the stabilization member moves into the bowl holder when the bowl is in the closed position, the stabilization member includes an outer surface that is curved.
  • 10. The mixer of claim 1 wherein: the single sensor is a magnetic detector;a bowl is pivotably mounted to the hinge component for movement between the bowl closed position and a bowl open position relative to the mixer body, the bowl includes a magnet thereon that provides a magnetic field to trigger the sensor if both (i) the bowl is in its closed position and (ii) the yoke is in the raised position.
  • 11. The mixer of claim 10 wherein: the bowl receiving yoke includes a bowl holder having an opening thereon, an inner surface of the bowl holder is curved at least from top-to-bottom;the bowl includes a stabilization member extending therefrom, the stabilization member moves into the bowl holder when the bowl is in the closed position, the stabilization member includes an outer surface that is curved.
  • 12. The mixer of claim 1 wherein: a bowl is pivotably mounted to the hinge component for movement between the bowl closed position and a bowl open position relative to the mixer body, the bowl includes a magnet thereon that provides a sensor trigger thereon to trigger the sensor only if both (i) the bowl is in its closed position and (ii) the yoke is in the raised position.
  • 13. A mixer for receiving a pivotable mixer bowl, the mixer comprising: a mixer body having a head portion with an output component extending downward toward a bowl receiving yoke, the output component operable for planetary movement, the bowl receiving yoke movable upward and downward along a pedestal;a motor operatively connected for driving the output component;at least one hinge component on the bowl receiving yoke, the hinge component at least in part defining a substantially upright bowl pivot axis; anda control unit, including a single sensor located on the mixer body for detecting a bowl closed and up condition, the control unit operates to prevent operation of the motor until the sensor detects the bowl closed and up condition;wherein the at least one hinge component is located on the bowl receiving yoke and comprises a first pin part extending upward from the bowl yoke and a second pin part extending downward from the bowl receiving yoke;wherein the first pin part and the second pin part are formed by opposite ends of a common pin that extends through the bowl receiving yoke.
  • 14. The mixer of claim 13 wherein: the single sensor is a magnetic detector;a bowl is pivotably mounted to the hinge component for movement between the bowl closed position and a bowl open position relative to the mixer body, the bowl includes a magnet thereon that provides a magnetic field to trigger the sensor if both (i) the bowl is in its closed position and (ii) the yoke is in a raised position.
  • 15. The mixer of claim 14 wherein: the bowl receiving yoke includes a bowl holder having an opening thereon, an inner surface of the bowl holder is curved at least from top-to-bottom;the bowl includes a stabilization member extending therefrom, the stabilization member moves into the bowl holder when the bowl is in the closed position, the stabilization member includes an outer surface that is curved.
  • 16. The mixer of claim 13 wherein: a bowl is pivotably mounted to the hinge component for movement between the bowl closed position and a bowl open position relative to the mixer body, the bowl includes a magnet thereon that provides a sensor trigger thereon to trigger the sensor only if both (i) the bowl is in its closed position and (ii) the yoke is in a raised position.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2005/011584 4/5/2005 WO 00 10/12/2006
Publishing Document Publishing Date Country Kind
WO2005/112722 12/1/2005 WO A
US Referenced Citations (82)
Number Name Date Kind
32482 Lane Jun 1861 A
140527 Munson, Jr. Jul 1873 A
227239 Frentress May 1880 A
320255 Jackman Jun 1885 A
613888 Schmuck Nov 1898 A
735353 Eifert Aug 1903 A
760693 Lancaster et al. May 1904 A
826223 Broadwell Jul 1906 A
879590 Roth Feb 1908 A
910648 Davison Jan 1909 A
1143484 Beach Jun 1915 A
1264128 Rataiczak Apr 1918 A
1366114 Boggs Jan 1921 A
1415735 Trust et al. May 1922 A
1428704 Petri Sep 1922 A
1468615 Gettenstein et al. Sep 1923 A
1562704 Kevan Jan 1925 A
1548041 Johnston et al. Aug 1925 A
1548919 Ward Aug 1925 A
1634777 Girdler Jul 1927 A
1695345 Read Dec 1928 A
1733945 Dehuff Oct 1929 A
1743271 Gould Jan 1930 A
1761237 Schiff Jun 1930 A
1767002 Johnston et al. Jun 1930 A
1774509 Gould Sep 1930 A
1781321 Dehuff Nov 1930 A
1807589 Edmunds Jun 1931 A
2024282 Geiger Dec 1935 A
2122628 Tracy Jul 1938 A
2181079 Dehuff Nov 1939 A
2251903 Anstice et al. Aug 1941 A
2613847 Lacher Oct 1952 A
3073493 Pfaffenberger Jan 1963 A
3075746 Yablonski et al. Jan 1963 A
3255913 Helm Jun 1966 A
3533603 Kovacs Oct 1970 A
3633719 Lynch Jan 1972 A
3758183 Steinkamp et al. Sep 1973 A
4042221 Myers et al. Aug 1977 A
4135828 Cabak Jan 1979 A
4173925 Leon Nov 1979 A
4283148 Peterson Aug 1981 A
4402466 Schmidt Sep 1983 A
4528718 Brockhaus et al. Jul 1985 A
4765746 Suay Puig Aug 1988 A
4823633 Pike Apr 1989 A
4854711 Hagan Aug 1989 A
4937916 Redman Jul 1990 A
4946285 Vennemeyer Aug 1990 A
5048709 Alverson Sep 1991 A
5123747 Derksen Jun 1992 A
5157983 Sankovic Oct 1992 A
5306083 Caldwell et al. Apr 1994 A
5325980 Grimm et al. Jul 1994 A
5325982 Cobb, Jr. Jul 1994 A
5348393 Pappas, Jr. Sep 1994 A
5385422 Kruger et al. Jan 1995 A
5409149 Hough Apr 1995 A
5472276 Ratermann et al. Dec 1995 A
5494350 Childress Feb 1996 A
5653535 Xie et al. Aug 1997 A
5690427 Jennings Nov 1997 A
5806704 Jamison Sep 1998 A
5860738 Brinkman Jan 1999 A
5934802 Xie Aug 1999 A
6092647 Yeh et al. Jul 2000 A
6494610 Brunswick Dec 2002 B1
6595680 Sanpei et al. Jul 2003 B2
6883959 Donthnier et al. Apr 2005 B2
6966691 Brunswick et al. Nov 2005 B2
6991363 Brunswick et al. Jan 2006 B2
7384187 Blackburn et al. Jun 2008 B2
7387430 Short et al. Jun 2008 B2
20020093877 Brunswick et al. Jul 2002 A1
20020181322 Brunswick et al. Dec 2002 A1
20040120213 Short et al. Jun 2004 A1
20040120215 Huang et al. Jun 2004 A1
20040120216 Donthnier et al. Jun 2004 A1
20040208082 Huang et al. Oct 2004 A1
20050002272 Brunswick et al. Jan 2005 A1
20050141340 Donthnier et al. Jun 2005 A1
Foreign Referenced Citations (18)
Number Date Country
1070563 Dec 1959 DE
1298510 Jul 1969 DE
0637462 Feb 1995 EP
1027920 Aug 2000 EP
1114671 Jul 2001 EP
1151669 Jul 2001 EP
1079799 May 1954 FR
2728485 Jun 1996 FR
2740064 Apr 1997 FR
2805177 Aug 2004 FR
120393 Mar 1919 GB
672619 May 1952 GB
11-347390 Dec 1999 JP
477242 Feb 2002 TW
530691 May 2003 TW
WO 9630114 Oct 1996 WO
WO 03037494 May 2003 WO
WO 2005112722 Dec 2005 WO
Related Publications (1)
Number Date Country
20070195641 A1 Aug 2007 US