Mixing assembly

Information

  • Patent Grant
  • 9885318
  • Patent Number
    9,885,318
  • Date Filed
    Wednesday, January 7, 2015
    9 years ago
  • Date Issued
    Tuesday, February 6, 2018
    6 years ago
  • Inventors
  • Examiners
    • Soohoo; Tony G
    Agents
    • Malloy & Malloy, P.L.
Abstract
An embodiment of a mixing assembly for mixing at least two fluids, comprises a housing and an injector body disposed concentrically therein, a vorticing element disposed about the injector body, and a compression element disposed about an outlet of the injector body. The housing is disposed for passage of a first fluid therethrough. The injector body being disposed within the housing and further disposed for the introduction of a second fluid within the flow path of the first fluid.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates to mixing assemblies for the mixing of two fluid flows or streams. More specifically, the present invention relates to mixing assemblies for the mixing of two fluids by the metered injection of one fluid into a flow of the other fluid. Furthermore, the present invention is related to mixing assemblies without moving parts.


Description of the Related Art

A combustion-ignition engine, such as a compression-ignition engine of the type configured to operate on diesel, or other distillate fuel may also be configured to operate on gaseous fuel, such as natural gas, either in lieu of or supplementing the diesel fuel, though such engines are not necessarily manufactured to operate on natural gas. Thus, generally modifications must be made to the engine in order to provide for the introduction of gaseous fuel to the combustion chamber of the engine. One method of introducing gaseous fuel to the combustion chamber may be to mix the gaseous fuel with intake air to create an air-gas mixture, at a point between the air intake and the intake valves, such as in an intake manifold.


In certain scenarios, a high ratio of gaseous to distillate fuel may be desired, such as in scenarios where preservation of the distillate fuel is desired. However, poor mixing of the intake air and gaseous fuel can lead to sub-optimal detonation of the air-gas and distillate mixture. For example, poor mixing can lead to a non-homogenous air-gas mixture, whereby certain regions can have varying concentrations of gaseous fluid, thereby leading to inconsistent detonation characteristics of the air-gas mixture. A fully homogenized air-gas mixture, however, will tend to have predictable and/or uniform detonation characteristics, which allows for a higher proportion of natural gas to be used in the air-gas mixture, while maintaining optimal detonation.


SUMMARY OF THE INVENTION

The present invention is directed toward a mixing assembly for the mixing of at least two fluids. More specifically, the present invention is directed to a mixing assembly capable of mixing the flow of at least two fluids via optimized introduction of a second fluid into the flow of a first fluid. Though particularly described in the embodiments herein as applicable to mixing of gasses for use in an engine, the structural features and advantages of the present invention can be applied to virtually any fluid mixing scenario, and should be understood not to be limited to the present embodiments.


One embodiment of the present invention employs a combination of vorticity and oscillating fluid flow in order to increase the chaotic mixing characteristics of two flows of fluids and thereby enhance the mixing action within and between the two flows of fluids.


By way of example, a housing of the present invention may comprise a substantially cylindrical configuration with open ends configured for the flow of a first fluid, air in one embodiment, therethrough. An intake conduit may be disposed through the sidewall of the housing, the intake conduit being disposed in fluid communication with an injector body that is disposed concentrically within the housing. As such, a second fluid, gaseous fuel in one embodiment, may be communicated through the sidewall, via the intake conduit, and then injected into the flow of the first fluid, via on outlet of the injector body.


As one method of enhancing the mixing of the two fluids, a vorticing element may be disposed within the housing. In at least one embodiment the vorticing element comprises a plurality of angular flow controllers disposed within the flow path of at least the first fluid. In at least one embodiment each of the angular flow controllers comprises a substantially flat, planar member, which is disposed radially about the injector body. Furthermore, each of the plurality of angular flow controllers may be disposed at the same predetermined angle of attack relative to the fluid flow, thereby imparting angular momentum to the first fluid and causing a rotation thereof about the central axis of the housing. Such a flow may be characterized as having vorticity. Inducing vorticity within the flow increases the turbulence of the fluid flow by increasing the amount of lateral mixing between fluid particles, as opposed to substantially laminar flow, in which particles move in substantially parallel lines.


In an additional embodiment, the angular flow controllers may comprise a twisted or helical configuration and be otherwise disposed as substantially disclosed above. The helical flow controller may also be configured such that all angles of attack are present relative to the flow of the first fluid, generating varying amounts of drag on the angular flow controller. Accordingly, turbulent flow of at least the first fluid can then be induced within the housing, even for very low Reynolds numbers, for example, in the range of 100-300, i.e., fluid flow that would otherwise be substantially laminar. Such turbulent flow at such low Reynolds numbers drastically increases the chaotic mixing characteristics of the fluids.


As a further method of enhancing the mixing of the two fluids, which can be combined with the first method, a compression element may be included within the housing and disposed in at least the flow path of the second fluid. In at least one further embodiment, the compression element may comprise a plurality of radial flow controllers disposed in an annular configuration about the outlet of the injector body. In at least one embodiment the radial flow controllers may comprise curved bodies at least partially angled towards the center of the outlet. As such, the radial flow controllers locally compress the second fluid as it leaves the outlet causing the second fluid to expand once it passes the radial flow controllers. Thus the operation of the radial flow controllers can be described as similar to that of a nozzle.


However, unlike a nozzle, the radial flow controllers may be shaped and dimensioned in a predetermined configuration to establish a radially oscillating flow of gaseous fuel. Accordingly, as the gaseous fuel exits the outlet, the radial flow controllers direct the gaseous fuel radially inward, causing a local compression of the gaseous fuel. Due to the “elasticity” of gaseous fuel (or bulk modulus) the gaseous fuel naturally rebounds, and expands in an outward radial expansion, toward the sidewall of the housing. For known flow rates and bulk modulus of gaseous fuels, the radial flow controllers may be dimensioned and configured to establish a radially oscillating flow of gaseous fuel, causing several radial compressions and expansions along the flow. Such radial compressions and expansions enhance the mixing quality of the flow by repeatedly integrating the fluid particles of the second fluid, gaseous fuel, with fluid particles of the first fluid, air.


In certain embodiments the outlet of the injector body may be dimensioned and configured to further enhance the mixing characteristics of the present invention, which may be accomplished by providing an outlet with a main aperture and a plurality of smaller secondary apertures arranged about of proximal inverted cone structure circumscribing the main aperture and a distal conical structure circumscribing the proximal inverted cone structure.


In yet further embodiments the present invention may also include turbulating elements disposed within the housing, and especially downstream of the injector body outlet. The turbulating elements may comprise any of a variety of shapes configured to further disrupt the flow of the fluids thereby increasing turbulence and accordingly increasing the chaotic mixing characteristics of the present invention.


In additional embodiments the present invention may also include structuring configured for the mounting of various hardware modules to the housing. For example, in certain embodiments it may be advantageous to mount or otherwise connect a throttle to the intake conduit for the measured injection of the second fluid thereto. Thus a throttle flange may be disposed on the housing. In certain embodiments the throttle may comprise an integrated throttle unit which may include electronic control of the throttle such as, for example, a WOODWARD brand L-Series Integrated Throttle Valve.


Additional hardware modules may comprise a mass airflow sensor unit which may be mounted to an MAF Unit Flange which incorporates an aperture therein for the passage of the mass airflow sensor therethrough and into communication with the flow of at least the first fluid.


These and other objects, features and advantages of the present invention will become clearer when the drawings as well as the detailed description are taken into consideration.





BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature of the present invention, reference should be had to the following detailed description taken in connection with the accompanying drawings in which:



FIG. 1 is a perspective view of a mixing assembly in accordance with one embodiment of the present invention.



FIG. 2 is an exploded view of a mixing assembly in accordance with one embodiment of the present invention.



FIG. 3 is a front plan view of a mixing assembly in accordance with one embodiment of the present invention.



FIG. 4 is a perspective view of a mixing assembly in accordance with one embodiment of the present invention.



FIG. 5 is a side plan view of a mixing assembly in accordance with one embodiment of the present invention.



FIG. 6 is a perspective view of a mixing assembly in accordance with one embodiment of the present invention including hardware modules mounted thereto in accordance with one embodiment of the present invention.



FIG. 7 is a front plan view of a mixing assembly in accordance with another embodiment of the present invention.



FIG. 8 is a perspective view of a mixing assembly in accordance with the embodiment of the present invention depicted in FIG. 7.



FIG. 9 is a front plan view of a mixing assembly in accordance with yet another embodiment of the present invention.



FIG. 10 is a perspective view of a mixing assembly in accordance with the embodiment of the present invention depicted in FIG. 9.



FIG. 11 is a section plan view of a mixing assembly in accordance with the embodiment of the present invention depicted in FIG. 1.





Like reference numerals refer to like parts throughout the several views of the drawings.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

With reference to FIG. 1, depicted is a perspective view of a mixing assembly 10 in accordance with one embodiment of the present invention. As can be seen, the depicted embodiment comprises a housing 100 of substantially cylindrical configuration, a sidewall 150 encircling a first open end 110 and a second open end 120. In the depicted embodiment, the housing 100 may be disposed within the path of an engine air intake such that ambient air, or a first fluid, to be directed to the combustion chamber of the engine flows through the housing 100 by passing into the first open end 110 and out of the second open end 120.


As can also be seen in FIG. 1, an injector body 200 is disposed substantially within the flow of the first fluid in order to inject a second fluid within the flow path of the first fluid. In certain embodiments the second fluid may comprise a gaseous fuel such as natural gas, but the present invention is not limited to such second fluids. The second fluid may be introduced into the injector body 200 via a second fluid intake aperture 130 disposed within the sidewall 150. An intake conduit 240 may be disposed in fluid communication with the second fluid intake 130 as well as an inlet 210 of the injector body and serve to conduct the second fluid thereto. Once within the injector body 200, the second fluid may then be introduced into the flow path of the first fluid by exiting an outlet 220 of the injector body 200, which in the depicted embodiment includes a diffuser 250, which will be discussed in detail further below. It will be appreciated by those skilled in the art that the transfer of second fluid through the second fluid intake 130, along the intake conduit 240, into the injector body 200, and out of the outlet 220 may be accomplished via a positive pressure therein. For example, a second fluid may be stored in a second fluid source under pressure greater than that of the pressure within the housing, and furthermore, may be actuated via a throttle disposed in communication with the second fluid source and second fluid intake 130.


The flow path of the first fluid and second fluid is more clearly depicted in FIG. 11, which is a section view of the embodiment of FIG. 1. In at least some embodiments the mixing assembly 10 will be disposed within the path of a combustion engine air intake. As such, a first fluid will generally enter the housing 100 at the first end 110 and exit the housing 100 at the second end 120. Additionally, a throttle body may be attached in communication with the second fluid intake 130 in metering relation thereto. Thus, the second fluid may enter the mixing assembly through the second fluid intake 130, travel along the intake conduit 240, through the inlet 210 of the injector body 200, and then through the outlet 220 of the injector body 200 into the stream of the first fluid flowing past the outlet 220 of the injector body 200. As can be seen, additional structuring, such as a diffuser 250, radial flow controllers 410, angular flow controllers 310, etc. may be disposed within the housing 100 to facilitate and/or enhance the mixing of the first and second fluids. Such additional structuring will now be disclosed in detail.


Now returning to FIG. 1, depicted therein is one embodiment of a vorticing element 300 in accordance with one embodiment of the present invention. The depicted embodiment comprises three angular flow controllers 310 disposed in a radially oriented configuration about the injector body 200 at approximately 120 degree intervals and further, connecting the injector body 200 and the sidewall 150. The depicted embodiment of the angular flow controllers 310 comprise substantially planar members that are rotated to form an acute angle with respect to a central axis of the housing 100 that is perpendicular to the first end 110 and second end 120. In at least one embodiment the angle formed with respect to the central axis is on the order of 0.01 to 10 degrees. Furthermore, in the depicted embodiment, each angular flow controller 310 is rotated in the same direction so as to redirect the first fluid to create a rotational flow of first fluid about the central axis of the housing 100. Such a flow may be characterized as having vorticity.


Also depicted in FIG. 1 is one embodiment of a compression element 400. As depicted, the compression element 400 comprises a plurality of three radial flow controllers 410 disposed in an annular configuration about the outlet 220 of the injector body 200 at approximately 120 degree intervals. The depicted embodiment of each of the radial flow members 410 comprises a member including at least one surface that curves toward the central axis of the housing 100, thus directing the second fluid toward the central axis of the housing 100. As such, when a second fluid exits the outlet 220 it is locally compressed by the radial flow controllers 410 as the curved configuration forces the particles of secondary fluid to travel radially inward causing a radial compression of secondary fluid. Upon passing the radial flow controllers 410 the secondary fluid may naturally rebound and radially expand, causing particles of secondary fluid to travel towards the sidewall 150, thereby intermingling with particles of first fluid. Furthermore, the radial flow controllers 410 may be curved in a radially outward configuration, at a distal portion, in order to encourage such radial expansion of second fluid particles. One example of such a radially outward configuration is referenced as distal portion 411 in FIG. 11.


For a given second fluid, such as gaseous fuel, certain characteristics of the gaseous fuel can be determined such as the bulk modulus of the gaseous fuel, as well as velocity, pressure, temperature, etc., at which the second fluid may exit the outlet 220, among other quantities. The specific configuration, dimensions, and or shape of the radial flow controllers 410 may then be predetermined to cause oscillations of radial compressions and expansions within the second fluid. Such oscillations will then cause further integration of the second fluid particles with first fluid particles thereby enhancing the mixing characteristics of the present invention.


Now with reference to FIG. 2, depicted is an exploded view of a mixing assembly 10 in accordance with one embodiment of the present invention. The depicted embodiment represents but one of a variety of methods to manufacture and/or assemble the present invention. In the depicted embodiment, the housing 100 includes mounting surfaces 170 disposed on the sidewall 150 at each of a first open end 110 and a second open end 120. In at least one embodiment, the mounting surface 170 comprises ridges within the surface of the sidewall 150 which may serve to increase friction between the sidewall 150 and a hose or pipe disposed about either the first open end 110 or second open end 120. Furthermore, such a hose or pipe may be further secured to the housing 100 via adhesive compound or a hose clamp, for example. In further embodiments the mounting surface 170 may comprise threads.


Additionally, depicted in FIG. 2 is one embodiment of an injector body 200 in accordance with one embodiment of the present invention. The depicted embodiment of the injector body 200 comprises a substantially cylindrical configuration with an inlet 210 in the sidewall, an outlet 220 at one end, and a conical closed end 230 opposite the outlet 220. It will be appreciated that the closed end 230 is not required to be conical in form but, that some configuration which provides aerodynamic benefits may be desired. When the present invention is assembled, the intake inlet 210 is disposed in fluid communication with the second fluid intake 130 via the intake conduit 240 (see FIG. 5 for an additional view). Additionally, as can be seen, each element of the present invention, such as the injector body 200, diffuser 250, compression element 400, etc. are formed individually and then joined as an assembly. It will be appreciated that any combination of elements of the present invention may be formed unitarily, as a single piece. By way of example, each element depicted in FIG. 2 may instead be formed unitarily via additive manufacturing techniques, for example, such that the entire mixing assembly 10 is comprised of a single, unitary piece.



FIGS. 3 and 4 present a mixer assembly in accordance with one embodiment of the present invention. The depicted embodiment does not include a compression element 400 which for the purposes of the present application more clearly depicts the structure of the diffuser 250. As can be seen therein, the diffuser 250 is disposed in flow controlling relation to the second fluid exiting the outlet 220 of the injector body 200 and comprises a perforated configuration, including a plurality of apertures therethrough. The depicted embodiment of the diffuser 250 includes a main aperture 251 and a plurality of smaller, secondary apertures 252 disposed concentrically about the main aperture 251. This configuration enhances the mixing characteristics of the present invention relative to an outlet 220 without a diffuser 250.


Additionally, as depicted in FIGS. 3 and 4, the diffuser 250 further comprises a proximal, inverted conical structure 253 disposed concentrically about the main aperture 251 as well as a distal, conical structure 254 disposed concentrically about the proximally, inverted conical structure 253. This configuration enhances the mixing characteristics of the present invention relative to a diffuser 250 without such structure.



FIG. 6 presents one embodiment of a mixing assembly 10 with a mass airflow unit 1000 and integrated throttle unit 2000 disposed thereon. In certain embodiments and uses of the present invention, it will be desirable to include a mass airflow unit 1000 and/or an integrated throttle unit 2000 with the mixer assembly 10 of the present invention. The integrated throttle unit 2000 may include a throttle 2010 for the measured dispersion of second fluid into the injector body 200. Furthermore, certain integrated throttle units 2000 include electronic throttle control 2020 which may be disposed in communication with a central computer of a vehicle, such as an Electronic Control Module (“ECM”) and accomplish electronically the actuation of the throttle 2010 for precise and accurate metering of second fluid to the injector body 200.


Furthermore, a mass airflow unit 1000 may be desirable to measure the mass of air, or first fluid, travelling through the housing 100 of the mixer assembly 10. To this end, a mass airflow unit 100 may be disposed on the housing 100 with a mass airflow sensor (not depicted) disposed through the housing 100 and into fluid communication with at least the first fluid travelling therethrough. Additionally, the mass airflow unit 1000 may be disposed in electrical communication with an ECM, or at least the integrated throttle unit 2000, as part of a system for operating a bi-fuel vehicle, such as a diesel/natural gas engine. Accordingly, data collected by the mass airflow unit 1000 that is indicative of the quantity of air (first fluid) travelling through the housing 100 may be utilized by such a system to calculate and meter an optimal quantity of natural gas (second fluid) so as to create an optimal mixture of air and natural gas which may be then delivered to a combustion chamber of the engine of the vehicle.



FIGS. 7 and 8 depict one embodiment of a mixing assembly 10′ that is substantially similar to the embodiment of the mixing assembly 10 discussed heretofore, except that the vorticing element 300 is now comprised of angular flow controllers 310′ comprising a helical or “twisted” configuration. This configuration of the angular flow controllers 310′ may be described as rotating one end of a flat plane 180 degrees while restricting the other end from any movement. The configuration may also be described as a portion of a Mobius strip, or additionally, an Archimedes screw. Because of the extent of the helix, being that one end is 180 degrees rotated from the other end, all angles of attack are present between the angular flow controller 310′ and the first fluid. Thus, varying amounts of drag and/or lift are induced by the travel of the first fluid past an angular flow controller 310′. As such varying amounts of local turbulence are created in the first fluid which contributes to the chaotic mixing characteristics of the present invention.



FIGS. 9 and 10 depict one embodiment of a mixing assembly 10″ that is substantially similar to the mixing assembly 10′ depicted in FIGS. 7 and 8, except that the embodiment of FIGS. 9 and 10 include turbulating elements 500 disposed within the housing 100 downstream of the angular flow controllers 310′. Turbulating elements 500 of the depicted configuration may serve to disrupt flow and cause eddies to form downstream, thereby creating turbulence and enhancing the chaotic mixing characteristics of the present invention. As can also be seen, the turbulating elements 500 are disposed out of phase with the angular flow controllers 310′. Specifically, the three angular flow controllers 310′ may be defined as being disposed at 0, 120, and 240 degrees about the center axis of the housing, then the three turbulating elements 500 may be defined as being disposed at 60, 180, and 300 degrees about the center axis of the housing.


The relative arrangement of angular flow controllers 310′ and turbulating elements 500, if appropriately and correspondingly dimensioned and configured, can create an oscillating flow generally driven by two counter-rotating vortices of first and second fluid mixes. Such a configuration may also be termed to be a fluidic oscillator, and generally enhances the chaotic mixing characteristics of the present invention.


Since many modifications, variations and changes in detail can be made to the described preferred embodiment of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents.


Now that the invention has been described,

Claims
  • 1. A mixing assembly comprising: a housing comprising a hollow configuration and disposable to conduct a first fluid therethrough;an injector body disposed concentrically within said housing and disposed to deliver a second fluid to an interior of the housing;said injector body including at least an inlet and an outlet;a vorticing element disposed within a flow of the first fluid through said housing; anda plurality of compression elements each disposed in an annular configuration about said outlet of said injector body.
  • 2. The assembly as recited in claim 1 wherein said vorticing element comprises a plurality of angular flow controllers disposed about said injector body.
  • 3. The assembly as recited in claim 1 wherein said compression element comprises a plurality of radial flow controllers disposed collectively in at least partially surrounding relation to said outlet of said injector body.
  • 4. The assembly as recited in claim 1 wherein said inlet of said injector body is disposed in fluid communication with a source of gaseous fuel.
  • 5. The assembly as recited in claim 1 wherein the first fluid comprises air.
  • 6. The assembly as recited in claim 1 wherein the second fluid comprises gaseous fuel.
  • 7. A mixing assembly comprising: a housing comprising an open first end and open second end disposable to conduct a first fluid therethrough;an injector body disposed concentrically within said housing;said injector body comprising an inlet and an outlet;said outlet disposed within the flow of the first fluid;a plurality of angular flow controllers disposed about said injector body, in flow controlling relation to the first fluid;a plurality of radial flow controllers disposed in an annular configuration about said outlet, in flow controlling relation to a second fluid flowing from said outlet; anda plurality of turbulating elements disposed downstream of said plurality of angular flow controllers.
  • 8. The assembly as recited in claim 7 wherein said plurality of angular flow controllers comprise a plurality of planar members disposed in a radial orientation about said injector body; said planar members rotated relative to a central axis of said housing and forming an acute angle with said central axis.
  • 9. The assembly as recited in claim 8 wherein each of said plurality of angular flow controllers are disposed equidistantly about said injector body and each of said plurality of angular flow controllers are disposed substantially at said acute angle with said central axis.
  • 10. The assembly as recited in claim 7 wherein said plurality of radial flow controllers comprise members with at least one surface configured to direct the second fluid toward a central axis of said housing.
  • 11. The assembly as recited in claim 7 wherein said outlet of said injector body comprises a diffuser, said diffuser comprising a perforated configuration.
  • 12. The assembly as recited in claim 11 wherein said diffuser comprises a main aperture and a plurality of secondary apertures disposed concentrically about said main aperture.
  • 13. The assembly as recited in claim 11 wherein said diffuser comprises a distal conical configuration concentrically disposed about a proximal, inverted conical configuration.
  • 14. The assembly as recited in claim 7 wherein said plurality of angular flow controllers comprise helical members.
  • 15. The assembly as recited in claim 7 said plurality of turbulating elements are disposed out of phase with said plurality of angular flow controllers.
  • 16. The assembly as recited in claim 7 wherein the first fluid comprises air.
  • 17. The assembly as recited in claim 7 wherein the second fluid comprises gaseous fuel.
  • 18. The assembly as recited in claim 7 wherein said outlet of said injector nozzle comprises a diffuser.
  • 19. The assembly as recited in claim 18 wherein said diffuser comprises a plurality of apertures.
US Referenced Citations (216)
Number Name Date Kind
2058309 Haering Oct 1936 A
2831754 Manka Apr 1958 A
3671025 Elliott Jun 1972 A
3675901 Rion Jul 1972 A
3761065 Rich Sep 1973 A
3866781 Stedman et al. Feb 1975 A
3872473 Melgaard et al. Mar 1975 A
4006852 Pilsner et al. Feb 1977 A
4078629 Kutay et al. Mar 1978 A
4234922 Wilde et al. Nov 1980 A
4270576 Takeda Jun 1981 A
4288086 Oban et al. Sep 1981 A
4335697 McLean Jun 1982 A
4415051 Taylor Nov 1983 A
4442665 Fick et al. Apr 1984 A
4444373 Hayashi Apr 1984 A
4489699 Poehlman Dec 1984 A
4499885 Weissenback Feb 1985 A
4522159 Engel et al. Jun 1985 A
4527516 Foster Jul 1985 A
4535728 Batchelor Aug 1985 A
4564298 Gritters Jan 1986 A
4597364 Young Jul 1986 A
4603674 Tanaka Aug 1986 A
4606322 Reid et al. Aug 1986 A
4616937 King Oct 1986 A
4617904 Pagdin Oct 1986 A
4633909 Louboutin Jan 1987 A
4641625 Smith Feb 1987 A
4708094 Helmich et al. Nov 1987 A
4753535 King Jun 1988 A
4770428 Sugiyama Sep 1988 A
4799565 Handa et al. Jan 1989 A
4817568 Bedford Apr 1989 A
4861096 Hastings Aug 1989 A
4955326 Helmich Sep 1990 A
5033567 Washburn et al. Jul 1991 A
5050550 Gao Sep 1991 A
5054799 Fingerle Oct 1991 A
5081969 Long, III Jan 1992 A
5092305 King Mar 1992 A
5156230 Washburn Oct 1992 A
5176448 King Jan 1993 A
5215157 Teich Jun 1993 A
5224457 Arsenault et al. Jul 1993 A
5355854 Aubee Oct 1994 A
5356213 Arpentinier Oct 1994 A
5370097 Davis Dec 1994 A
5375582 Wimer Dec 1994 A
5379740 Moore et al. Jan 1995 A
5404711 Rajput Apr 1995 A
5518272 Fukagawa et al. May 1996 A
5526786 Beck et al. Jun 1996 A
5546908 Stokes Aug 1996 A
5566653 Feuling Oct 1996 A
5566712 White et al. Oct 1996 A
5593167 Barnhardt et al. Jan 1997 A
5598825 Neumann Feb 1997 A
5609037 Fischler Mar 1997 A
D384341 Hoffman et al. Sep 1997 S
5701928 Aoki Dec 1997 A
5735253 Perotto et al. Apr 1998 A
5755210 Sato et al. May 1998 A
5794979 Kasuga et al. Aug 1998 A
5806490 Nogi et al. Sep 1998 A
5810309 Augustine et al. Sep 1998 A
5845940 Colburn Dec 1998 A
5937800 Brown Aug 1999 A
5996207 Brown et al. Dec 1999 A
6003478 Huber Dec 1999 A
6027241 King Feb 2000 A
6041762 Sirosh et al. Mar 2000 A
6101986 Brown Aug 2000 A
6151547 Kumar et al. Nov 2000 A
6168229 Kooi et al. Jan 2001 B1
6200014 Babenko Mar 2001 B1
6202601 Ouellette Mar 2001 B1
6250260 Green Jun 2001 B1
6250723 Barberis et al. Jun 2001 B1
6276823 King Aug 2001 B1
6289881 Klopp Sep 2001 B1
D452693 Mitchell Jan 2002 S
6422735 Lang Jul 2002 B1
6513485 Ogawa et al. Feb 2003 B2
6543395 Green Apr 2003 B2
6550811 Bennett et al. Apr 2003 B1
6659636 Matula Dec 2003 B1
6676163 Joitescu et al. Jan 2004 B2
6718952 Finch Apr 2004 B2
6751835 Fenton Jun 2004 B2
6766231 Nakagawa et al. Jul 2004 B2
D496940 Fetterman Oct 2004 S
6863034 Kern et al. Mar 2005 B2
6875258 Kuperus Apr 2005 B2
6938928 Pfohl et al. Sep 2005 B2
7019626 Funk Mar 2006 B1
D525550 Egidio Jul 2006 S
D549721 Ito et al. Aug 2007 S
7270209 Suess Sep 2007 B2
D552121 Carl et al. Oct 2007 S
D555164 Sergio Nov 2007 S
7299122 Perkins Nov 2007 B2
7334818 Mascarenhas et al. Feb 2008 B2
7341164 Barquist Mar 2008 B2
7410152 Yates Aug 2008 B2
7441189 Michaels Oct 2008 B2
7444986 Shute Nov 2008 B2
D600701 Kase Sep 2009 S
7607630 Jung et al. Oct 2009 B2
7621565 Ross, Jr. et al. Nov 2009 B2
7775311 Hardy et al. Aug 2010 B1
7874451 Bel Jan 2011 B2
7976067 Naganuma et al. Jul 2011 B2
7979522 Lunsford Jul 2011 B2
8055603 Angell et al. Nov 2011 B2
8125346 Ballard et al. Feb 2012 B2
8282132 Griesbaum Oct 2012 B2
D677685 Simmons et al. Mar 2013 S
8408600 Kondo et al. Apr 2013 B2
D681670 Fletcher et al. May 2013 S
D686244 Moriya et al. Jul 2013 S
8498799 Matthews, Jr. et al. Jul 2013 B2
8534403 Pursifull Sep 2013 B2
D691164 Lim et al. Oct 2013 S
8550274 Gerding Oct 2013 B2
8556107 McRobbie et al. Oct 2013 B2
8820289 Green Sep 2014 B2
8881933 Green Nov 2014 B2
8882071 Green Nov 2014 B2
D726742 Aoshima Apr 2015 S
9004744 Kemp Apr 2015 B1
9031763 Green May 2015 B2
D732554 Tomita et al. Jun 2015 S
D733176 Lin Jun 2015 S
D748649 Kovacevic et al. Feb 2016 S
D749617 Noack et al. Feb 2016 S
D750114 Kettner et al. Feb 2016 S
D750120 Kovacevic et al. Feb 2016 S
D755202 Seo May 2016 S
D759704 Kettner et al. Jun 2016 S
D760275 Zhang Jun 2016 S
9394841 Green Jul 2016 B1
D766942 Napper et al. Sep 2016 S
D768160 McRae et al. Oct 2016 S
D768161 McRae et al. Oct 2016 S
D768661 McRae et al. Oct 2016 S
20010037549 Fenton Nov 2001 A1
20020017088 Dillon Feb 2002 A1
20020029770 Heffel et al. Mar 2002 A1
20020030397 Tamura et al. Mar 2002 A1
20020078918 Ancimer et al. Jun 2002 A1
20030178422 Kosuge et al. Sep 2003 A1
20030187565 Wong Oct 2003 A1
20040003805 Ono Jan 2004 A1
20040011050 Inoue Jan 2004 A1
20040140412 Hendzel et al. Jul 2004 A1
20040148086 Tafazoli et al. Jul 2004 A1
20040158086 White Aug 2004 A1
20050121005 Edwards Jun 2005 A1
20050230579 Mascarenhas et al. Oct 2005 A1
20060032532 Suess Feb 2006 A1
20060033322 Suess Feb 2006 A1
20060158961 Ruscheweyh Jul 2006 A1
20060161315 Lewis Jul 2006 A1
20060245296 Nishioka Nov 2006 A1
20070119421 Lewis May 2007 A1
20070277530 Dinu et al. Dec 2007 A1
20080023957 Diehl Jan 2008 A1
20080042028 Ross et al. Feb 2008 A1
20080163627 ELKady Jul 2008 A1
20090000842 Hwang et al. Jan 2009 A1
20090152043 Lee Jun 2009 A1
20090282810 Leone Nov 2009 A1
20090320786 Fisher Dec 2009 A1
20100045017 Rea Feb 2010 A1
20100051567 Ross, Jr. Mar 2010 A1
20100078244 Pursifull Apr 2010 A1
20100127002 Bel May 2010 A1
20100263382 Mancini Oct 2010 A1
20110087988 Ray et al. Apr 2011 A1
20110202256 Sauve et al. Aug 2011 A1
20110209074 Gill et al. Aug 2011 A1
20120001743 Cotten et al. Jan 2012 A1
20120060800 Green Mar 2012 A1
20120067660 Kashu et al. Mar 2012 A1
20120112533 Yarmak et al. May 2012 A1
20120253641 Warner et al. Oct 2012 A1
20120296552 Matthews, Jr. et al. Nov 2012 A1
20120310509 Pardo et al. Dec 2012 A1
20120325355 Docheff Dec 2012 A1
20130068905 Green Mar 2013 A1
20130069357 Green Mar 2013 A1
20130074816 Green Mar 2013 A1
20130092694 Green Apr 2013 A1
20130112768 Hagenbuch May 2013 A1
20130220274 Deshpande Aug 2013 A1
20130245864 Frazier et al. Sep 2013 A1
20130284747 Rund Oct 2013 A1
20130284748 Sloan et al. Oct 2013 A1
20130336084 Janz Dec 2013 A1
20140053800 Steffen et al. Feb 2014 A1
20140053816 Czapka et al. Feb 2014 A1
20140060946 Willi Mar 2014 A1
20140067236 Henry Mar 2014 A1
20140196687 Coldren et al. Jul 2014 A1
20140261301 Leone Sep 2014 A1
20150000643 Green Jan 2015 A1
20150020770 Green Jan 2015 A1
20150025774 Green Jan 2015 A1
20150142491 Webb May 2015 A1
20150199089 Lee et al. Jul 2015 A1
20150277750 Sakaguchi Oct 2015 A1
20150375666 Woods Dec 2015 A1
20160131007 Kauderer May 2016 A1
20160162123 Kurita et al. Jun 2016 A1
20160257196 Green Sep 2016 A1
Foreign Referenced Citations (12)
Number Date Country
2741263 Oct 2014 CA
WO 2002101214 Dec 2002 WO
WO 2008037175 Apr 2008 WO
WO 2012036768 Mar 2012 WO
WO 2013039708 Mar 2013 WO
WO 2013048812 Apr 2013 WO
WO 2013058988 Apr 2013 WO
WO 2014197594 Dec 2014 WO
WO 2016057239 Apr 2016 WO
WO 2016065026 Apr 2016 WO
WO 2016065109 Apr 2016 WO
WO 2016112156 Jul 2016 WO
Non-Patent Literature Citations (6)
Entry
Chubb, Peter. ‘Roku 3 vs. Apple TV 3G’. product-reviews.net [online]. Sep. 2, 2013 [retrieved Jun. 20, 2016]. Retrieved from the Internet: <URL: http://www.product-reviews.net/2013/09/02/roku-3-vs-apple-tv-3g/>.
‘Testing Windows 8 apps using Visual Studio 2012’. Blogs.msdn.microsoft.com [online]. Aug. 20, 2012 [retrieved Jun. 20, 2016]. Retrieved from the Internet: <URL: https://blogs.msdn.microsoft.com/windowsappdev/2012/08/20/testing-windows-8-apps-using-visual-studio-2012/>.
‘WPF How to create a lateral menu like this (Modern-UI)’. stackoverflow.com [online]. Apr. 2, 2014 [retrieved Jun. 20, 2016]. Retrieved from the Internet: <URL: http://stackoverflow.com/questions/22817624/wpf-how-to-create-a-lateral-menu-like-this-modern-ui>.
In-vehicle LPG Bottle with shield dated Oct. 30, 2007 [retrieved from internet dated Nov. 25, 2015] https://commons.wikimedia.org/wiki/File:In-vehicle—LPG—bottle—012.JPG.
GFS Corp., First LNG Mining Truck in U.S. [online press release]. Oct. 21, 2010. Retrieved from the internet on Oct. 25, 2012: http://www.d2ginc.com/PDF/First%20LNG%20Mining%20Truck%20In%20US%20Press%20Kit%20Oct%2021.pdf.
Caterpillar 785C Mining Truck Spec Sheet, 2010.
Related Publications (1)
Number Date Country
20160195050 A1 Jul 2016 US