The present disclosure relates generally to mixing chambers for hydrating dry granulated materials. More particularly, the invention relates to hydrating flour-like dry granulated materials in a consistent and uniform manner.
Dry ingredients mixing chambers for use in continuous flow processes are known from the prior art, and are often used in connection with large-scale production. One such mixing chamber is shown in U.S. Pat. No. 7,332,190.
Prior art mixing chambers fail to effectively mix a wide variety of dry ingredients at variable flow rates. The dry ingredients concentrate in some portions of the mixing chamber, resulting in inconsistent hydration of the dry ingredients. When dough is mixed in the prior art mixing chambers, the result is thicker dough farther from the spray, wet batter-like dough at the edges of the spray, and un-mixed liquid at the center of the spray. This unmixed liquid presents a problem because the machine operator has a difficult time assessing whether the dry ingredients have been properly hydrated. Certain food recipes require highly accurate hydration. Prior art mixing chamber designs make precise process control difficult.
Prior art mixing chambers also do not provide adequate protection from food contamination. Food safety and sanitation standards in the United States and other countries are stringent, and require regular cleaning to prevent bacterial growth on food production equipment. Prior art mixing chamber designs are difficult to clean and do not meet the most stringent food sanitation requirements.
Finally, prior art mixing chamber designs have limited adjustment of key process parameters such as liquid and dry ingredients flow rate to accommodate variations in the type of dry ingredients, their density, granulated particle size and desired hydration levels.
There exists a need for an improved mixing chamber that permits uniform hydration of a wide variety of dry ingredients.
A mixing chamber for mixing dry ingredients with a liquid is disclosed. The mixing chamber allows the user to hydrate a variety of dry ingredients such as flour, bran, and whole seeds and incorporates a variety of process controls. The mixing chamber evenly distributes ingredients as they pass the liquid spray nozzle, resulting in uniform hydration. The liquid can be sprayed at a variety of pressures to achieve varying levels of granule hydration. Even dry ingredients that are generally slow to absorb moisture may be rapidly and evenly hydrated without an excess of liquid. Other process parameters such as volume flow rate of the dry ingredients can be varied to ensure optimum process control for all applications.
The disclosed mixing chamber is particularly useful for hydrating dry ingredients that do not absorb liquids quickly, such as bran, gluten, and fiber. In addition producing dough for human consumption, the mixing chamber is useful for all kinds of batters, including pancake, donut, muffin, crepe, sponge batters, and a variety of non-food ingredients.
A preferred embodiment of the mixing chamber is shown in
The mixing chamber's granule flow is shown in detail in
Once ingredients pass through the orifice 52, they can free fall in the metered dry ingredient tube 47 into the accumulation chamber 30. As the dry ingredients fall toward the accumulation chamber 30, they encounter the diverter 33, which is conical in this embodiment and tapered outwardly as it approaches the accumulation chamber 30.
By encountering the diverter 33, the ingredients are distributed into a uniform cone, or another shape corresponding to the diverter 33, that flows toward the outside of the accumulation chamber 30. The accumulation chamber 30 may include an accumulator neck down 36, which can be a tapered section of wall forming the accumulation chamber 30. In this configuration, the accumulator 36 has a taper that is opposite to the taper of the diverter 33. With this configuration, the ingredients contact the accumulator 36 and are redirected toward the center of the mixing tube 20. The result of this configuration is an even distribution of ingredients as they pass the liquid spray 37. The liquid spray 37 generated by the discharge spray nozzle 38 is directed downwardly against the falling dry ingredients as they exit the accumulation chamber 30 and enter the mixing tube 20. The liquid spray 37 hydrates the ingredients as they are passing through the mixing tube 20 by gravity.
The air inlet holes 45 allow air to enter the dry ingredients metering inlet 40 to avoid an undesirable vacuum in the mixing chamber 10. The metered dry ingredients tube is attachable to the accumulation chamber 30 via the flange 48. The accumulation chamber 30 has a corresponding flange 31 which mates to flange 48.
The accumulation chamber 30A and the mixing tube 20A function in substantially the same manner as the accumulation chamber 30 and the mixing tube 20, but may be of an alternative configuration. For example, the accumulation chamber 30A and the mixing tube 20A are directly connected (e.g., integrally formed), instead of being connected by one or more flanges. Further, the chamber inlet flange 31A is mounted at the top of the tapered portion of the accumulation chamber 30A. Additionally, chamber inlet flange 31A may include one or more handles 62 that are useful for aligning inlet flange 31A dry ingredient metering exit flange 48A.
A variety of liquids can used to hydrate the dry ingredients. The liquid is applied as a high pressure spray, which may have a pressure ranging between 10 bar (approximately 145 psi) and 300 bar (approximately 4,300 psi) so as to achieve optimum hydration. Different dry ingredients absorb moisture best at different pressures. For instance, wheat bran has low density and hydrates best at pressures between 20 bar (approximately 300 psi) and 69 bar (approximately 1,000 psi) while granulated white sugar hydrates best at 137 bar (approximately 2,000 psi). Wheat gluten is well hydrated at pressures exceeding 69 bar (approximately 1,000 psi), resulting in a mixed dough. However, wheat gluten does not absorb as much moisture at 20 bar (approximately 300 psi), which results in a homogenous liquid batter. A variety of characteristics can be obtained by adjusting the pressure.
The high pressure spray is directed downwardly inside of the tube at the dry ingredients in a conical pattern a liquid spray angle of less than 50 degrees. The spray causes a vacuum within the tube, which changes the ingredients' free fall pattern, and it helps to draw the ingredients down into the high pressure spray. This vacuum changes with liquid velocity, liquid volume, spray angle, and the area of the tube. Dry ingredients may vary widely in size and density, which will also change their free fall pattern. The diverter 33, which may take shapes other than conical, is designed to ensure that regardless of the exact dry ingredients to be hydrated, the diverter pattern will be consistently distributed into the spray pattern.
The volume flow rate of the dry ingredients is controlled through the dry ingredient metering inlet, which is located above the spray nozzle. Dry ingredients are introduced to the mixing chamber via an auger, screw, or other device known in the art. The mixture inlet assembly controls the flow rate of the dry ingredients by closing off a portion of the opening above the vertical tube. Air is allowed to flow into the vertical tube to help distribute the dry ingredients as they fall and are drawn in by the vacuum generated from the spray nozzle. This adjustment permits adjustment of the flow rate to ensure even distribution. If there is too much volume flow, there is a risk that the distribution of ingredients will be uneven and will not be uniformly hydrated. If there is too little volume flow, there will be excess liquid in the resulting mixture. Further, varying both the liquid spray pressure and the dry ingredient volume flow rate will allow changing the impact velocity of the liquid with the ingredients and change the hydration characteristics. Hydration levels between 40% and 359% liquid have been achieved with the mixing chamber, but results may vary on the physical properties of the ingredients and the process parameters used.
This application claims the benefit of U.S. Provisional Application No. 62/086,815, which was filed Dec. 3, 2014 and is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/063704 | 12/3/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62086815 | Dec 2014 | US |