Mixing chamber

Abstract
A membrane module (5) including a plurality of porous membranes (6) extending in an array and mounted, at least at one end, in a header (8). The header (8) has a number of distribution apertures (11) for distributing a fluid into the module (5) and along a surface or surfaces of the membranes (6). An elongate chamber (10) having one open end (13) and another end is in fluid communication with the distribution apertures (11) for distributing the fluid to the distribution apertures (11).
Description
TECHNICAL FIELD

The present invention relates to apparatus and related methods for use of a chamber in association with membrane filtration modules to provide improved fluid distribution and flow into the associated modules.


BACKGROUND OF THE INVENTION

The importance of membranes for treatment of waste water is growing rapidly. It is now well known that membrane processes can be used as an effective tertiary treatment of sewage and provide quality effluent. However, the capital and operating cost can be prohibitive. With the arrival of submerged membrane processes where the membrane modules are immersed in a large feed tank and filtrate is collected through suction applied to the filtrate side of the membrane, membrane bioreactors combining biological and physical processes in one stage promise to be more compact, efficient and economic. Due to their versatility, the size of membrane bioreactors can range from household (such as septic tank systems) to the community and large-scale sewage treatment.


The success of a membrane filtration process largely depends on employing an effective and efficient membrane cleaning method. Commonly used physical cleaning methods include backwash (backpulse, backflush) using a liquid permeate or a gas, membrane surface scrubbing or scouring using a gas in the form of bubbles in a liquid. Examples of the second type of method is illustrated in U.S. Pat. No. 5,192,456 to Ishida et al, U.S. Pat. No. 5,248,424 to Cote et al, U.S. Pat. No. 5,639,373 to Henshaw et al, U.S. Pat. No. 5,783,083 to Henshaw et al and our PCT Application No. WO98/28066.


In the examples referred to above, a gas is injected, usually by means of a pressurised blower, into a liquid system where a membrane module is submerged to form gas bubbles. The bubbles so formed then travel upwards to scrub the membrane surface to remove the fouling substances formed on the membrane surface. The shear force produced largely relies on the initial gas bubble velocity, bubble size and the resultant of forces applied to the bubbles. The fluid transfer in this approach is limited to the effectiveness of the gas lifting mechanism. To enhance the scrubbing effect, more gas has to be supplied. However, this method has several disadvantages: it consumes large amounts of energy, possibly forms mist or froth flow reducing effective membrane filtration area, and may be destructive to membranes. Moreover, in an environment of high concentration of solids, the gas distribution system may gradually become blocked by dehydrated solids or simply be blocked when the gas flow accidentally ceases.


For most capillary membrane modules, the membranes are flexible in the middle (longitudinal direction) of the modules but tend to be tighter and less flexible towards to both potted heads. When such modules are used in an environment containing high concentrations of suspended solids, solids are easily trapped within the membrane bundle, especially in the proximity of two potted heads. The methods to reduce the accumulation of solids include the improvement of module configurations and flow distribution when gas scrubbing is used to clean the membranes.


Our earlier International Application No. WO 00/18498 describes the use of a mixture of gas and liquid to effectively clean the surface of membranes. The arrangements and methods described herein provided another simple way of achieving effective scouring of membrane surfaces.


DISCLOSURE OF THE INVENTION

The present invention, at least in its embodiments, seeks to overcome or least ameliorate some of the disadvantages of the prior art or at least provide the public with a useful alternative.


According to one aspect the present invention provides a membrane module including a plurality of porous membranes extending in an array and mounted, at least at one end, in a header, said header having a number of distribution apertures for distributing a fluid into said module and along a surface or surfaces of said membranes, a chamber having one open end and another end in fluid communication with said distribution apertures for distributing said fluid to said distribution apertures.


In an alternative aspect, the present invention provides an assembly of membrane modules including a plurality of porous membranes extending in an array and mounted, at least at one end, in a plurality of respective headers, said headers being configured to provide a number of distribution apertures therebetween for distributing a fluid into said assembly of membrane modules and along a surface or surfaces of said membranes, a chamber having one open end and another end in fluid communication with said distribution apertures for distributing said fluid to said distribution apertures.


In one form of the invention, the fluid may be gas, usually air and in another form of the invention the fluid may be a mixture of gas and liquid, usually air and feed liquid.


The term liquid as used herein will be familiar to those skilled in the art as encompassing the range of other materials usually considered as liquid feeds, such as suspensions which contain suspended solids or inorganic matter in liquids, suspensions of biomass in water, water which is turbid and the like, or mixtures of these.


Preferably, the chamber is elongate, that is, preferably, the length of said chamber is greater than that required to provide a static head, when the membrane is immersed in a liquid and gas introduced into the chamber, equivalent to the head loss for the gas to flow to said distribution apertures. That is, the length of the chamber should be sufficient that all gas flows from the supply source or manifold through the distribution apertures rather than the open end of the chamber.


While the term mixing chamber is used, it would also be possible to describe the present invention as a mixing junction.


In some embodiments, the chamber is enclosed on all sides. However, if the chamber is sufficiently dimensioned, it may not be necessary for the sides to be enclosed. By way of example only, if the membrane module or an array of modules is in the form of a linear array, with a plurality of headers, then it may be sufficient just for the chamber to be enclosed along the two longest sides. Preferably, the membrane module is in the form of an extended linear array wherein the chamber has enclosed long sides. More preferably, the membrane module is in the form of an extended linear array wherein the chamber has unenclosed short sides.


In yet a further alternative, the chamber may have sides but no top. In such a case, the sides of the chamber are positioned to substantially form a skirt below the header or group of headers. In such a case, the sides of the chamber may not be parallel, but, for example, may slope inwardly towards the header.


The chamber can be of any shape as desired to contain any configuration of membrane modules. In preferred embodiments, the header or headers are mounted in a clover shaped manifold. The clover manifold is so called because when viewed from above, the manifold has the shape of a clover leaf. While the invention is described with reference to this one preferred embodiment, it will be understood that the manifold can be configured to have any desired footprint, for example, it may be linear, rectangular, square, hexagonal etc.


According to another aspect, the present invention provides a method of removing a fouling material from a plurality of porous hollow fiber membranes mounted and extending longitudinally in an array to form a membrane module, the method comprising the steps of:

  • providing a source of gas to a chamber in fluid communication with said membrane module;
  • flowing the gas from the chamber into a base of the membrane module to form gas bubbles therein when said module is immersed in a liquid, whereby an upward flow of the gas bubbles across surfaces of the hollow fiber membranes is obtained, and whereby fouling materials are dislodged from the surfaces of the porous hollow fiber membranes.


The source of gas can be provided to the chamber either within the chamber itself, or from below the chamber.


Preferably, said chamber is elongate with one end open and the other end in fluid communication with the membrane module. For preference, the gas is provided through the open end of the chamber.


According to another aspect, the present invention provides a method of removing a fouling material from a plurality of porous hollow fiber membranes mounted and extending longitudinally in an array to form a membrane module, the method comprising the steps of:

  • forming a mixture of gas bubbles and liquid within a mixing chamber;
  • injecting the mixture into a base of the membrane module, whereby an upward flow of the mixture across surfaces of the hollow fiber membranes is obtained, and whereby fouling materials are dislodged from the surfaces of the porous hollow fiber membranes.


For preference, the step of forming a mixture includes entraining the gas bubbles into a liquid stream. Preferably, the gas bubbles are entrained into said liquid stream by means of the chamber. For further preference, the gas bubbles are entrained or injected into said liquid stream by means of devices which forcibly mix gas into a liquid flow to produce a mixture of liquid and bubbles, such devices including a jet, nozzle, ejector, eductor, injector or the like. The gas used may include air, oxygen, gaseous chlorine or ozone. Air is the most economical for the purposes of scrubbing and/or aeration. Gaseous chlorine may be used for scrubbing, disinfection and enhancing the cleaning efficiency by chemical reaction at the membrane surface. The use of ozone, besides the similar effects mentioned for gaseous chlorine, has additional features, such as oxidising DBP (disinfection by-product) precursors and converting non-biodegradable NOM's (natural organic matters) to biodegradable dissolved organic carbon.


It is generally preferred if the air entering the mixing chamber is deflected away from the source of the liquid which is entering the mixing chamber. Preferably, the air entering the mixing chamber is deflected, for example, by way of a T-piece or baffle. The liquid preferably enters the mixing chamber by way of a nozzle.


According to a further aspect, the present invention provides a membrane module comprising a plurality of porous membranes, said membranes being arranged in close proximity to one another, a mixing chamber in fluid communication with said module for mixing together liquid and gas bubbles to provide a cleaning mixture and means for flowing said cleaning mixture along the surface of said membranes to dislodge fouling materials therefrom.


According to one preferred form, the present invention provides a method of removing fouling materials from the surface of a plurality of porous hollow fibre membranes mounted and extending longitudinally in an array to form a membrane module, said membranes being arranged in close proximity to one another, the method comprising the steps of forming a mixture of gas bubbles and liquid within a mixing chamber, said mixture being formed by said gas bubbles being entrained in said liquid by flowing said liquid past a source of gas so as to cause said gas to be drawn and/or mixed into said liquid, flowing said mixture into said membrane module such that said bubbles pass substantially uniformly between each membrane in said array to, in combination with said liquid flow, scour the surface of said membranes and remove accumulated solids from within the membrane module.


For preference, the membranes comprise porous hollow fibres, the fibres being fixed at each end in a header, the lower header having one or more holes formed therein through which mixture of gas/liquid is introduced from the mixing chamber. The holes can be circular, elliptical or in the form of a slot.


Preferably, the membranes comprise porous hollow fibres, the fibres being fixed at each end in a plurality of headers, the lower headers being configured to provide a number of distribution apertures therebetween through which mixture of gas/liquid is introduced from the mixing chamber.


The fibres are normally sealed at the lower end and open at their upper end to allow removal of filtrate, however, in some arrangements, the fibres may be open at both ends to allow removal of filtrate from one or both ends. It will be appreciated that the cleaning process described is equally applicable to other forms of membrane such flat or plate membranes.


Alternatively, the membranes may be flat sheet or curtain like hollow fibre modules, with apertures in the header configured parallel to the flat sheet.


In yet a further alternative embodiment, a plurality of headers without apertures may be used, provided these are spaced such that the gaps between the headers define an aperture or apertures for the fluid and gas bubbles to scrub the membranes.


In an example of this alternative aspect, the membrane module includes a plurality of porous membranes extending in an array and potted in headers. Said modules are mounted in such a way that said headers are configured to provide a number of distribution apertures therebetween for distributing a fluid into said modules and along surfaces of said membranes, a chamber having one open end and another end in fluid communication with said distribution apertures for distributing said fluid to said distribution apertures.


Particularly in the case of flat-sheet membranes or curtain-like hollow fiber modules, where there are no apertures are in the lower header, apertures or passages for fluid and gas bubbles can be formed by mounting modules in close proximity leaving a gap or gaps between modules.


A mixing chamber can enclose several modules in an array.


According to yet a further aspect, the present invention provides a membrane module for use in a membrane bioreactor including a plurality of porous hollow membrane fibres extending longitudinally between and mounted at each end to a respective potting head, said membrane fibres being arranged in close proximity to one another, said fibres being partitioned into a number of bundles at least at or adjacent to their respective potting head so as to form a space therebetween, a mixing chamber connected or open to a source of gas and liquid, one of said potting heads having an array of openings formed therein in fluid communication with said chamber for providing gas bubbles within said module such that, in use, said bubbles move past the surfaces of said membrane fibres to dislodge fouling materials therefrom.


According to a further aspect, the invention provides a membrane module for use in a membrane bioreactor including a plurality of porous hollow membrane fibres extending longitudinally between and mounted at each end to a plurality of respective potting heads, said membrane fibres being arranged in close proximity to one another, said fibres being partitioned into a number of bundles at least at or adjacent to their respective potting head so as to form a space therebetween, a mixing chamber connected or open to a source of gas and liquid, said potting heads being configured to provide a number of distribution apertures therebetween in fluid communication with said chamber for providing gas bubbles within said module such that, in use, said bubbles move past the surfaces of said membrane fibres to dislodge fouling materials therefrom.


The liquid used may be the feed to the membrane module. The fibres and/or fibre bundles may cross over one another between the potting heads though it is desirable that they do not.


Preferably, the fibres within the module have a packing density (as defined above) of between about 5 to about 70% and, more preferably, between about 8 to about 55%.


For preference, said holes have a diameter in the range of about 1 to 40 mm and more preferably in the range of about 1.5 to about 25 mm. In the case of a slot or row of holes, the width of slots are chosen to be equivalent to the diameter of the above holes.


Typically, the fibre inner diameter ranges from about 0.1 mm to about 5 mm and is preferably in the range of about 0.25 mm to about 2 mm. The fibres wall thickness is dependent on materials used and strength required versus filtration efficiency. Typically wall thickness is between 0.05 to 2 mm and more often between 0.1 mm to 1 mm.


For preference, the membrane modules of the present invention include a deflector within said mixing chamber configured to deflect gas away from the source of the liquid. It is also preferred if the membrane modules of the present invention include a nozzle whereby liquid is introduced into the mixing chamber.


According to another aspect, the present invention provides a membrane bioreactor including a tank having means for the introduction of feed thereto, means for forming activated sludge within said tank, a membrane module according to other aspects of the present invention positioned within said tank so as to be immersed in said sludge and said membrane module provided with means for withdrawing filtrate from at least one end of said fibre membranes.


According to yet another aspect, the present invention provides a method of operating a membrane bioreactor of the type described in the above aspect comprising introducing feed to said tank, applying a vacuum to said fibres to withdraw filtrate therefrom while periodically or continuously supplying a cleaning mixture of gas bubbles and liquid formed in a mixing chamber through said openings to within said module such that, in use, said cleaning mixtures flows along the surface of said membrane fibres to dislodge fouling materials therefrom.


If required, a further source of aeration may be provided within the tank to assist microorganism activity and to reduce anoxic zone. For preference, the membrane module is suspended vertically within the tank and said further source of aeration may be provided beneath the suspended module. Preferably, the further source of aeration comprises a group of air permeable tubes or discs. The membrane module may be operated with or without backwash depending on the flux. A high mixed liquor of suspended solids (5,000 to 20,000 ppm) in the bioreactor has been shown to significantly reduce residence time and improve filtrate quality. The combined use of aeration for both degradation of organic substances and membrane cleaning has been shown to enable constant filtrate flow without significant increases in transmembrane pressure while establishing high concentration of MLSS. The use of partitioned fibre bundles enables higher packing densities to be achieved without significantly compromising the gas scouring process. This provides for higher filtration efficiencies to be gained.





BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:—



FIG. 1 shows a pictorial side elevation of a chamber and membrane modules according to an embodiment of the invention;



FIG. 2 shows a pictorial side elevation of a chamber and membrane modules according to a second embodiment of the invention;



FIG. 3 shows a pictorial side elevation of a chamber and membrane modules according to a third embodiment of the invention;



FIG. 4 shows a pictorial side elevation of a chamber and membrane modules according to a fourth embodiment of the invention;



FIG. 5 shows a pictorial side elevation of a chamber and membrane modules according to a fifth embodiment of the invention; and



FIG. 6 shows a schematic side elevation of a chamber and membrane module according to a sixth embodiment of the invention.



FIG. 7 shows a pictorial side elevation of a chamber and membrane modules according to another embodiment of the invention.



FIG. 8
a shows a preferred embodiment of the deflector for use in mixing chambers of the present invention.



FIG. 8
b shows a further referred embodiment of the deflector for use in mixing chambers of the present invention.



FIG. 9 shows a preferred embodiment of an extended chamber and linear array of modules.





PREFERRED EMBODIMENTS OF THE INVENTION

Referring to the drawings, the embodiments of the invention will be described in relation to a membrane module of the type disclosed in our earlier PCT application Nos. WO98/28066 and WO00/18498 which are incorporated herein by cross-reference, however, it will be appreciated that the invention is equally applicable to other forms of membrane module.


As shown in FIG. 1, the membrane module 5 typically comprises fibre, tubular or flat sheet form membranes 6 potted into a pot 7 which is supported by a header 8. The membranes are typically encased in a support structure (not shown). In the embodiment shown, the headers 8 are coupled to a clover type manifold 9 which in turn is connected to an open ended elongate chamber 10 positioned below the manifold 9. The membrane module is typically immersed in a feed tank and either one or both ends of the membranes may be used for the permeate collection. The bottom of each membrane module 5 has a number of through apertures 11 in the pot 7 to distribute gas or a mixture of gas and liquid feed past the membrane surfaces.



FIG. 2 shows an embodiment where the chamber 10 is used to produce a liquid/gas bubble mixture by providing a source of gas 12 within the chamber 10 and flowing feed liquid through the chamber 10 to mix with a gas flow or gas bubbles produced from the gas source 12. In this embodiment the gas is fed from above through the clover manifold 9 as the membrane modules are typically suspended vertically in a feed tank, however, it will be appreciated that the gas may be provided to the chamber by any desired arrangement. The chamber 10 is open at its base 13 and liquid is flowed from a pipe 14 upwardly through the chamber 10 to mix with gas provided from a source 12 within the chamber 10. If necessary, a non-return valve (not shown) or the like may be attached to the gas source 12 to prevent the liquid phase entering the gas manifold.


The two fluids are mixed within the chamber 10 before being fed and uniformly distributed into the membrane modules 5 via the distribution apertures 11. The chamber 10 may be directly connected to a gas source 12 and/or liquid or as a capture and mixing device.


Referring to FIG. 3, the chamber is shown in its application as a device to capture gas and/or liquid flow injected beneath it at its base 13. The fluid flow energy is therefore concentrated in the chamber 10 before distribution into the membrane modules 5. In this arrangement the chamber 10 is again open-ended at its base 13 but gas or liquid is provided from a source, in this case a pipe 14, below the open end and the chamber is used to capture the upward flow of these fluids for communication to the distribution apertures 11.


A similar embodiment is shown in FIG. 4. In this embodiment, a venturi device 15 or the like is positioned at the base 13 of the chamber 10. The venturi device 15 intakes gas through inlet 16, mixes or entrains the gas with liquid flowing through feed inlet 17, forms gas bubbles and diffuses the liquid/gas mix into the chamber 10. The liquid/gas mixture passes upwardly from the chamber 10 into the lower header 8 and through the distribution apertures 11. Liquid feed is also drawn through the open end of the chamber 10 by liquid/gas flow from the venturi device 15. The entrained gas bubbles scrub membrane surfaces while travelling upwards along with the liquid flow. Either the liquid feed or the gas can be a continuous or intermittent injection depending on the system requirements. With a venturi device it is possible to create gas bubbles and aerate the system without a blower. The venturi device 15 can be a venturi tube, jet, nozzle, ejector, eductor, injector or the like.


Although the embodiments of FIGS. 3 and 4 are shown with an open-ended chamber 10, it will be appreciated that a closed chamber may be used with gas and liquid being directly injected into the chamber.


The liquid commonly used to entrain the gas is the feed water, wastewater or mixed liquor to be filtered. Pumping such an operating liquid through a venturi or the like creates a vacuum to suck the gas into the liquid, or reduces the gas discharge pressure when a blower is used. By providing the gas in a flow of the liquid, the possibility of blockage of the distribution apertures 11 is substantially reduced.


The arrangement shown in the embodiment of FIG. 5 also serves to reduce the likelihood of blockage of the distribution apertures 11 by large particles. In this arrangement gas, typically air, is injected into the clover manifold 9 and the chamber 10 is lengthwise dimensioned to be greater than that required to provide a static head, when the membrane is immersed in a liquid and gas introduced into the chamber 10, equivalent to the head loss for the gas to flow to said distribution apertures 11. As can be seen from the figure, as gas enters from above it forces the liquid within the chamber 10 downwards until the gas flowing through the distribution apertures 11 equalizes the pressure within the chamber 10 and forms a liquid seal 18 to prevent gas passing outward through the lower open end 13 of the chamber 10. Such an arrangement has been found to prevent large particles within the feed liquid flowing into and blocking the distribution apertures 11. These large particles usually remain within the chamber 10 and settle under gravity following which they can be removed during the usual drain down of the feed tank.



FIG. 6 shows a similar arrangement to FIG. 3 but with a single membrane module 5. Chamber 10 again captures gas or liquid/gas flow from source 12 and distributes the flow to apertures 11 in pot 7. The flow then passes upwardly between the membranes 6. In the embodiment shown filtrate is withdrawn from the upper header 19 and a screen 20 is provided between the headers to support the membranes 6.



FIG. 7 shows a further embodiment of the invention in which gas or liquid/gas flow from source 12 is deflected within chamber 10 by means of a deflector 30. The deflector may be, for instance, a T-piece or more particularly a baffle. The deflector preferably functions to prevent the flow 12 from interfering with the flow of air or liquid from source 14. In the particular embodiment shown, the liquid flow into the chamber from 14 is via a nozzle 15. The deflector is shown attached to, and positioned adjacent to, air source 12, however, it could be attached to, and positioned adjacent to nozzle 15. Alternatively, it could be not directly attached to either air or gas source, but disposed intermediate the two.


The use of a nozzle is generally preferred over the use of a sparger. The nozzle is any device which gradually reduces the cross sectional area of the throat through which the gas or liquid passes. Nozzles have been found particularly advantageous because they can achieve high fluid velocities with relatively low energy losses. This in turn results in better mixing.



FIG. 8 shows one particular form of deflector according to the present invention.



FIG. 9 shows a particular embodiment of the invention which is suitable for scrubbing a linear array of modules. A plurality of arrays are connected to a mixing chamber 10 of extended length. The gas manifold 12 is disposed below the mixing chamber, and the liquid source 14 is disposed below the gas manifold. A nozzle 15 is preferably used. The liquid and gas are mixed in or below the chamber and exit via apertures 11, scrubbing fibres 6 as they move upwards.


It will be appreciated that further embodiments and exemplifications of the invention are possible without departing from the spirit or scope of the invention described.

Claims
  • 1. A membrane filtration apparatus comprising: a plurality of membrane filtration modules, each membrane filtration module comprising: a plurality of porous membranes extending in an array, said plurality of porous membranes encased in a support structure and having lower ends mounted in a lower pot supported by a lower header and upper ends mounted in an upper pot supported by an upper header, said upper header configured to provide for permeate to be withdrawn from said upper ends of said plurality of porous membranes; anda plurality of distribution apertures defined in said lower pot, said distribution apertures configured to distribute a scrubbing fluid into said module and along a surface or surfaces of said membranes;a single manifold coupled to said lower header of each of said plurality of membrane filtration modules; anda single chamber positioned below, and connected to, said manifold, said chamber constructed and arranged to promote upward flow of feed liquid therethrough, said chamber comprising: an open base end in fluid communication with a source of feed liquid;a second end in fluid communication with said distribution apertures; anda single gas inlet constructed and arranged to introduce gas into said chamber in a downward direction from above the open base end, said gas fed from above and through said manifold and into said chamber, said gas inlet centered between at least two of said plurality of membrane filtration modules and configured to release gas into said chamber at a position vertically displaced below said at least two of said plurality of membrane filtration modules,said chamber configured to mix gas and liquid to produce said scrubbing fluid and further configured to distribute said scrubbing fluid to said distribution apertures.
  • 2. The membrane filtration apparatus according to claim 1 wherein the chamber is elongate.
  • 3. The membrane filtration apparatus according to claim 1 wherein the length of said chamber is greater than that required to provide a static head, when the membrane is immersed in a liquid and gas introduced into the chamber, equivalent to the head loss for the gas to flow to said distribution apertures.
  • 4. The membrane filtration apparatus according to claim 1 wherein the chamber is enclosed on all sides.
  • 5. The membrane filtration apparatus according to claim 1 wherein the chamber comprises a plurality of sides positioned to form a skirt directly beneath a header or plurality of headers.
  • 6. The membrane filtration apparatus according to claim 1 wherein said plurality of membrane filtration modules are arranged in the form of an extended linear array, and wherein the chamber has enclosed long sides.
  • 7. The membrane filtration apparatus according to claim 6 wherein the chamber has unenclosed short sides.
  • 8. An assembly of membrane modules comprising: a plurality of porous membranes extending in an array and having lower ends mounted in a plurality of lower pots supported by a plurality of respective lower headers, and upper ends mounted in a plurality of upper pots supported by a plurality of respective upper headers, said lower pots being configured to provide a number of distribution apertures therein for distributing a scrubbing fluid into said assembly of membrane modules and along a surface or surfaces of said membranes, said lower headers coupled to a manifold; anda chamber positioned below and connected to said manifold, said chamber constructed and arranged to promote upward flow of feed liquid therethrough, said chamber comprising: an open base end in fluid communication with a source of feed liquid;a second end in fluid communication with said distribution apertures; anda gas inlet constructed and arranged to introduce gas into said chamber in a downward direction from above the open base end, said gas fed from above and through said manifold,said chamber configured to mix gas and liquid to produce said scrubbing fluid and further configured to distribute said scrubbing fluid to said distribution apertures.
  • 9. The assembly of membrane modules according to claim 8 wherein the chamber is elongate.
  • 10. The assembly of membrane modules according to claim 8 wherein the length of said chamber is greater than that required to provide a static head, when the membrane is immersed in a liquid and gas introduced into the chamber, equivalent to the head loss for the gas to flow to said distribution apertures.
  • 11. The assembly of membrane modules according to claim 8 wherein the chamber is enclosed on all sides.
  • 12. The assembly of membrane modules according to claim 8 wherein the chamber comprises a plurality of sides positioned to form a skirt directly beneath a header or plurality of headers.
  • 13. The assembly of membrane modules according to claim 8 when arranged in the form of an extended linear array wherein the chamber has enclosed long sides.
  • 14. The assembly of membrane modules according to claim 8 in the form of an extended linear array wherein the chamber has unenclosed short sides.
  • 15. A membrane filtration apparatus comprising: a plurality of membrane filtration modules, each membrane filtration module comprising a plurality of porous membranes, said membranes being arranged in close proximity to one another and having lower ends mounted in a lower pot supported by a lower header and upper ends mounted in an upper pot supported by an upper header, said upper header configured to provide for permeate to be withdrawn from said upper ends of said porous membranes;a manifold coupled to said lower headers;an open-ended mixing chamber constructed and arranged to provide a cleaning mixture by mixing together liquid and gas bubbles, said chamber immersed in a feed tank and having an open base in fluid communication with a source of feed liquid, said chamber constructed and arranged to promote upward flow of feed liquid therethrough;a gas source positioned within the open-ended mixing chamber, the gas source constructed and arranged to introduce gas through a single gas inlet into the open-ended mixing chamber in a downward direction from above the open base, said gas fed from above and through said manifold and into said chamber, said single gas inlet centered within said plurality of membrane modules; andmeans for flowing said cleaning mixture along a surface of said membranes to dislodge fouling materials therefrom.
  • 16. A membrane bioreactor comprising: a plurality of membrane filtration modules, each membrane filtration module comprising a plurality of porous hollow membrane fibres extending longitudinally between and mounted between an upper and a lower potting head, said membrane fibres being arranged in close proximity to one another, said fibres being partitioned into a number of bundles at least at or adjacent to their respective potting head so as to form a space therebetween;a header in which the lower potting head is supported;a manifold coupled to the header;an open-ended mixing chamber positioned below the lower potting head, said chamber constructed and arranged to promote upward flow of feed liquid therethrough, said chamber having an open base in fluid communication with a source of feed liquid; anda gas inlet positioned within the open-ended mixing chamber, the gas inlet spaced from and surrounded by side walls of the open-ended mixing chamber and configured to feed gas into the open-ended mixing chamber from above and through said manifold,wherein at least one of said potting heads includes an array of openings formed therein in fluid communication with said chamber constructed and arranged to provide gas bubbles within said module such that, in use, said bubbles move past the surfaces of said membrane fibres to dislodge fouling materials therefrom.
  • 17. An assembly of membrane modules for use in a membrane bioreactor comprising: a plurality of porous hollow membrane fibres extending longitudinally between and mounted between an upper and a lower potting head, said membrane fibres being arranged in close proximity to one another, said fibres being partitioned into a number of bundles at least at or adjacent to their respective potting head so as to form a space therebetween;a header in which the lower potting head is supported;a manifold coupled to the header;an open-ended mixing chamber positioned below the lower potting head, said chamber constructed and arranged to promote upward flow of feed liquid therethrough, said chamber having an open base in fluid communication with a source of feed liquid; anda gas inlet positioned within the open-ended mixing chamber, the gas inlet spaced from and surrounded by side walls of the open-ended mixing chamber, and centrally located within the open-ended mixing chamber and configured to feed gas into the open-ended mixing chamber from above and through said manifold;wherein said potting heads are configured to provide a number of distribution apertures therebetween in fluid communication with said chamber for providing gas bubbles within said assembly of membrane modules such that, in use, said bubbles move past the surfaces of said membrane fibres to dislodge fouling materials therefrom.
  • 18. The assembly of membrane modules according to claim 17 wherein the liquid used is feed to the membrane module.
  • 19. The assembly of membrane modules according to claim 17 wherein the fibres within the module have a packing density of between about 5 to about 70%.
  • 20. The assembly of membrane modules according to claim 19 wherein the packing density is between about 8 to about 55%.
  • 21. The assembly of membrane modules according to claim 17 wherein said holes have a diameter in the range of about 1 to 40 mm.
  • 22. The assembly of membrane modules according to claim 21 wherein said holes have a diameter in the range of about 1.5 to about 25 mm.
  • 23. The assembly of membrane modules according to claim 17 comprising a deflector within said mixing chamber configured to deflect gas away from the source of the liquid.
  • 24. The assembly of membrane modules according to claim 17 including a nozzle whereby liquid is introduced into the mixing chamber.
  • 25. A membrane bioreactor comprising a tank having means for the introduction of feed thereto, means for forming activated sludge within said tank, a membrane module or an assembly according to claim 17 positioned within said tank so as to be immersed in said sludge and said membrane module provided with means for withdrawing filtrate from at least one end of said fibre membranes.
  • 26. A method of operating a membrane bioreactor of the type according to claim 25, comprising introducing feed to said tank, applying a vacuum to said fibres to withdraw filtrate therefrom while periodically or continuously supplying a cleaning mixture of gas bubbles and liquid formed in a mixing chamber through said openings to within said module such that, in use, said cleaning mixtures flows along the surface of said membrane fibres to dislodge fouling materials therefrom.
  • 27. A membrane bioreactor according to claim 25 wherein a further source of aeration is provided within the tank to assist microorganism activity.
  • 28. A membrane bioreactor according to claim 27 wherein the membrane module is suspended vertically within the tank and said further source of aeration is provided beneath the suspended module.
  • 29. A membrane bioreactor according to claim 28 wherein the further source of aeration comprises a group of air permeable tube.
  • 30. The membrane filtration apparatus of claim 1 wherein said gas inlet is fluidly connected to a source of gas within said chamber.
  • 31. The membrane filtration apparatus of claim 30 wherein said source of gas is coupled to a gas line which runs through said header.
  • 32. The assembly of membrane modules of claim 8 wherein said gas inlet runs through said header.
Priority Claims (1)
Number Date Country Kind
2002953111 Dec 2002 AU national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/AU03/01632 12/5/2003 WO 00 6/6/2005
Publishing Document Publishing Date Country Kind
WO2004/050221 6/17/2004 WO A
US Referenced Citations (412)
Number Name Date Kind
256008 Leak Apr 1882 A
285321 Tams Sep 1883 A
1997074 Novotny Apr 1935 A
2080783 Petersen May 1937 A
2105700 Ramage Jan 1938 A
2843038 Manspeaker Jul 1958 A
2926086 Chenicek et al. Feb 1960 A
3183191 Hach May 1965 A
3198636 Bouthilet Aug 1965 A
3228876 Mahon Jan 1966 A
3442002 Geary et al. May 1969 A
3462362 Kollsman Aug 1969 A
3492698 Geary et al. Feb 1970 A
3556305 Shorr Jan 1971 A
3728256 Cooper Apr 1971 A
3591010 Pall Jul 1971 A
3625827 Wildi et al. Dec 1971 A
3654147 Levin et al. Apr 1972 A
3693406 Tobin, III Sep 1972 A
3700561 Ziffer Oct 1972 A
3708071 Crowley Jan 1973 A
3763055 White et al. Oct 1973 A
3791631 Meyer Feb 1974 A
3804258 Okuniewski et al. Apr 1974 A
3843809 Luck Oct 1974 A
3876738 Marinaccio et al. Apr 1975 A
3955998 Clampitt et al. May 1976 A
3968192 Hoffman, III et al. Jul 1976 A
3992301 Shippey et al. Nov 1976 A
3993816 Baudet et al. Nov 1976 A
4049765 Yamazaki Sep 1977 A
4076656 White et al. Feb 1978 A
4082683 Galesloot Apr 1978 A
4105731 Yamazaki Aug 1978 A
4107043 McKinney Aug 1978 A
4138460 Tigner Feb 1979 A
4183890 Bollinger Jan 1980 A
4188817 Steigelmann Feb 1980 A
4190411 Fujimoto Feb 1980 A
4192750 Elfes et al. Mar 1980 A
4193780 Cotton, Jr. et al. Mar 1980 A
4203848 Grandine, II May 1980 A
4204961 Cusato, Jr. May 1980 A
4218324 Hartmann et al. Aug 1980 A
4226921 Tsang Oct 1980 A
4227295 Bodnar et al. Oct 1980 A
4230583 Chiolle et al. Oct 1980 A
4247498 Castro Jan 1981 A
4248648 Kopp Feb 1981 A
4253936 Leysen et al. Mar 1981 A
4271026 Chen et al. Jun 1981 A
4302336 Kawaguchi et al. Nov 1981 A
4340479 Pall Jul 1982 A
4350592 Kronsbein Sep 1982 A
4353802 Hara et al. Oct 1982 A
4359359 Gerlach et al. Nov 1982 A
4369605 Opersteny et al. Jan 1983 A
4384474 Kowalski May 1983 A
4385150 Miyake et al. May 1983 A
4388189 Kawaguchi et al. Jun 1983 A
4389363 Molthop Jun 1983 A
4407975 Yamaguchi Oct 1983 A
4414113 LaTerra Nov 1983 A
4414172 Leason Nov 1983 A
4431545 Pall et al. Feb 1984 A
4451369 Sekino et al. May 1984 A
4476112 Aversano Oct 1984 A
4491522 Ishida et al. Jan 1985 A
4496470 Kapiloff et al. Jan 1985 A
4511471 Müller Apr 1985 A
4519909 Castro May 1985 A
4540490 Shibata et al. Sep 1985 A
4547289 Okano et al. Oct 1985 A
4609465 Miller Sep 1986 A
4610789 Barch Sep 1986 A
4614109 Hofmann Sep 1986 A
4623670 Mutoh et al. Nov 1986 A
4629563 Wrasidlo Dec 1986 A
4632745 Giuffrida et al. Dec 1986 A
4636296 Kunz Jan 1987 A
4642182 Drori Feb 1987 A
4647377 Miura Mar 1987 A
4650586 Ellis, III Mar 1987 A
4650596 Schlueter et al. Mar 1987 A
4656865 Callan Apr 1987 A
4660411 Reid Apr 1987 A
4666543 Kawano May 1987 A
4670145 Edwards Jun 1987 A
4673507 Brown Jun 1987 A
4687561 Kunz Aug 1987 A
4687578 Stookey Aug 1987 A
4688511 Gerlach et al. Aug 1987 A
4689191 Beck et al. Aug 1987 A
4702836 Mutoh et al. Oct 1987 A
4702840 Degen et al. Oct 1987 A
4707266 Degen et al. Nov 1987 A
4708799 Gerlach et al. Nov 1987 A
4718270 Storr Jan 1988 A
4744240 Reichelt May 1988 A
4749487 Lefebvre Jun 1988 A
4756875 Tajima et al. Jul 1988 A
4763612 Iwanami Aug 1988 A
4767539 Ford Aug 1988 A
4774132 Joffee et al. Sep 1988 A
4775471 Nagai et al. Oct 1988 A
4779448 Gogins Oct 1988 A
4781831 Goldsmith Nov 1988 A
4784771 Wathen et al. Nov 1988 A
4793932 Ford et al. Dec 1988 A
4797187 Davis et al. Jan 1989 A
4797211 Ehrfeld et al. Jan 1989 A
4810384 Fabre Mar 1989 A
4812235 Seleman et al. Mar 1989 A
4816160 Ford et al. Mar 1989 A
4824563 Iwahori et al. Apr 1989 A
4834998 Shrikhande May 1989 A
4839048 Reed et al. Jun 1989 A
4840227 Schmidt Jun 1989 A
4846970 Bertelsen et al. Jul 1989 A
4867883 Daigger et al. Sep 1989 A
4876006 Ohkubo et al. Oct 1989 A
4876012 Kopp et al. Oct 1989 A
4886601 Iwatsuka et al. Dec 1989 A
4888115 Marinaccio et al. Dec 1989 A
4904426 Lundgard et al. Feb 1990 A
4919815 Copa et al. Apr 1990 A
4921610 Ford et al. May 1990 A
4931186 Ford et al. Jun 1990 A
4933084 Bandel et al. Jun 1990 A
4935143 Kopp et al. Jun 1990 A
4963304 Im et al. Oct 1990 A
4968430 Hildenbrand et al. Nov 1990 A
4968733 Muller et al. Nov 1990 A
4969997 Klüver et al. Nov 1990 A
4988444 Applegate et al. Jan 1991 A
4999038 Lundberg Mar 1991 A
5005430 Kibler et al. Apr 1991 A
5015275 Beck et al. May 1991 A
5024762 Ford et al. Jun 1991 A
5034125 Karbachsch et al. Jul 1991 A
5043113 Kafchinski et al. Aug 1991 A
5059317 Marius et al. Oct 1991 A
5066375 Parsi et al. Nov 1991 A
5066401 Müller et al. Nov 1991 A
5066402 Anselme et al. Nov 1991 A
5069065 Sprunt et al. Dec 1991 A
5075065 Effenberger et al. Dec 1991 A
5076925 Roesink et al. Dec 1991 A
5079272 Allegrezza et al. Jan 1992 A
5094750 Kopp et al. Mar 1992 A
5094867 Detering et al. Mar 1992 A
5098567 Nishiguchi Mar 1992 A
5104535 Cote et al. Apr 1992 A
5104546 Filson et al. Apr 1992 A
H1045 Wilson May 1992 H
5135663 Newberth, III et al. Aug 1992 A
5137631 Eckman et al. Aug 1992 A
5138870 Lyssy Aug 1992 A
5147553 Waite Sep 1992 A
5151191 Sunaoka et al. Sep 1992 A
5151193 Grobe et al. Sep 1992 A
5158721 Allegrezza, Jr. et al. Oct 1992 A
5169528 Karbachsch et al. Dec 1992 A
5182019 Cote et al. Jan 1993 A
5192442 Piccirillo et al. Mar 1993 A
5192456 Ishida et al. Mar 1993 A
5192478 Caskey Mar 1993 A
5194149 Selbie et al. Mar 1993 A
5198116 Comstock et al. Mar 1993 A
5198162 Park et al. Mar 1993 A
5209852 Sunaoka et al. May 1993 A
5211823 Giuffrida et al. May 1993 A
5221478 Dhingra et al. Jun 1993 A
5227063 Langerak et al. Jul 1993 A
5248424 Cote et al. Sep 1993 A
5262054 Wheeler Nov 1993 A
5271830 Faivre et al. Dec 1993 A
5275766 Gadkaree et al. Jan 1994 A
5286324 Kawai et al. Feb 1994 A
5290457 Karbachsch et al. Mar 1994 A
5297420 Gilliland et al. Mar 1994 A
5316671 Murphy May 1994 A
5320760 Freund et al. Jun 1994 A
5353630 Soda et al. Oct 1994 A
5358732 Seifter et al. Oct 1994 A
5361625 Ylvisaker Nov 1994 A
5364527 Zimmermann et al. Nov 1994 A
5364529 Morin et al. Nov 1994 A
5374353 Murphy Dec 1994 A
5389260 Hemp et al. Feb 1995 A
5393433 Espenan et al. Feb 1995 A
5396019 Sartori et al. Mar 1995 A
5401401 Hickok et al. Mar 1995 A
5401405 McDougald Mar 1995 A
5403479 Smith et al. Apr 1995 A
5405528 Selbie et al. Apr 1995 A
5411663 Johnson May 1995 A
5417101 Weich May 1995 A
5419816 Sampson et al. May 1995 A
5451317 Ishida et al. Sep 1995 A
5468397 Barboza et al. Nov 1995 A
5470469 Eckman Nov 1995 A
5477731 Mouton Dec 1995 A
5479590 Lin Dec 1995 A
5480553 Yamamori et al. Jan 1996 A
5482625 Shimizu et al. Jan 1996 A
5484528 Yagi et al. Jan 1996 A
5490939 Gerigk et al. Feb 1996 A
5491023 Tsai et al. Feb 1996 A
5501798 Al-Samadi et al. Mar 1996 A
5525220 Yagi et al. Jun 1996 A
5531848 Brinda et al. Jul 1996 A
5531900 Raghavan et al. Jul 1996 A
5543002 Brinda et al. Aug 1996 A
5552047 Oshida et al. Sep 1996 A
5554283 Brinda et al. Sep 1996 A
5556591 Jallerat et al. Sep 1996 A
5575963 Soffer et al. Nov 1996 A
5597732 Bryan-Brown Jan 1997 A
5607593 Cote et al. Mar 1997 A
5639373 Mahendran et al. Jun 1997 A
5643455 Kopp et al. Jul 1997 A
5647988 Kawanishi et al. Jul 1997 A
5670053 Collentro et al. Sep 1997 A
5677360 Yamamori et al. Oct 1997 A
5688460 Ruschke Nov 1997 A
5733456 Okey et al. Mar 1998 A
5744037 Fujimura et al. Apr 1998 A
5747605 Breant et al. May 1998 A
5766479 Collentro et al. Jun 1998 A
5783083 Henshaw et al. Jul 1998 A
5843069 Butler et al. Dec 1998 A
5846424 Khudenko Dec 1998 A
5888401 Nguyen Mar 1999 A
5895570 Liang Apr 1999 A
5906739 Osterland et al. May 1999 A
5906742 Wang et al. May 1999 A
5910250 Mahendran et al. Jun 1999 A
5914039 Mahendran et al. Jun 1999 A
5918264 Drummond et al. Jun 1999 A
5942113 Morimura Aug 1999 A
5944997 Pedersen et al. Aug 1999 A
5951878 Astrom Sep 1999 A
5958243 Lawrence et al. Sep 1999 A
5968357 Doelle et al. Oct 1999 A
5988400 Karachevtcev et al. Nov 1999 A
5997745 Tonelli et al. Dec 1999 A
6017451 Kopf Jan 2000 A
6024872 Mahendran Feb 2000 A
6036030 Stone et al. Mar 2000 A
6039872 Wu et al. Mar 2000 A
6042677 Mahendran et al. Mar 2000 A
6045698 Cöté et al. Apr 2000 A
6045899 Wang et al. Apr 2000 A
6048454 Jenkins Apr 2000 A
6048455 Janik Apr 2000 A
6066401 Stilburn May 2000 A
6074718 Puglia et al. Jun 2000 A
6077435 Beck et al. Jun 2000 A
6083393 Wu et al. Jul 2000 A
6096213 Radovanovic et al. Aug 2000 A
6113782 Leonard Sep 2000 A
6120688 Daly et al. Sep 2000 A
6126819 Heine et al. Oct 2000 A
6146747 Wang et al. Nov 2000 A
6149817 Peterson et al. Nov 2000 A
6156200 Zha et al. Dec 2000 A
6159373 Beck et al. Dec 2000 A
6193890 Pedersen et al. Feb 2001 B1
6202475 Selbie et al. Mar 2001 B1
6214231 Cote et al. Apr 2001 B1
6214232 Baurmeister et al. Apr 2001 B1
6221247 Nemser et al. Apr 2001 B1
6245239 Cote et al. Jun 2001 B1
6254773 Biltoft Jul 2001 B1
6264839 Mohr et al. Jul 2001 B1
6277512 Hamrock et al. Aug 2001 B1
6280626 Miyashita et al. Aug 2001 B1
6284135 Ookata Sep 2001 B1
6290756 Macheras et al. Sep 2001 B1
6294039 Mahendran et al. Sep 2001 B1
6299773 Takamura et al. Oct 2001 B1
6303026 Lindbo Oct 2001 B1
6303035 Cote et al. Oct 2001 B1
6315895 Summerton et al. Nov 2001 B1
6322703 Taniguchi et al. Nov 2001 B1
6325928 Pedersen et al. Dec 2001 B1
6337018 Mickols Jan 2002 B1
RE37549 Mahendran et al. Feb 2002 E
6354444 Mahendran Mar 2002 B1
6361695 Husain et al. Mar 2002 B1
6368819 Gaddy et al. Apr 2002 B1
6375848 Cote et al. Apr 2002 B1
6387189 Gröschl et al. May 2002 B1
6402955 Ookata Jun 2002 B2
6406629 Husain et al. Jun 2002 B1
6423214 Lindbo Jul 2002 B1
6423784 Hamrock et al. Jul 2002 B1
6432310 Andou et al. Aug 2002 B1
6440303 Spriegel Aug 2002 B2
D462699 Johnson et al. Sep 2002 S
6444124 Onyeche et al. Sep 2002 B1
6468430 Kimura et al. Oct 2002 B1
6485645 Husain et al. Nov 2002 B1
6495041 Taniguchi et al. Dec 2002 B2
6524481 Zha et al. Feb 2003 B2
6524733 Nonobe Feb 2003 B1
6550747 Rabie et al. Apr 2003 B2
6555005 Zha et al. Apr 2003 B1
6576136 De Moel et al. Jun 2003 B1
D478913 Johnson et al. Aug 2003 S
6620319 Behmann et al. Sep 2003 B2
6627082 Del Vecchio Sep 2003 B2
6635179 Summerton et al. Oct 2003 B1
6641733 Zha et al. Nov 2003 B2
6645374 Cote et al. Nov 2003 B2
6656356 Gungerich et al. Dec 2003 B2
6682652 Mahendran et al. Jan 2004 B2
6685832 Mahendran et al. Feb 2004 B2
6696465 Dellaria et al. Feb 2004 B2
6702561 Stillig et al. Mar 2004 B2
6706189 Rabie et al. Mar 2004 B2
6708957 Cote et al. Mar 2004 B2
6721529 Chen et al. Apr 2004 B2
6723758 Stone et al. Apr 2004 B2
6727305 Pavez Aranguiz Apr 2004 B1
6743362 Porteous et al. Jun 2004 B1
6758972 Vriens et al. Jul 2004 B2
6770202 Kidd et al. Aug 2004 B1
6780466 Grangeon et al. Aug 2004 B2
6783008 Zha et al. Aug 2004 B2
6790912 Blong Sep 2004 B2
6805806 Arnaud Oct 2004 B2
6811696 Wang et al. Nov 2004 B2
6814861 Husain et al. Nov 2004 B2
6821420 Zha et al. Nov 2004 B2
6841070 Zha et al. Jan 2005 B2
6861466 Dadalas et al. Mar 2005 B2
6863817 Liu et al. Mar 2005 B2
6863823 Côté Mar 2005 B2
6869534 McDowell et al. Mar 2005 B2
6872305 Johnson et al. Mar 2005 B2
6881343 Rabie et al. Apr 2005 B2
6884350 Muller Apr 2005 B2
6884375 Wang et al. Apr 2005 B2
6890435 Ji et al. May 2005 B2
6890645 Disse et al. May 2005 B2
6893568 Janson et al. May 2005 B1
6899812 Cote et al. May 2005 B2
6946073 Daigger et al. Sep 2005 B2
6952258 Ebert et al. Oct 2005 B2
6955762 Gallagher et al. Oct 2005 B2
6962258 Zha et al. Nov 2005 B2
6964741 Mahendran et al. Nov 2005 B2
6969465 Zha et al. Nov 2005 B2
6974554 Cox et al. Dec 2005 B2
6994867 Hossainy et al. Feb 2006 B1
7005100 Lowel Feb 2006 B2
7018530 Pollock Mar 2006 B2
7018533 Johnson et al. Mar 2006 B2
7041728 Zipplies et al. May 2006 B2
7052610 Janson et al. May 2006 B2
7083733 Freydina et al. Aug 2006 B2
7147778 DiMassimo et al. Dec 2006 B1
7160455 Taniguchi et al. Jan 2007 B2
7160463 Beck et al. Jan 2007 B2
7172701 Gaid et al. Feb 2007 B2
7223340 Zha et al. May 2007 B2
7226541 Muller et al. Jun 2007 B2
7247238 Mullette et al. Jul 2007 B2
7264716 Johnson et al. Sep 2007 B2
7300022 Muller Nov 2007 B2
20010047962 Zha et al. Dec 2001 A1
20020070157 Yamada Jun 2002 A1
20020148767 Johnson et al. Oct 2002 A1
20020153313 Cote Oct 2002 A1
20020189999 Espenan et al. Dec 2002 A1
20030038080 Vriens et al. Feb 2003 A1
20030057155 Husain et al. Mar 2003 A1
20030127388 Ando et al. Jul 2003 A1
20030146153 Cote et al. Aug 2003 A1
20030150807 Bartels et al. Aug 2003 A1
20030178365 Zha et al. Sep 2003 A1
20030226797 Phelps Dec 2003 A1
20040007525 Rabie et al. Jan 2004 A1
20040035770 Edwards et al. Feb 2004 A1
20040084369 Zha et al. May 2004 A1
20040145076 Zha et al. Jul 2004 A1
20040168979 Zha et al. Sep 2004 A1
20040178154 Zha et al. Sep 2004 A1
20040217053 Zha et al. Nov 2004 A1
20040232076 Zha et al. Nov 2004 A1
20050006308 Cote et al. Jan 2005 A1
20050029185 Muller Feb 2005 A1
20050029186 Muller Feb 2005 A1
20050032982 Muller et al. Feb 2005 A1
20050103722 Freydina et al. May 2005 A1
20050115880 Pollock Jun 2005 A1
20050115899 Liu et al. Jun 2005 A1
20050139538 Lazaredes Jun 2005 A1
20050194310 Yamamoto et al. Sep 2005 A1
20050194315 Adams et al. Sep 2005 A1
20060000775 Zha et al. Jan 2006 A1
20060131234 Zha et al. Jun 2006 A1
20060201876 Jordan Sep 2006 A1
20060261007 Zha et al. Nov 2006 A1
20060273038 Syed et al. Dec 2006 A1
20070007214 Zha et al. Jan 2007 A1
20070056905 Beck et al. Mar 2007 A1
20070075021 Johnson Apr 2007 A1
20070108125 Cho et al. May 2007 A1
20070227973 Zha et al. Oct 2007 A1
Foreign Referenced Citations (195)
Number Date Country
3440084 Sep 1983 AU
5584786 Mar 1985 AU
7706687 Jul 1986 AU
1050770 Jan 1995 CN
3904544 Aug 1990 DE
4117281 Jan 1992 DE
4113420 Oct 1992 DE
4117422 Nov 1992 DE
29804927 Jun 1998 DE
29906389 Jun 1999 DE
012557 Feb 1983 EP
126714 Nov 1984 EP
050447 Oct 1985 EP
250337 Dec 1987 EP
327025 Aug 1989 EP
090383 May 1990 EP
407900 Jan 1991 EP
463627 Jan 1992 EP
492942 Jul 1992 EP
518250 Dec 1992 EP
547575 Jun 1993 EP
395133 Feb 1995 EP
0662341 Jul 1995 EP
492446 Nov 1995 EP
430082 Jun 1996 EP
734758 Oct 1996 EP
763758 Mar 1997 EP
824956 Feb 1998 EP
855214 Jul 1998 EP
627255 Jan 1999 EP
911073 Apr 1999 EP
920904 Jun 1999 EP
1034835 Sep 2000 EP
1052012 Nov 2000 EP
1349644 Oct 2003 EP
1350555 Oct 2003 EP
1236503 Aug 2004 EP
2620712 Mar 1989 FR
2674448 Oct 1992 FR
2699424 Jun 1994 FR
702911 Jan 1954 GB
2253572 Sep 1992 GB
54-162684 Dec 1979 JP
55-129155 Jun 1980 JP
55-099703 Jul 1980 JP
55-129107 Oct 1980 JP
56-021604 Feb 1981 JP
56-118701 Sep 1981 JP
56-121685 Sep 1981 JP
58-088007 May 1983 JP
60-019002 Jan 1985 JP
60-206412 Oct 1985 JP
61-097005 May 1986 JP
61-097006 May 1986 JP
61-107905 May 1986 JP
61-167406 Jul 1986 JP
61-167407 Jul 1986 JP
61-171504 Aug 1986 JP
61-192309 Aug 1986 JP
61-222510 Oct 1986 JP
61-242607 Oct 1986 JP
61-249505 Nov 1986 JP
61-257203 Nov 1986 JP
61-263605 Nov 1986 JP
61-291007 Dec 1986 JP
61-293504 Dec 1986 JP
62-004408 Jan 1987 JP
62-114609 May 1987 JP
62-140607 Jun 1987 JP
62-144708 Jun 1987 JP
62-163708 Jul 1987 JP
62-179540 Aug 1987 JP
62-250908 Oct 1987 JP
63-097634 Apr 1988 JP
63-143905 Jun 1988 JP
63-171607 Jul 1988 JP
63-180254 Jul 1988 JP
S63-38884 Oct 1988 JP
01-151906 Jun 1989 JP
01-307409 Dec 1989 JP
02-026625 Jan 1990 JP
02-031200 Feb 1990 JP
02-107318 Apr 1990 JP
02-126922 May 1990 JP
02-144132 Jun 1990 JP
02-164423 Jun 1990 JP
02-277528 Nov 1990 JP
02-284035 Nov 1990 JP
03-018373 Jan 1991 JP
03-028797 Feb 1991 JP
03-110445 May 1991 JP
04-187224 Jul 1992 JP
04-250898 Sep 1992 JP
04-256424 Sep 1992 JP
04-265128 Sep 1992 JP
04-293527 Oct 1992 JP
04-310223 Nov 1992 JP
04334530 Nov 1992 JP
04-348252 Dec 1992 JP
05-023557 Feb 1993 JP
05-096136 Apr 1993 JP
05-137977 Jun 1993 JP
05-157654 Jun 1993 JP
05-285348 Nov 1993 JP
06-071120 Mar 1994 JP
06-114240 Apr 1994 JP
06-218237 Aug 1994 JP
06-277469 Oct 1994 JP
06-285496 Oct 1994 JP
06-343837 Dec 1994 JP
07-024272 Jan 1995 JP
07000770 Jan 1995 JP
07-068139 Mar 1995 JP
07-136470 May 1995 JP
07-136471 May 1995 JP
07-155758 Jun 1995 JP
07-178323 Jul 1995 JP
07-185268 Jul 1995 JP
07-185271 Jul 1995 JP
07-236819 Sep 1995 JP
07-251043 Oct 1995 JP
07-275665 Oct 1995 JP
07-289860 Nov 1995 JP
07-303895 Nov 1995 JP
08-010585 Jan 1996 JP
9072993 Mar 1997 JP
09-099227 Apr 1997 JP
09-141063 Jun 1997 JP
09-187628 Jul 1997 JP
09-220569 Aug 1997 JP
09-271641 Oct 1997 JP
09-324067 Dec 1997 JP
10-033955 Feb 1998 JP
10-048466 Feb 1998 JP
10085565 Apr 1998 JP
10-156149 Jun 1998 JP
11-028467 Feb 1999 JP
11-156166 Jun 1999 JP
11-165200 Jun 1999 JP
11-333265 Jul 1999 JP
11-033365 Sep 1999 JP
11-319507 Nov 1999 JP
2000-070684 Mar 2000 JP
2000-185220 Apr 2000 JP
2000-157850 Jun 2000 JP
2000-317276 Nov 2000 JP
2001-009246 Jan 2001 JP
2001-070967 Mar 2001 JP
2001-079367 Mar 2001 JP
2001-104760 Apr 2001 JP
2001-190937 Jul 2001 JP
2001-190938 Jul 2001 JP
2001-205055 Jul 2001 JP
2000-342932 Dec 2002 JP
2003-047830 Feb 2003 JP
2003-062436 Mar 2003 JP
2003-135935 May 2003 JP
2002-0090967 Dec 2002 KR
1020491 Oct 2003 NL
1021197 Oct 2003 NL
347343 Dec 1998 TW
WO 88-06200 Aug 1988 WO
WO 89-00880 Feb 1989 WO
WO 90-00434 Jan 1990 WO
WO 91-04783 Apr 1991 WO
WO 91-16124 Oct 1991 WO
WO 93-02779 Feb 1993 WO
WO 93-15827 Aug 1993 WO
WO 93-23152 Nov 1993 WO
WO 94-11094 May 1994 WO
WO 95-34424 Dec 1995 WO
WO 96-07470 Mar 1996 WO
WO 96-28236 Sep 1996 WO
WO 96-41676 Dec 1996 WO
WO 97-06880 Feb 1997 WO
WO 98-22204 May 1998 WO
WO 98-25694 Jun 1998 WO
WO 9828066 Jul 1998 WO
WO 98-53902 Dec 1998 WO
WO 99-01207 Jan 1999 WO
WO 99-59707 Nov 1999 WO
WO 0018498 Apr 2000 WO
WO 00-30742 Jun 2000 WO
WO 01-00307 Jan 2001 WO
WO 01-32299 May 2001 WO
WO 01-36075 May 2001 WO
WO 01-45829 Jun 2001 WO
WO 02-40140 May 2002 WO
WO 03-000389 Jan 2003 WO
WO 03-013706 Feb 2003 WO
WO 2004-101120 Nov 2004 WO
WO 2005-021140 Mar 2005 WO
WO 2005-037414 Apr 2005 WO
WO 2005-077499 Aug 2005 WO
WO 2006-029456 Mar 2006 WO
Non-Patent Literature Citations (27)
Entry
U.S. Appl. No. 60/278,007, Specification, Mar. 23, 2001.
U.S. Appl. No. 60/278,007, Drawings, Mar. 23, 2001.
International Search Report dated Jan. 30, 2004 for PCT/AU2003/001632.
Supplementary European Search Report (EP03767293) dated Nov. 24, 2005.
Almulla et al., Desalination, 153 (2002), pp. 237-243.
Anonymous, “Nonwoven Constructions of Dyneon™ THV and Dyneon™ THE Fluorothermoplastics”, Research Disclosure Journal, Apr. 1999, RD 420013, 2 pages.
Cote et al., Wat. Sci. Tech. 38(4-5) (1998), pp. 437-442.
Cote, et al. “A New Immersed Membrane for Pretreatment to Reverse Osmosis” Desalination 139 (2001) 229-236.
Crawford et al., “Procurement of Membrane Equipment: Differences Between Water Treatment and Membrane Bioreactor (MBR) Applications” (2003).
Davis et al., Membrane Technology Conference, “Membrane Bioreactor Evaluation for Water Reuse in Seattle, Washington” (2003).
DeCarolis et al., Membrane Technology Conference, “Optimization of Various MBR Systems for Water Reclamation” (2003).
Dow Chemicals Company, “Filmtec Membranes—Cleaning Procedures for Filmtec FT30 Elements,” Tech Facts, Online, Jun. 30, 2000, XP002237568.
Husain, H. et al., “The ZENON experience with membrane bioreactors for municipal wastewater treatment,” MBR2: Membr. Bioreact. Wastewater Treat., 2nd Intl. Meeting; School of Water Sciences, Cranfield University, Cranfield, UK, Jun. 1999.
Johnson, “Recent Advances in Microfiltration for Drinking Water Treatment,” AWWA Annual Conference, Jun. 20-24, 1999, Chicago, Illinois, entire publication.
Recent Advances in Microfiltration for Drinking Water Treatment; An Introduction to CMF-S, Presentation.
Kaiya et al., “Water Purification Using Hollow Fiber Microfiltration Membranes,” 6th World Filtration Congress, Nagoya, 1993, pp. 813-816.
Lloyd D.R. et al. “Microporous Membrane Formation Via Thermally Induced Phase Separation-Solid-Liquid Phase Separation” Journal of Membrane Science, (Sep. 15, 1990), pp. 239-261, vol. 52, No. 3, Elsevier Scientific Publishing Company, Amsterdam, NL.
Lozier et al., “Demonstration Testing of ZenoGem and Reverse Osmosis for Indirect Potable Reuse Final Technical Report,” published by CH2M Hill, available from the National Technical Information Service, Operations Division, Jan. 2000, entire publication.
MicroC™—Carbon Source for Wastewater Denitrification. Information from Environmental Operating Solutions website including MSDS.
Nakayama, “Introduction to Fluid Mechanics,” Butterworth-Heinemann, Oxford, UK, 2000.
Ramaswammy S. et al. “Fabrication of Ply (ECTFE) Membranes via thermally induced phase Separation”, Journal of Membrane Science, (Dec. 1, 2002), pp. 175-180, vol. 210 No. I, Scientific Publishing Company, Amsterdam, NL.
Rosenberger et al., Desalination, 151 (2002), pp. 195-200.
Ueda et al., “Effects of Aeration on Suction Pressure in a Submerged Membrane Bioreactor,” Wat. Res. vol. 31, No. 3, 1997, pp. 489-494.
Water Encyclopedia, edited by Jay Lehr, published by John Wiley & Sons, Inc., Hoboken, New Jersey, 2005. Available at http://wwwmmrw.interscience.wiley.com/eow/.
White et al., The Chemical Engineering Journal, 52 (1993), pp. 73-77.
Wikipedia, “Seawater,” available at http://en.wikipedia.org/wiki/Seawater, Jul. 15, 2007.
Zenon, “Proposal for ZeeWeed® Membrane Filtration Equipment System for the City of Westminster, Colorado, Proposal No. 479-99,” Mar. 2000, entire publication.
Related Publications (1)
Number Date Country
20070007214 A1 Jan 2007 US