The present invention relates to mixing apparatus which mix audio signals, and computer programs for the mixing apparatus.
As well known, audio mixers are mixing apparatus which include a predetermined plurality of mixing buses and which mix a plurality of audio signals, via the mixing buses, at desired tone volume levels. Digital mixers are mixing apparatus which perform mixing processing and other necessary processing, such as effect impartment, through digital signal processing. In such digital mixers, audio signals, such as tone signals and digital audio signals, input via a plurality of input ports, are allocated and supplied to desired one or ones of a plurality of input channels. Each of the input channels adjusts characteristics and level of the signal allocated thereto and then supplies the thus adjusted signal to desired mixing buses. Each of the mixing buses mixes a plurality of the digital signals supplied from the input channels and supplies the resultant mixed signals to corresponding output channels. Each of the output channels adjusts characteristics and level of the supplied signal and then outputs the thus-adjusted signal to the outside of the mixer. Among examples of digital mixers of the above-discussed type is a digital mixer marketed by the assignee of the instant application under the product name “PM1D” (see, for example, http://www.2.yamaha.co.jp/manual/pdf/pa/japan/mixers/PM1D_ManagerJ.pdf).
In this specification, allocating signals of input ports to input channels or allocating output signals of output channels to output ports will be referred to as “patch” or “patching”, and setting data of such patching will be referred to as “patch data”. Allocation (or patching) of the signals from the input ports to the input channels is performed by an “input patch” section, while allocation (or patching) of the signals from the output channels to the output ports is performed by an “output patch” section.
Generally, the digital mixers, such as the one marketed under the product name “PM1D” mentioned above, are provided with a plurality of input ports including analog input ports each for inputting an analog audio signal and digital input ports each for inputting a digital audio signal.
The analog input port is provided with a gain-variable amplifier and A/D converter. Analog audio signal input to the analog input port is appropriately adjusted in amplitude level by the gain-variable amplifier and then converted via the A/D converter into a digital audio signal. Then, the thus-converted digital audio signal is supplied via the input patch section to one or more input channels that are patched-to destinations of the analog input port (i.e., “patched-to input channels”). Further, the digital input port, which may comprise a digital audio I/O based on the AES/EBU, ADAT, TDIF or other standard or an audio network I/O like the Cobranet (trademark) or mLAN (trademark), is capable of inputting a plurality of digital audio signals by means of a single cable.
Via a gain control mechanism provided in the analog input port, the user is allowed to adjust the input analog audio signal to an optimal gain level that can reliably prevent the A/D-converted digital signal from assuming too small a level and prevent signal clipping from occurring due to an excessive input to the A/D converter or excessive gain of the A/D converter. However, if the gain of the analog input port is adjusted, signals to be processed in input channels that are patched-to destinations of (i.e., patched-to input channels connected to) the analog input port, namely, signals that are supplied via the patched-to input channels to the mixing buses, would vary in level, which thereby undesirably influences a mixing level ratio among the signals.
At an input stage of each of the input channels, there is provided a level control mechanism called “attenuator” which attenuates or amplifies the level of the audio signal input to the channel in question. This attenuator is provided to appropriately adjust the level of the audio signal, input to the channel, with effects of an equalizer etc., provided at subsequent stages, taken into consideration.
When gain adjustment has been performed in the analog input port and if the attenuator of a given patched-to input channel connected with the analog input port is adjusted to cancel out level variation having occurred due to the gain adjustment, the signal mixing ratio can be prevented from changing. However, the conventionally-known mixing apparatus are not constructed with interlocked relation between the gain adjustment of the input ports and the adjustment of the attenuators of the input channels taken into consideration; to date, it has been conventional to perform such adjustment through manual operation by users. Speaking of possible arrangements for interlocking the gain adjustment of a given input port and the adjustment of the attenuator of a corresponding patched-to input channel to each other, the input ports and the input channels may be connected with each other in desired combinations and any of the input ports may be connected to two or more patched-to input channels. However, that the gain of a given input port is adjusted in accordance with adjustment of the attenuator of a given patched-to input channel is practically unreasonable in view of the intended purpose of the attenuator. Therefore, the arrangements for merely interlocking the gain adjustment of a given input port and the adjustment of the attenuator of a corresponding input channel to each other alone are not sufficient.
In view of the foregoing, it is an object of the present invention to provide an improved digital mixer which, even when gain adjustment of an input port has been made, can prevent the gain adjustment from influencing signal processing in a corresponding patched-to input channel and influencing a mixing ratio of signals supplied from individual input channels to a mixing bus.
In order to accomplish the above-mentioned object, the present invention provides an improved mixing apparatus, which comprises: an input port that inputs an audio signal, adjusts a gain of the inputted audio signal and supplies the audio signal of the adjusted gain in digital representation; a plurality of channels that process signals, each of the channels including a level control section that controls an input level of an audio signal allocated to the channel; an allocation section that allocates the audio signal, supplied from said input port, to one or more desired ones of said plurality of channels; an automatic adjustment section that, in accordance with the gain adjustment in the input port, automatically adjusts level control to be performed by the level control section in each of the channels, having the audio signal of the input port allocated thereto, in a direction to cancel out level variation having occurred due to the gain adjustment in the input port; and a setting section that, for each of the channels, sets an ON/OFF state of an automatic adjustment function of the automatic adjustment section independently of the other channels.
According to the present invention, which is provided with the automatic adjustment section, the level control to be performed by the level control section for each of the channels, to which the audio signal of the input port has been allocated, can be automatically adjusted in a direction to cancel out level variation having occurred due to the gain adjustment in the input port, and the ON/OFF state of the automatic adjustment function can be set by the ON/OFF setting section independently for each of the channels. Because the automatic adjustment function is performed, by the automatic adjustment section, in the channel selected or set as a destination of the signal (i.e., “destination channel”), the gain adjustment of the input port is not varied when the level control operator has been operated in the destination channel. Namely, the automatic adjustment function serves to fix the signal, to be used for signal processing in each of the channel, at a given constant level irrespective of the gain adjustment performed in the corresponding input port whose audio signal has been allocated to the channel. Even when the gain of a given input port has been adjusted, each of the channels, to which the audio signal has been allocated, can perform signal processing without being influenced by level variation resulting from the gain adjustment in the input port. Thus, the mixing apparatus of the present invention can achieve the superior benefit that a mixing ratio among signals of the individual channels can be prevented from being influenced even when the gain of the input port has been adjusted.
The present invention may be constructed and implemented not only as the apparatus invention as discussed above but also as a method invention. Also, the present invention may be arranged and implemented as a software program for execution by a processor such as a computer or DSP, as well as a storage medium storing such a software program. Further, the processor used in the present invention may comprise a dedicated processor with dedicated logic built in hardware, not to mention a computer or other general-purpose type processor capable of running a desired software program.
The following will describe embodiments of the present invention, but it should be appreciated that the present invention is not limited to the described embodiments and various modifications of the invention are possible without departing from the basic principles. The scope of the present invention is therefore to be determined solely by the appended claims.
For better understanding of the objects and other features of the present invention, its preferred embodiments will be described hereinbelow in greater detail with reference to the accompanying drawings, in which:
The waveform I/O unit 5 includes various interfaces for an analog input, analog output, digital input and digital output. Analog audio signal input via the I/O unit 5 is converted into a digital audio signal and then supplied to the DSP 4. The digital audio signal output from the DSP 4 is converted via the I/O unit 5 into an analog audio signal, and the converted analog audio signal is output to the outside of the digital mixer. Further, the digital mixer can communicate digital signals with audio equipment, connected thereto, via the waveform I/O unit 5.
The digital mixer of
In the flash memory 2 or RAM 3, there is provided a current memory area for recording current settings of the digital mixer. Data recorded in the current memory area are various operation data set by the user for the mixing processing, such as settings of parameters for use in signal processing to be performed by the DSP 4. In other words, the DSP 4 performs the signal processing on the basis of the operation data (such as settings of parameters) stored in the current memory area. As any one of the parameter settings etc. is changed, the data in the current memory area, corresponding to the changed parameter or the like, is updated in accordance with the change (e.g., amount of operation), and the updated result is reflected in the signal processing by the DSP 4.
The flash memory 2 includes a “scene memory area”, where are set a plurality of sets of scene data comprising various kinds of operation data corresponding to given settings (such as settings of various parameters). The user can store current settings of the digital mixer into the scene memory area as scene data. The user can also read out a desired scene data set from the scene memory area so as to replace the current settings of the digital mixer with the read-out scene data set and thereby automatically reproduce (or recall) given mixing-related settings (i.e., scene).
The channel strip section 12 comprises a plurality of channel strips CH. Let it be assumed here that the channel strip section 12 in the instant embodiment comprises a total of twelve channel strips CH1, CH2, CH3, . . . . Each of the channel strips CH includes: operators for adjusting characteristics and level of a digital signal input to the channel assigned to that channel strip CH, such as the electric fader 8 and knob-type operator 14 for adjusting the level of the signal; a SEL switch 15 for giving an instruction for setting up the assigned channel in a not-shown selected channel section (i.e., module for deploying functions of the assigned channel in detail) and giving an instruction for pairing the assigned channel with another one of the channels; an ON switch 16 for setting an ON/OFF state of the assigned channel; a CUE switch 17 for setting an ON/OFF state of a CUE function (i.e., function for monitoring a tone of a selected channel); and other operators.
The user can use channel any one of assignment switches 18a, 18b and 18c to assign desired input channels or output channels to the channel strips CH of the channel strip section 12. Let it be assumed here that the digital mixer according to the instant embodiment is provided with twenty-four input channels, eight output channels and one stereo output channel (hereinafter “ST output channel”). More specifically, the user can assign the first to eighth output channels and one ST output channel to nine of the channel strips CH via the channel assignment switch 18a (“MASTER 1”), assign the first to twelfth input channels to the twelve channel strips CH via the channel assignment switch 18b (“LAYER 1”), and assign the thirteenth to twenty-fourth input channels to the twelve channel strips CH via the channel assignment switch 18c (“LAYER 2”).
As further seen in
Further, on the operation panel of
Input patch section 22 is a module that selects any one of the analog or digital input ports 20 or 21 for each of the predetermined plurality of (twenty-four in the instant embodiment) input channels and interconnects the selected input port and the input channel. Via this input patch section 22, the user allocates the signal of each of the input ports to any of the input channels. Data indicative of the connections in the input patch section 22 between the individual input channels and the input ports are stored as “patch data” in a suitable memory, such as the flash memory 2 or RAM 3. Note that the signal of the same input port may be allocated to two or more of the input channels.
The twenty-four input channels 23 each perform signal processing on the basis of various parameters set for the input channel to adjust characteristics and level of the digital signal supplied to the input channel. Signal output from each of the input channels is sent to desired one or more of a predetermined plurality of mixing buses (MIX buses); in the illustrated example, there are provided one stereo bus (ST bus) 24 and eight mixing (MIX) buses 25. Signals output from the input channels to any of the ST bus 24 and mixing buses 25 are subjected to the mixing processing performed by the bus 24 or 25 at a mixing ratio corresponding to respective signal output levels of the input channels, and the resultant mixed signals are supplied to the output channels corresponding to the bus. In the illustrated example, the output channels consist of one ST output channel 26 corresponding to the ST bus 24 and eight output channels 27 corresponding to the eight mixing buses 25. Each of the ST output channel 26 and eight output channels 27 performs signal processing on the basis of various parameters, set for the output channel, to adjust characteristics and level of the digital signal supplied thereto.
Output patch section 28 is a module that selects any one of the output channels (ST output channel 26 and output channels 27) for each of analog or digital output ports (A output ports or D output ports) 29 or 30 and interconnects the selected output channel and the output port that is a patched-to destination of the signal of the output channel. Via this output patch section 28, the output signal of each of the output channels is allocated and supplied to any one of the output ports 29 and 30.
Thus, each of the digital audio signals output from the ST output channel 26 and output channels 27 is allocated via the output patch section 28 to any one of the output ports 29 or 30. Each of the analog output ports 29 converts the thus-supplied digital audio signal into analog representation and thereby outputs an analog audio signal. Each of the digital output ports 30 comprises a suitable digital I/O and outputs a digital audio signal.
The equalizer 32 performs equalizing on the output of the attenuator 31 on the basis of an equalizing parameter setting of the input channel, and the compressor 33 imparts a compressor effect to the output of the equalizer 32 on the basis of a compressor setting of the input channel. The tone volume fader 34 controls the tone volume level of the signal, allocated to the input channel, on the basis of a tone volume parameter Vol(i) of the input channel. Channel ON/OFF switch (“CH_ON”) 35 switches between ON/OFF states of the output signal of the tone volume fader 34 on the basis of an ON/OFF parameter ON(i) of the input channel, and the ON switch 16 of
On the basis of a pre/post switch parameter Pre(ij), a pre/post switch (“PP”) 38 switches between a signal before being processed by the tone volume fader 34 (i.e., pre-fader signal) and a signal after having been processed by the tone volume fader 34 (i.e., post-fader signal), so that one of the pre-fader and post-fader signals thus selected via the pre/post switch 38 is sent to the mixing bus 25. In
Head amplifier section HA indicated immediately below the “SEL” button corresponds to the head amplifier 200 (see
Attenuator section ATT corresponds to the attenuator 31 of
Further, an equalizer section EQ corresponding to the equalizer 32 of
Note that, in addition to the “input channel screen” of
Next, with reference to flow charts of
Once the HA gain is manipulated, the HA gain value IPG(k) of the input port k, stored in the current memory area, is updated in accordance with an amount of the manipulation or operation performed by the user. Thus, the gain adjustment corresponding to the HA gain manipulation is reflected in the signal processing by the DSP 4. At step S2, a determination is made as to whether any of the input channels has been set as a patched-to destination for the input port k. If no such patched-to destination has been set (NO determination at step S2), the instant processing is brought to an end. Note that two or more of the input channels may have been designated as patched-to destinations for a given input port k (however, only one input port, not two or more input ports, can be connected with one input channel). If one or more of the input channels have been set as patched-to destinations for the input port k (YES determination at step S2), operations of steps S4-S6 are performed on each of the input channels currently set as patched-to destinations, as will be described below.
At next step S3, the channel number of each of the input channels set as patched-to destinations is set as a channel variable (i) on the basis of the patch data of the input port k. In the case where two or more of the input channels have been set as patched-to destinations, the channel numbers of these input channels are set as channel variables (i), for example, in the order of increasing channel numbers. At step S4, the ON/OFF setting parameter AGA(i) of the “auto gain adjuster (AGA) function” for the channel set as the channel variable (i) is checked. Let it be assumed here that, if the parameter AGA(i) is “1”, it indicates that the AGA function is ON, but, if the parameter AGA(i) is “0”, it indicates that the AGA function is OFF. Value of the ON/OFF setting parameter AGA(i) is set in accordance with the ON/OFF state of the “AGA” button 46 of the attenuator section ATT on the input channel screen of
Through the aforementioned operations, the attenuator parameter setting of each of the input channels, which have been selected as patched-to destinations for a given input port k and where the AGA function is currently ON, is automatically adjusted in accordance with a variation amount of the HA gain.
If the AGA function of the input channel i is currently set in the ON state, it means that the attenuator parameter value AT(i) of the input channel i has been automatically adjusted in accordance with an amount of variation of the HA gain of the input port k connected with the input channel i (step S5). Thus, the attenuator parameter value AT(i) having been automatically adjusted in the aforementioned manner is used as an initial value at the time of operation of the attenuator. In the case where the attenuator parameter value AT(i) has been automatically adjusted by the AGA function, it appears superficially that the attenuator level has been varied in accordance with the attenuator parameter value AT(i). However, the automatically-adjusted result is only offset from the previous attenuator parameter value AT(i) in accordance with the amount of variation of the HA gain; thus, in actuality (i.e., auditorily), it is possible to operate the attenuator with a level feeling as if the previous attenuator parameter value AT(i) were the initial value. Note that, even when the AGA function of the input channel i is ON and the attenuator of the input channel i has been operated, the HA gain of the input port having the input channel i as its patched-to destination is not varied in the instant embodiment.
In the field of digital mixers, a so-called pairing function has been known, which allows a user to combine two desired input channels into a pair so that a desired parameter can be varied for the paired input channels in an interlock fashion. Such a pairing function may be employed, for example, in cases where two monaural input channels are paired and a signal of each channel of two-channel stereo audio signals is distributed to individual ones of the paired input channels so that mixing processing is performed on the two-channel stereo audio signals supplied to the paired channels. The user can select any desired parameter that is to be varied in the paired channels simultaneously in an interlocked fashion.
In a case where the attenuator parameter of the input channel i is set in paired relation to the attenuator parameter of another input channel, the pair is canceled compulsorily, in the instant embodiment, once the AGA function of the input channel i is turned on. Further, once the AGA function of the input channel i is turned off, the paired state of the parameter setting parameter is again made valid as before the turning-on of the AGA function. Namely, in the case where the pairing has been canceled compulsorily in response to turning-on of the AGA function, it is restored in response to turning-off of the AGA function.
In the scene recall, the user can make non-recall (“recall-safe”) setting on some of desired operation data to be recalled. Operation data set as an non-recall subject or object is not recalled (for overwriting). Such non-recall setting can be made per signal processing module of each of the input and output channels (e.g., HA module, ATT module, EQ module, COMP module, tone volume fader module, SEND module or the like). Further, non-recall setting can be made independently for each signal processing module (e.g., DCA, effecter, GEQ or the like) that does not belong to any one of the input and output channels.
At step S12, patch link data in the read-out scene data set is checked. Note that each scene data set includes no patch data (i.e., operation data for patching) itself but includes “patch link data” for linking to particular patch data. If the read-out scene data set includes patch link data (YES determination at step S12), linked-to patch data (i.e., patch data to which the scene data set is to be linked) is copied, at step S13, on the basis of the patch link data and written into the current memory area. In the read-out scene S, for each of the input channels, whose patching has been changed, the AGA function of the patching-changed channel does not work even when it is in the ON state, because there is nothing about retaining the level that was set before the recall.
Then at step S14, AGA (Auto Gain Adjustment) operation data of the individual input channels are copied from the read-out scene data set and written into the current memory area. The AGA settings recalled here are reflected in subsequent processing. Namely, for each input channel where the AGA function is ON, the value of the attenuator AT is automatically adjusted by the AGA function when the HA gain of a given input port patched to the input channel has been adjusted and in accordance with the gain adjustment in the input port. The AGA operation data is never set as a non-recall (“recall-safe”) object; namely, the AGA operation data is an object that is always recalled.
At following step S15, for each input channel where the HA module has been set as a non-recall object, the HA gain value IPG of a given analog input port is copied from the read-out scene data set and written into the current memory area.
Here, if the AGA function is ON, the operations at and after step S3 of
Namely, because the HA gain of each of the input channels is recalled at step S15 after the AGA function of each of the input channels has been set to the ON or OFF state at step S14, the AGA function can be caused to work on the recall operation of the HA gain.
At next step S16, the attenuator value AT of each input channel where the ATT module has not been set as a non-recall object is copied from the read-out scene data set and written into the current memory area. Thus, for each input channel where the ATT module is not set as a non-recall object, the value AT′ having been automatically adjusted by the AGA function at step S15 above is overwritten with the attenuator value AT included in the scene data set. Namely, the attenuator parameter value AT recalled as scene data is given priority over the value AT′ automatically adjusted by the AGA function. If, on the other hand, the ATT module is set as a non-recall object and the AGA function of the input channel is ON, the value AT′ automatically adjusted by the AGA function is employed at step S14; if the AGA function of the input channel is OFF, the same attenuator value AT as before the recall is maintained.
The operations carried out at steps S15 and S16 may be summarized as follows.
Therefore, in the case of (3) above, a scene recall using the AGA function is permitted if the AGA function is ON.
At step S17, the operation data for all of the other factors (input an output channels and various other modules), not set as non-recall objects, are copied from the scene data set and written into the current memory area. At following step S18, the current memory is unlocked upon completion of writing, into the current memory area, of all of the operation data of the scene, to allow the stored contents of the current memory area to be reflected in the processing by the CPU 4. In this way, all of the operation data of the recalled scene data set are made valid concurrently, so that the mixing state of the scene S can be reproduced.
According to the instant embodiment as described above, when the HA gain of a given analog input port has been adjusted, the attenuator value AT of each patched-to input channel that is a patched-to destination of the input port is automatically adjusted, by the AGA function, so as to cancel out the HA gain adjustment. Thus, in the digital mixer where the input ports and the input channels are connected via the input patch section, there can be achieved the superior benefit that the mixing ratio among signals of the individual input channels is not influenced even when the HA gain of any one of the input ports has been adjusted.
Whereas the embodiment has been described above in relation to the case where the input channel screen of
One example manner in which the ON/OFF setting arrangement of the AGA function may be effectively used is explained below.
When signal input equipment, such as a microphone, has been connected to a given input port, the HA gain of the input port is adjusted, then the AGA function of each of the input channels, supplied with a signal from the input port, is turned on, and thence the mixing processing is started. Here, even when the attenuator of the input channel has been operated, the HA gain of the input port having the input channel as its patched-to destination does not vary, by virtue of the AGA function arranged to automatically adjust the attenuator in accordance with a variation amount of the HA gain. By setting the AGA function of each of the input channels, supplied with the signal from the input port, to the ON state, the attenuator of each patched-to input channel is automatically adjusted when the HA gain of the input port is adjusted at a later time. Thus, the signal (i.e., output signal of the attenuator) to be used in the signal processing in each patched-to input channel can be fixed at a constant level without the user operating the attenuator of the patched-to input channel. Therefore, the provision of the AGA function ON/OFF switching arrangement in all of the input channels is very useful.
Number | Date | Country | Kind |
---|---|---|---|
2005-222148 | Jul 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7831054 | Ball et al. | Nov 2010 | B2 |
20050249364 | Makino et al. | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
2004-112162 | Apr 2004 | JP |
Entry |
---|
PM1 D Digital Audio Mixing System Owners Manual, includes “Information regarding PM1 D System Software V1.41”, “CSD1 Control Surface Reference Manual and Appendices”, Yamaha Corporation. |
PM1 D Digital Audio Mixing System Owners Manual includes “information regarding PM1 D System Software V1.41”, “CSD1 Control Surface Reference Manual and Appendices”, CSD1 Reference Manual ( )Hardware). |
PM1 D Digital Audio Mixing System Owner's Manual includes “information regarding PM1 D System Software V1.41”, “CSD1 Control Surface Reference Manual and Appendices”, CSD1 Reference Manual (Hardware). |
“Instruction Manual Digital Mixer D-901 Version 3”, Dec. 2004; TOA Electronics. |
PM1D Digital Audio Mixing System Owner's Manual, includes “Information regarding PM1D System Software V1.41”, “CS1D Control Surface Reference Manual and Appendices”, Yamaha Corporation, Japan. |
Number | Date | Country | |
---|---|---|---|
20070025568 A1 | Feb 2007 | US |