Information
-
Patent Grant
-
6830369
-
Patent Number
6,830,369
-
Date Filed
Friday, November 15, 200222 years ago
-
Date Issued
Tuesday, December 14, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 266 332
- 266 315
- 266 316
- 266 256
- 266 258
- 266 260
-
International Classifications
-
Abstract
A mixer apparatus for use with a vessel centered about a longitudinal axis is disclosed. The mixer has a tubular blade which: defines a central head axis; has a first end and a second end spaced from the first end along the head axis; and tapers from the first end to the second end. The inner surface of the blade and the second end define an inside blade diameter “ID” and the outer surface of the blade and the first end define an outer blade diameter “OD”. The blade is positioned within and coaxial to the vessel. A scotch yoke, operatively connected to the blade by a shaft, effects reciprocating longitudinal movement of the blade through a stroke “S”, with a duration “T” for each cycle, wherein 175≦0.36×OD2/ID2×S/T≦250 when OD, ID and S are expressed in inches, and T is expressed in minutes.
Description
FIELD OF THE INVENTION
The present invention generally relates to the field of mineral ore processing, and more particularly, to a mixing apparatus and to uses thereof in the separation of minerals from mineral-bearing ores.
BACKGROUND OF THE INVENTION
Processes are known in the prior art which provide for the separation of minerals from mineral-bearing ores.
For example, in known processes used for the separation of copper from copper-bearing ores, illustrated diagrammatically in
FIG. 1
, non-oxidized ores
20
(which might contain as little as 0.5% copper, and typically contain iron sulfides) are processed in a crusher
22
, with water
24
, to form a slurry
26
. The slurry
26
is then transferred to a flotation cell
28
, and subjected to physical action, specifically, air sparging and mixing. As a result of the physical action, a substantial portion of the copper value in the slurry
26
rises to the surface of the flotation cell
28
as a froth
30
, and is skimmed therefrom by a paddle mechanism
32
, while the waste rock
33
(“gangue”) remains in the bulk, and is ultimately passed from the cell
28
to a dryer
34
and discharged as tailings
36
. This process of “froth separation” results from differences in wettability of copper as compared to other minerals, and is typically aided by chemical frothing and collector agents
38
added to the slurry
26
, such that the froth
30
from such flotation contains 27 to 36% copper. Methylisobutyl carbonal (MIBC) is a typical frothing agent, and sodium xanthate, fuel oil, and VS M8 (a proprietary formulation) are typical collector agents.
The froth
30
is then fed to an oxygen smelter
40
, and the copper and iron sulfides are oxidized at high temperature resulting in impure molten metal
42
(97-99%, copper, with significant amounts of iron oxide) and gaseous sulfur dioxide
44
. The impure metal
42
is then transferred to an electrolytic purification unit
46
, which separates the impure metal
42
into 99.99% purity copper material
48
and slag
50
.
The gaseous sulfur dioxide
44
is collected in a reactor
52
wherein it is scrubber and mixed with water
24
to form sulphuric acid
54
. The sulphuric acid
54
is suitably blended with water
24
and used to leach oxidized ores, typically by “heap leaching” an ore pile
56
. The resultant copper-bearing acid
58
is known as “pregnant leach solution”. Pregnant leach solution
58
is also obtained by mixing solutions of sulphuric acid
54
, in vats
60
, with the tailings
36
discharged from flotation operations, to dissolve the trace amounts of copper remaining therein.
The copper is “extracted” from the pregnant leachate
58
by mixing therewith, in a primary extraction step
62
, organic solvent
64
(often kerosene) in which copper metal preferentially dissolves. Organic chemical chelators
66
, which bind solubilized copper but not impurity metals, such as iron, are also often provided with the organic solvent, to further drive the migration of copper. Hydroxyoximes are exemplary in this regard.
In the primary extraction step
62
, the copper is preferentially extracted into the organic phase according to the formula:
[CuSO
4
]
aqueous
+[2 HR]
organic
→[CuR
2
]
organic
+[H
2
SO
4
]
aqueous
where HR=copper extractant (chelator)
The mixed phases are permitted to separate, into a copper-laden organic solvent
68
and a depleted leachate
70
.
The depleted leachate
70
is then contacted with additional organic solvent
72
in a secondary extraction step
74
, in the manner previously discussed, and allowed to settle, whereupon the phases separate into a lightly-loaded organic (which is recycled as solvent
64
in the primary extraction step) and a barren leachate or raffinate
76
.
The barren leachate
76
is delivered to a coalescer
78
to remove therefrom entrained organics
80
, which are recycled into the system; the thus-conditioned leachate
82
is then suitable for recycling into the leaching system.
The pregnant organic mixture
68
(produced in the primary extraction step
62
) is stripped of its copper in a stripping operation
84
by the addition of an aqueous stripping solution of higher acidity
86
(to reverse the previous equation); after phase separation, a loaded electrolytic solution
88
(“rich electrolyte”) remains, as well as an organic solvent, the latter being recycled as solvent
72
in the secondary extraction
74
.
The rich electrolyte
88
is directed to an electrowinning unit
90
. Electrowinning consists of the plating of solubilized copper onto the cathode and the evolution of oxygen at the anode. The chemical reactions involved with these processes are shown below
Cathode: CuSO
4
+2
e
1−
→Cu+SO
4
2−
Anode: H
2
O→2H
+
+0.5 O
2
+2
e
1−
This process results in copper metal
92
, and a lean (copper-poor) electrolyte, which is recycled as stripping solution
86
.
The combination of leaching, combined with extraction and electrowinning, is commonly known in the art as solvent extraction electrowinning, hereinafter referred to in this specification and in the claims as “SXEW”.
In a known application of the described SXEW process, in both the primary
62
and secondary
74
extraction steps, the combined organic and aqueous phases are delivered through a series of mixing vessels (primary P, second S and tertiary T), and then to a settling tank ST, the primary mixing vessel P being about 8 feet in diameter and 12 feet in height, and stirred by a rotary mixer driven by a 20 horsepower motor, and each of the secondary S and tertiary T mixing vessels being about 12 feet in diameter and height, and stirred by a rotary mixer driven by a 7.5 horsepower motor. (The system of primary P, secondary S and tertiary T mixers, and settling tank ST, is replicated to meet volume flow requirements, with each system processing about 10,000 gpm). This provides a mixing regime wherein the organic and aqueous phases are intimately mixed for a period of time sufficient to allow copper exchange (to maximize copper recovery), yet relatively quickly separate substantially into organic and aqueous phases.
In a known application of the froth flotation process, a plurality of flotation cells
28
, each being approximately 5 feet square and 4 feet high, are utilized, with pairs of cells sharing a 50 horsepower motor driving respecting rotary mixers (not shown). This provides a mixing regime sufficient to allow the air bubbles to carry the copper value to the surface.
Various modifications can be made to the rotary mixers in the extractors and in the flotation tanks of the foregoing process. However, the general configurations noted above have been found to provide relatively economical results, and significant variations therefrom can impact adversely upon economies. For example, an attempt to reduce energy costs by scaling-down the motors for the mixers would have consequent impacts either upon the copper recovery efficiency, or upon available process throughputs. Specifically, the relatively large motors employed are required to drive the sturdy (and therefore heavy) rotary mixers and shafts that are needed to withstand the torques caused by rotation; lower power motors would demand either lower blade speed or smaller blades, with consequent impacts upon mixing and transfer efficiency.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a novel mixing apparatus.
This object is met by the present invention which comprises a mixing apparatus. The mixing apparatus is advantageously used with a vessel having a contiguous sidewall centered about and defining a longitudinal axis.
As one aspect of the present invention, the mixing apparatus comprises a mixing head having a tubular blade portion centered about and defining a head axis and having a first tube end and a second tube end spaced-apart from one another therealong.
The blade portion tapers from the first tube end to the second tube end with the inner surface of the blade portion and the second end defining an inside blade diameter “ID” and the outer surface of the blade portion and the first end defining an outer blade diameter “OD”. The mixing apparatus further comprises mounting means for mounting the mixing head substantially coaxial to and within the vessel for longitudinal movement relative thereto. Also provided is a reciprocating means for effecting said longitudinal relative movement of the mixing head in a reciprocating manner through a stroke length “S”, with a duration “T” for each cycle, wherein 175≦0.36×OD
2
/ID
2
×S/T≦250 when OD, ID and S are each expressed in inches, and T is expressed in minutes.
As other aspects of the invention, the blade portion preferably tapers in a substantially frustoconical manner from the first tube end to the second tube end, and an angle α, defined by the angle between the pair of axes defined by and coincident with the intersections of the outer surface of the blade portion and a plane coincident with the head axis, preferably lies between 90° and 180°.
As other aspects of the present invention, the mounting means preferably comprises a mixer shaft. The mixer shaft has a bottom end operatively rigidly connected to the mixing head by a hub member rigidly connected to the bottom end of the mixer shaft and a plurality of support webs extending between and connecting the hub member and the blade portion, and extends from said bottom end, substantially parallel to the head axis, to a top end which is disposed above the vessel in use.
As yet another aspect of the present invention, the reciprocating means preferably comprises shaft gripping means for gripping the mixer shaft adjacent the top end thereof and effects longitudinal reciprocating movement of the shaft gripping means through stroke length “S” with duration “T” for each cycle, thereby to effect longitudinal movement of the mixing head in said reciprocating manner.
As another aspect of the present invention, a housing, positionable above said vessel, is preferably provided, and the reciprocating means preferably comprises a flywheel, a crank member, and a yoke.
The flywheel is mounted to the housing for rotation about a rotational axis which is normal to the longitudinal axis.
The crank member projects from the flywheel in a direction parallel to the rotational axis and is connected to the flywheel for rotation therewith.
The yoke is displaced from the flywheel in the direction of the crank member and has a substantially linear race formed therein which is in receipt of the crank member and is adapted to permit relative translational movement of the crank member and the yoke.
The yoke is positioned with the race arranged normal to the rotation axis and bisected thereby and is mounted to the housing in a manner which constrains movement of the yoke otherwise than along an axis parallel to the longitudinal axis and normal to the rotational axis, such that during rotation of the flywheel, the crank member imparts longitudinal reciprocating movement to the yoke.
As yet another aspect of the invention, the shaft gripping means is preferably operatively rigidly connected to the yoke for longitudinal reciprocating movement therewith.
As another aspect of the present invention, the mounting means is preferably adapted to mount the mixing head within the vessel with the first tube end disposed above the second tube end.
The invention also comprises use of the mixing apparatus as a mixer for a vessel in an SXEW extractor unit, and as a mixer for the vessel in a froth flotation cell.
Other advantages, features and characteristics of the present invention, as well as methods of operation and functions of the related elements of the structure, and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following detailed description and the appended claims with reference to the accompanying drawings, the latter of which is briefly described hereinbelow.
BRIEF DESCRIPTION OF THE DRAWINGS
The novel features which are believed to be characteristic of the according to the present invention, as to its structure, organization, use and method of operation, together with further objectives and advantages thereof, will be better understood from the following drawings in which a presently preferred embodiment of the invention will now be illustrated by way of example. It is expressly understood, however, that the drawings are for the purpose of illustration and description only, and are not intended as a definition of the limits of the invention. In the accompanying drawings:
FIG. 1
is a diagrammatic representation of processes for copper extraction of the prior art.
FIG. 2
is a front, top, left side perspective view of a mixing apparatus according to a preferred embodiment of the present invention, in a preferred use.
FIG. 3
is a left side cross-sectional view of the structure of FIG.
2
.
FIG. 4
is a front, top right side perspective view of the reciprocating means and mounting means of the mixing apparatus of FIG.
2
.
FIG. 5
is an exploded perspective view of a part of the structure of FIG.
4
.
FIG. 6A
is a front elevational view of the structure of
FIG. 4
, with the mixer shaft and shaft gripping means removed for clarity.
FIG. 6B
is a view similar to
FIG. 6A
, with, inter alia, the flywheel displaced 90° counter-clockwise relative to its position in FIG.
6
A.
FIG. 6C
is a view similar to
FIG. 6A
, with, inter alia, the flywheel displaced 90° counter-clockwise relative to its position in FIG.
6
B.
FIG. 6D
is a view similar to
FIG. 6A
, with, inter alia, the flywheel displaced 90° counter-clockwise relative to its position in FIG.
6
C.
FIG. 7
is a front, top, left side perspective view of the mixing head of the structure of FIG.
2
.
FIG. 8
is a rear, bottom, right side perspective view of the mixing head of the structure of FIG.
2
.
FIG. 9
is a bottom view of the mixing head illustrated in FIG.
2
.
FIG. 10
is a left side view of the mixing head of FIG.
2
.
FIG. 11
is a view of an alternate embodiment of the support webs of the invention, which view corresponds to the area circumscribed by circle
11
in FIG.
7
.
FIG. 12
is a view of an alternate embodiment of the blade portion of the present invention, which view corresponds to the area circumscribed by circle
12
in FIG.
7
.
FIG. 13
is a view similar to
FIG. 12
, showing a further embodiment of the blade portion of the invention.
FIG. 14
is a front, top, left side perspective view of a mixing apparatus according to the preferred embodiment of the invention in an alternate use.
FIG. 15
is a left side cross-sectional view of the structure of FIG.
14
.
FIG. 16
is a view similar to
FIG. 3
, illustrating the mixing apparatus according to an alternative embodiment in a further alternative use.
FIG. 17
is a partially exploded view similar to
FIG. 4
, showing a first alternate mounting means and a first alternate shaft gripping means.
FIG. 18
is a sectional view, along sight line
18
—
18
of
FIG. 17
, with the apparatus fully assembled.
FIG. 19
is a partially exploded perspective view of a second alternate mounting means and a second alternate shafting gripping means.
FIG. 20
is a perspective view of the second alternate mounting means and the second alternate shaft gripping means, with the apparatus fully assembled.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
Referring now to
FIG. 2
of the drawings, a mixing apparatus, according to a preferred embodiment of the present invention and designated with general reference numeral
100
, is shown in use, in a manner fully described in following paragraphs, with a vessel
102
having a contiguous sidewall
104
centered about and defining a longitudinal axis A—A.
Full details of the preferred mixing apparatus of the present invention will be set out in following paragraphs. However, for greater clarity, it should firstly be understood, generally, that the mixing apparatus
100
comprises a mixing head
106
having a head axis H—H (illustrated in
FIGS. 3
,
7
and
8
); mounting means for mounting the mixing head
106
substantially coaxial to and within the vessel
102
for longitudinal movement relative to the head axis H—H, said mounting means being designated with general reference numeral
108
in
FIG. 2
; and reciprocating means, designated with general reference numeral
110
, for effecting said longitudinal relative movement of the mixing head
106
in a reciprocating manner.
The various parts of this preferred mixing apparatus will now be described with more particularity.
With reference to
FIG. 7
, the mixing head
106
will be seen to include a blade portion
112
, a hub member
114
and a plurality of support webs
116
.
The blade portion
112
, as shown, is constructed from six arcuate segments
118
. The segments
118
are arranged in tubular relation so as to form a first tube end
120
and a second tube end
122
, illustrated in
FIG. 10
, and are secured, by bolts (not shown), to one another through flanges
124
(see
FIGS. 7
,
8
and
9
) provided at the ends of each segment
118
for this purpose.
The tubular blade portion
112
defines and is centered about the head axis H—H, such that the first tube end
120
and the second tube end
122
of the blade portion
112
are spaced-apart from one another therealong, and the blade portion
112
tapers in a substantially frustoconical manner from the first tube end
120
to the second tube end
122
.
The rate of taper is such that the angle α, defined by the angle between the pair of axes X,X and Y,Y, which axes are defined by and coincident with the intersections of the outer surface
128
of the blade portion
112
and a plane P—P coincident with the head axis, lies between 90° and 180° (90°≦α≦180°) as indicated in FIG.
9
and FIG.
10
.
The hub member
114
is also tubular, and is centrally disposed adjacent to the blade portion
112
.
The plurality of, specifically, three, support webs
116
each extend between and connect the hub member
114
and the blade portion
112
. Such connection is effected by rivets or bolts (not shown).
With reference now to
FIG. 3
, the preferred mounting means
108
will be seen to comprise a mixer shaft
130
and a linear bearing
132
.
The mixer shaft
130
has a bottom end
134
operatively rigidly connected to the mixing head
106
and extends from said bottom end
134
, substantially coincident with the head axis H—H, to a top end
136
which is disposed above the vessel
102
in use. Such rigid connection of the mixer shaft
130
and the mixing head
106
may be effected by, for example, threading the exterior of the bottom end of the mixer shaft, and providing a corresponding thread on the interior of the hub member (not shown).
The linear bearing
132
supports the mixer shaft
130
for longitudinal movement; this is effected in the preferred embodiment by mounting the bearing
132
to a housing
138
which is itself mounted, as illustrated in
FIG. 2
, to a frame
140
which, in the preferred embodiment shown, spans over the vessel
102
.
As best illustrated in
FIG. 4
, the reciprocating means
110
comprises a shaft gripping means, designated with the general reference numeral
142
, for gripping the mixer shaft
130
adjacent its top end
136
and for effecting longitudinal reciprocating movement of the shaft
130
through stroke length “S” with duration “T” for each cycle, thereby to effect coincident longitudinal movement of the mixing head
106
in said reciprocating manner through the same stroke length “S”, as indicated in
FIG. 3
, wherein the mixing head
106
is shown in blackline in a starting position, and in phantom outline, at a position longitudinally displaced from the starting position through a distance “S”.
Such reciprocating movement is effected through a scotch yoke apparatus
144
, comprising a flywheel
146
, a drive means
148
, a crank member
150
and a yoke
152
, illustrated in FIG.
4
and in FIG.
5
.
The flywheel
146
is mounted to the housing
138
for rotation about a rotational axis R—R (illustrated in
FIG. 4
) which is normal to the longitudinal axis A—A.
The drive means
148
is for driving rotation of the flywheel
146
and, in the preferred embodiment illustrated, comprises an explosion-proof electric motor, operatively connected by its drive shaft (not shown) to the flywheel
146
.
The crank member
150
projects from the flywheel
146
in a direction parallel to the rotational axis R—R and is connected to the flywheel
146
for rotation therewith.
The yoke
152
is displaced from the flywheel
146
in the direction of the crank member
150
and has formed therein a substantially linear race
154
which is in receipt of the crank member
150
and is adapted to permit relative translational movement of the crank member
150
and the yoke
152
as the flywheel
146
rotates.
The yoke
152
has threaded, coaxial bores
156
disposed on its upper and lower surfaces to receive respective threaded guide shafts
158
. Corresponding guide bearings
160
are provided on the housing
138
. When the yoke
152
is operatively mounted with the guide shafts
158
disposed within the guide bearings
160
, the yoke
152
is positioned with the race
154
arranged normal to the rotation axis R—R and bisected thereby, and is mounted to the housing
138
in a manner which constrains movement of yoke
152
otherwise than along an axis B—B parallel to the longitudinal axis A—A and normal to the rotational axis R—R (best indicated in FIG.
4
), such that during rotation of the flywheel
146
, the crank member
150
imparts longitudinal reciprocating movement to the yoke
152
, as indicated by the sequence of
FIGS. 6A-6D
.
The length of the resultant stroke may be selected by suitable adjustment to the radial position of the crank member
150
(that is, the distance between the crank member
150
and the rotation axis R—R); for this reason, the crank member
150
is threaded, and a plurality of threaded sockets
162
are provided in a radial array on the face of the flywheel
146
, as illustrated in FIG.
5
. The duration of each stroke may be selected by suitable adjustment to the rotational speed of the electric motor
148
.
In the preferred embodiment, the yoke moves through a stroke length “S”, with a duration “T” for each cycle, wherein 175≦0.36×OD
2
/ID
2
×S/T≦250 when T is expressed in minutes, S is expressed in inches, “ID” is an inside blade diameter, expressed in inches and defined by the inner surface
126
of the blade portion
112
and the second tube end
122
, and “OD” is an outside blade diameter, expressed in inches and defined by the outer surface
128
of the blade portion
112
and the first tube end
120
, as indicated in FIG.
10
.
Returning to
FIGS. 4 and 5
, the shaft gripping means
142
preferably comprises a clamp
163
, specifically, a pair of mating clamping blocks
164
, each having a concave groove
166
of semi-circular cross-section formed therein to grippingly receive the mixer shaft
130
. Clamp
163
is selectively rigidly affixed, by bolts
168
, to the yoke
152
, such that longitudinal reciprocating movement is imparted to the shaft gripping means
142
by said longitudinal reciprocating movement of the yoke
152
.
This clamp arrangement permits the relative depth of the mixing head
106
in the vessel
102
to be conveniently adjusted from above; the clamp
163
need only be loosed, by disengaging the associated bolts
168
, whereupon mixer shaft
130
can be raised or lowered as desired, and bolts
168
re-engaged.
The mixer shaft
130
is itself preferably constructed of a plurality of tube segments
170
, threaded at their ends and joined to one-another in end-to-end relation by threaded couplings
172
, so that segments
170
can be added or removed as desired, thereby to permit the aforementioned adjustment feature to be more conveniently and fully exploited.
With general reference to FIG.
4
and
FIG. 5
, stresses created on the yoke
152
, by virtue of its carriage of the shaft gripping means
142
, are preferably countered by the provision of a balancing shaft
174
, rigidly connected to the housing
138
to extend substantially parallel to longitudinal axis A—A, and by a pair of mating linear bearing blocks
176
, each having a respective groove
178
of semi-circular cross-section formed therein sheathed with a self-lubricating material such as polytetrafluorethylene, which are mounted to the yoke
152
by bolts
180
and slidably receive the balancing shaft
174
therethrough.
It has been found that the present invention can be used to great advantage as a mixer for a vessel in a SXEW extractor unit, as illustrated in
FIGS. 2 and 3
.
EXAMPLE 1
In the known application of the SXEW process previously described, samples were taken from the outfall of each of the primary vessel; secondary vessel; tertiary vessel and settling tank of a respective secondary extraction unit (A) and permitted to separate.
In a parallel secondary extraction unit (B) (ie processing a pregnant leachate of substantially identical composition), a mixing apparatus in accordance with the present invention (OD=60; ID=48; α=120; S=10; T=0.0333, driven by a 2 hp motor) was substituted for the rotary mixer in the secondary mixing vessel, and samples were again taken from the outfall from each of the primary, second and tertiary mixing vessels, and from the settling tank, and permitted to separate.
Copper concentration (g/l) was measured in the organic component of each sample, as follows:
|
(A)
(B) 30 cpm
|
Cu (g/l)
Cu (g/l)
|
|
|
Primary mixing vessel
2.01
2.01
|
Secondary mixing vessel
2.06
2.06
|
Tertiary mixing vessel
2.12
2.13
|
Settling tank
2.14
2.13
|
|
As would be expected, copper concentration from the primary mixing vessel in each of the A and B lines is similar (because to that point in the process, mixing is provided by identical rotary mixers). However, unexpectedly, copper concentrations in the outfall from the secondary mixers also remained identical, and copper concentration in the outfall from the settling tanks remained quite similar, despite the almost 75% reduction in energy input (2 hp drive motor for the reciprocating mixer, as compared to the 7.5 hp motor driving the rotary mixer)
EXAMPLE 2
In a second test, the B line of Example 1 was modified by altering the motor speed of the mixer of the present invention, such that it operated at 45 cycles/minute (T=0.0222).
Copper concentration (g/l) was again measured, as follows:
|
(B) [45 cpm]
|
Cu (g/l)
|
|
|
Primary mixing vessel
2.00
|
Secondary mixing vessel
2.08
|
Tertiary mixing vessel
2.11
|
Settling tank
2.16
|
|
Again, as would be expected, copper concentration from the primary mixing vessel in the B line remained similar to that obtained in the A line (because to that point in the process, mixing is provided by identical rotary mixers). However, unexpectedly, copper concentrations in the outfall from the settling tank from the modified B line showed significant improvement over the A line results (copper recovery improved from 2.14 g/l to 2.16 g/l).
Without intending to be bound by theory, it is believed the mixing apparatus of the present invention provides mixing currents which [at least in the context of the liquids utilized in SXEW copper extraction, in a vessel having an internal diameter D and a height H, wherein OD:D is between about 1:2.5 to 1:4, ID:OD is between about 1:0 to 1.5; and D:H is approximately 1:1] create a dispersion characterized by consistent-sized droplets, uniformly distributed throughout the mixing vessel, whereas in a rotary mixer, there is a wide variation in drop sizes, and in the distribution of said drops, (perhaps due to the fact that the blade in a rotary mixer moves at different speeds along its length). This uniform dispersion is believed to provide an environment amenable to efficient mass transfer between phases, while at the same time providing for substantial disengagement of the mixed phases within a relatively short time frame.
Whereas the illustrations depict an embodiment of the present invention which is preferred, various modifications are contemplated.
One such modification, which is depicted in FIG.
17
and in
FIG. 18
, relates to a modification of the mounting means
108
and the shaft gripping means
142
. Specifically, in this structure, an alternate shaft gripping means
142
′ is depicted, as is an alternate mounting means
108
′ which includes a linear bearing assembly
232
supporting the mixer shaft
130
, in use, for longitudinal movement, the linear bearing assembly
232
so supporting the mixer shaft
130
at a first location, relatively proximal to the shaft gripping means
142
′, and at a second location, disposed downwardly from the first location and relatively distal to the shaft gripping means
142
′.
The alternate shaft gripping means
142
′ comprises a clamp
163
′, specifically, a pair of mating clamping blocks
164
,
164
′ each having a concave groove
166
of semi-circular cross-section formed therein. Clamping block
164
′ is secured by bolts
230
to the yoke
152
, such that longitudinal reciprocating movement is imparted to clamping block
164
′ by said longitudinal reciprocating movement of the yoke
152
. Clamping block
164
is secured by bolts
168
to clamping block
164
′, with the grooves
166
,
166
thereof in opposed relation, to grippingly receive therewithin the mixer shaft
130
and impart longitudinal reciprocating movement thereto by said longitudinal reciprocating movement of the yoke
152
.
The linear bearing assembly
232
includes a bushing
202
formed of mating bushing blocks
200
,
200
′. Each bushing block
200
,
200
′ has a concave groove
204
of semi-circular cross-section formed therein, said groove
204
being sheathed with an arcuate pad
220
of self-lubricating material such as polytetrafluorethylene. The bushing
202
supports the mixer shaft
130
, at the aforementioned first location, for longitudinal movement; this is effected in the alternate preferred embodiment shown by securely mounting bushing block
200
′ to the housing
138
and providing for the secure attachment of the bushing blocks
200
′,
200
to one another by bolts
206
, with the grooves
204
,
204
thereof in opposed relation, to slidingly receive within pads
220
,
220
said mixer shaft
130
. As shown, pads
220
,
220
are preferably ribbed.
The linear bearing assembly
232
further includes a linear bearing
214
composed of a plurality of rollers
212
,
212
,
212
′ arranged in a pair of mating roller subassemblies
242
,
242
′. A tubular fixed support
208
, which depends downwardly from the housing
138
, is provided, and, towards the bottom extent thereof, has roller subassembly
242
mounted thereto by bolts
222
,
222
. A pair of removable supports
210
,
210
are also provided. The removable supports
210
,
210
are securely attached to bushing block
200
and depend downwardly therefrom to a terminus
228
.
Roller subassembly
242
′, including roller
212
′, is secured to supports
210
,
210
adjacent their terminus
228
by bolts
222
,
222
, such that, in use, when bushing blocks
200
,
200
′ are operably secured to one another, rollers
212
,
212
,
212
′ circumferentially surround mixer shaft
130
, as shown in
FIG. 18
, at a position beneath and longitudinally spaced from bushing
202
, so as to support said mixer shaft
130
at said second location, thereby limiting flexure, while at the same time permitting longitudinal movement thereof.
It will be evident that the foregoing defines, in the linear bearing assembly
232
, a first portion (formed of the bushing block
200
′, the tubular support
208
, and roller subassembly
242
) designated with general reference numeral
234
securely attached to the housing
138
and disposed to one side of the mixer shaft
130
in use, as well as a second portion (formed of bushing block
200
, supports
210
,
210
and roller subassembly
242
′), designated with general reference number
236
, which is disposed to the other side of the mixer shaft
130
in use and is operatively removably secured to the housing
138
to permit, when removed, removal and replacement of the mixer shaft
130
. A slot
224
is conveniently provided in the housing
138
, to provide clearance for the mixer shaft
130
.
Merely by removing bolts
168
in clamping block
164
and bolts
206
in bushing block
200
, the clamping block
164
and the second portion
236
may be removed, whereupon mixer shaft
130
may be removed, for servicing or the like.
To facilitate handling of the mixer shaft
130
, same is formed with an upper enlarged end portion
216
, in which is provided a threaded bore
218
, to receive a threaded lifting lug (not shown).
FIGS. 19
,
20
illustrate yet another modification which includes a second alternate mounting means
108
″ and an alternate scotch yoke apparatus
144
′. This modification has many structural elements in common with the embodiments described in
FIGS. 1-18
, which elements are identified with the same reference numerals as employed previously. For example, in this modification, a slot
224
is provided in the housing
138
, similar to that provided in the structure of FIGS.
17
,
18
, to permit removal of the shaft
130
. However, whereas in the structure of FIGS.
17
,
18
, a two-part bushing
202
was provided, in this modification, a sleeve-type linear plain bearing
300
is utilized, which is secured to housing
138
by bolts
302
. As well, a yoke
152
is provided, similar to that shown in FIGS.
17
,
18
, but whereas the yoke
152
of FIGS.
17
,
18
is mounted for reciprocating movement by shaft
158
and bearings
160
,
160
in this alternate scotch yoke apparatus
144
′, the yoke
152
is mounted by means of dovetail linear slide bearings formed of saddles
304
,
304
securely mounted to the yoke
152
and mating tracks
306
rigidly mounted to housing
138
. A support flange
308
is also provided on mixing shaft
130
. Support flange
308
, in combination with enlarged shaft head
216
, provides for a mechanical connection between the shaft
130
and the clamp
163
, in addition to the frictional connection effected by the clamping blocks
164
,
164
′.
By virtue of the use of plain bearing
300
, it will be evident that, in order to remove mixer shaft
130
, bearing
300
must first be detached from the housing
138
, through the removal of screws
302
. However, in all other aspects, the structure of this modification operates in a manner substantially identical to that in which the structure of FIG.
17
and
FIG. 18
operates, and as such, is not described in detail herein.
Other modifications are also possible.
For example, whereas in the embodiments disclosed, a scotch yoke apparatus is utilized to provide linear reciprocating movement, it will be evident that other mechanisms, such as crank shafts, cam and cam follower mechanisms, and swash plates are possible substituents therefor. It should also be noted that, while in the preferred embodiment illustrated, head axis H—H and longitudinal axis A—A are coincident, this need not be the case.
As well, whereas in the preferred embodiment illustrated, the mixing head tapers uniformly along its length, so as to take on a substantially frustoconical shape, and the mounting means is adapted to mount the mixing head to the vessel with the first tube end disposed above the second tube end, it is possible for the mixing head to assume non-frustoconical form, wherein the rates of taper differ at the top and bottom ends, and also for the mixing head to be disposed with the second tube end disposed above the first tube end, as illustrated in FIG.
16
.
Additionally, whereas the preferred blade portion and support webs are substantially smooth, it is contemplated that the blade portion
112
can be formed with a plurality of perforations
186
each extending between the inner surface
126
and the outer surface
128
, as illustrated in
FIG. 12
, and that the support webs
116
may be provided with a plurality of perforations
188
, as well as a plurality of tabs
190
each substantially overlying a respective perforation
188
and being connected to the support web
116
at one edge of said respective perforation
188
to form a gill, as illustrated in FIG.
11
. In this manner, the characteristics of the mixing currents produced by the blade portion in motion can be finely tuned to control the droplet size of the dispersion, and hence, the mixing efficiency of the device, which feature is not available in prior art mixers.
As a further alternative, illustrated in
FIG. 13
, the blade portion
112
may be provided with a plurality of dimples
192
projecting outwardly from the outer surface
128
and inwardly from the inner surface
126
. This allows fine tuning of the mixing device in a manner not taught by the prior art.
For the purpose of minimizing friction, the preferred crank member
150
is of two-part construction, including an inner axle portion
182
which is fixedly connected to the flywheel
156
and an outer roller portion
184
which is rotatably mounted by bearings (not shown) on the axle portion
182
(best illustrated in FIG.
5
). However, this is not necessary.
Flow baffles
184
can also be disposed within the vessel, as indicated also in FIG.
16
.
Of course, whereas the detailed description herein pertains specifically to the recovery of copper from copper bearing ores, it should also be understood that the present invention may be utilized in other applications wherein SXEW processes are utilized, such as, for example, in the recovery of zinc, nickel, platinum and molybdenum.
Moreover, it will be evident that the invention may have advantageous utility even outside the SXEW process, in other mixing applications, such as in the context of a froth flotation cell, illustrated in
FIGS. 14 and 15
, wherein the mixing apparatus is used to agitate a slurry to form a froth, and a paddle mechanism
32
is operatively mounted to the vessel
102
to scour froths produced thereby.
It will, of course, also be understood that various other modifications and alterations may be used in the design and manufacture of the mixing apparatus according to the present invention without departing from its spirit and scope. Accordingly, the scope of the present invention should be understood as limited only by the accompanying claims, purposively construed.
Claims
- 1. A mixing apparatus for use with a vessel having a contiguous sidewall centered about and defining a longitudinal axis, the mixing apparatus comprising:a mixing head having a tubular blade portion centered about and defining a head axis and having a first tube end and a second tube end spaced-apart from one another therealong, the blade portion tapering from the first tube end to the second tube end with the inner surface of the blade portion and the second end defining an inside blade diameter “ID” and the outer surface of the blade portion and the first end defining an outer blade diameter “OD”; mounting means for mounting the mixing head substantially coaxial to and within the vessel for longitudinal movement relative thereto; and reciprocating means for effecting said longitudinal relative movement of the mixing head in a reciprocating manner through a stroke length “S”, with a duration “T” for each cycle, wherein 175≦0.36×OD2/ID2×S/T≦250 when OD, ID and S are each expressed in inches, and T is expressed in minutes.
- 2. A mixing apparatus according to claim 1, wherein the blade portion tapers in a substantially frustoconical manner from the first tube end to the second tube end.
- 3. A mixing apparatus according to claim 2, whereina pair of axes are defined by and coincident with the intersections of the outer surface of the blade portion and a plane coincident with the head axis; and 90°≦α≦180°, wherein angle α is defined by the angle between said pair of axes.
- 4. A mixing apparatus according to claim 1, wherein the mounting means comprises a mixer shaft, the mixer shaft having a bottom end operatively rigidly connected to the mixing head and extending from said bottom end, substantially parallel to the head axis, to a top end which is disposed above the vessel in use.
- 5. A mixing apparatus according to claim 4, wherein the reciprocating means comprises shaft gripping means for gripping the mixer shaft adjacent the top end for effecting longitudinal reciprocating movement of the shaft gripping means through stroke length “S” with duration “T” for each cycle, thereby to effect said longitudinal movement of the mixing head in said reciprocating manner.
- 6. A mixing apparatus according to claim 5, further comprising a housing positionable above said vessel.
- 7. A mixing apparatus according to claim 6, wherein the reciprocating means comprises:a flywheel mounted to the housing for rotation about a rotational axis which is normal to the longitudinal axis; a crank member projecting from the flywheel in a direction parallel to the rotational axis and connected to the flywheel for rotation therewith; and a yoke displaced from the flywheel in the direction of the crank member and having a substantially linear race formed therein which is in receipt of the crank member and is adapted to permit relative translational movement of the crank member and the yoke, wherein the yoke is positioned with the race arranged normal to the rotation axis and bisected thereby and is mounted to the housing in a manner which constrains movement of the yoke therefrom otherwise than along an axis parallel to the longitudinal axis and normal to the rotational axis such that, during rotation of the flywheel, the crank member imparts longitudinal reciprocating movement to the yoke, and wherein the shaft gripping means is operatively rigidly connected to the yoke for longitudinal reciprocating movement therewith.
- 8. A mixing apparatus according to claim 7, wherein the reciprocating means includes a drive means for driving said rotation of the flywheel.
- 9. A mixing apparatus according to claim 8, wherein the drive means is an electric motor.
- 10. A mixing apparatus according to claim 6, wherein the mounting means further comprises a linear bearing assembly supporting the mixer shaft, in use, for longitudinal movement, the linear bearing assembly so supporting the mixer shaft at a first location, relatively proximal to the shaft gripping means, and at a second location, disposed downwardly from the first location and relatively distal to the shaft gripping means.
- 11. A mixing apparatus according to claim 10, wherein the linear bearing assembly includes a first portion securely attached to the housing and disposed to one side of the mixer shaft in use and a second portion, disposed to the other side of the mixer shaft in use and operatively removably secured to the housing to permit, when removed, removal and replacement of the mixer shaft.
- 12. A mixing apparatus according to claim 10, wherein the linear bearing assembly includes a bushing to provide for said support of the mixer shaft at the first location, the bushing being formed of mating bushing blocks which form, respectively, part of the first portion and the second portion of the linear bearing assembly.
- 13. A mixing apparatus according to claim 12, wherein the linear bearing assembly includes a plurality of rollers arranged to circumferentially surround said mixer shaft in use and thereby to provide for said support of the mixer shaft at the second location, the plurality of rollers being formed of mating roller subassemblies which form, respectively, part of the first portion and the second portion of the linear bearing assembly.
- 14. A mixing apparatus according to claim 13, wherein the roller subassembly which forms part of the first portion comprises a pair of rollers, and wherein the roller subassembly which forms part of the second portion comprises one roller.
- 15. A mixing apparatus according to claim 4, wherein the mixer shaft extends from the mixing head substantially coincident with the head axis.
- 16. A mixing apparatus according to claim 15, wherein the bottom end of the mixer shaft is operatively rigidly connected to the mixing head by a hub member rigidly connected to the bottom end of the mixer shaft and a plurality of support webs extending between and connecting the hub member and the blade portion.
- 17. A mixing apparatus according to claim 16, wherein the support webs are formed with a plurality of perforations extending therethrough, and with a plurality of tabs, each tab substantially overlying a respective one of the plurality of perforations and being connected to the support web at one edge of said respective one of the plurality of perforations to form a gill.
- 18. A mixing apparatus according to claim 1, wherein the blade portion has a plurality of dimples projecting outwardly from the outer surface.
- 19. A mixing apparatus according to claim 1, wherein the blade portion has a plurality of dimples projecting inwardly from the inner surface.
- 20. A mixing apparatus according to claim 1, wherein the blade portion has a plurality of perforations each extending between the inner surface and the outer surface.
- 21. A mixing apparatus according to claim 1, wherein the mounting means is adapted to mount the mixing head within the vessel with the first tube end disposed below the second tube end.
- 22. A mixing apparatus according to claim 1, wherein the mounting means is adapted to mount the mixing head within the vessel with the first tube end disposed above the second tube end.
- 23. Use according to claim 22, wherein OD:D is between about 1:2.5 to 1:4 and ID:OD is between about 1:0 to 1.5.
- 24. Use of the mixing apparatus of claim 1 as a mixer for a vessel in an SXEW extractor unit, the vessel having an internal diameter D and a height H.
- 25. Use according to claim 24, wherein D:H is approximately 1:1.
- 26. Use of the mixing apparatus of claim 1 as a mixer for the vessel in a froth flotation cell.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2390502 |
Jun 2002 |
CA |
|
US Referenced Citations (10)
Foreign Referenced Citations (4)
Number |
Date |
Country |
7416500 |
Aug 1974 |
DE |
75 04 145 |
Jun 1975 |
DE |
2 605 244 |
Apr 1988 |
FR |
63104638 |
May 1988 |
JP |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
PCT/CA02/00528 |
Apr 2002 |
US |
Child |
10/294563 |
|
US |