The present application relates generally to commercial mixers utilized for mixing food products such as dough, and more particularly to a commercial mixer and associated control and diagnostic system.
It is known in existing commercial mixers to provide multiple speed settings for the mixers. The various available mixing speeds are primarily driven by a motor through combinations of gears and/or belts and/or variable adjustable pulleys, where mechanical adjustments are made to change mix speeds. Many such devices require that the mixer be stopped in order to change speeds.
U.S. Pat. No. 7,207,711 is representative of a mixer that does not utilize mechanical adjustment of any drive linkage or gear system to change speeds, but instead simply adjusted the output speed of, for example, an AC induction motor. Even with the advantages provided by such a mixing machine drive and control arrangement, due to the relatively harsh operating conditions for such machines, service/repair issues regularly arise. In today's environment, such service/repair issues are handled on a reactive basis, which in some cases can result in undesirable down time for the mixing machine.
It would be desirable to provide a mixing machine that enables proactive service/repair and/or more effective service/repair to reduce any mixing machine down time.
In one aspect, a mixing machine includes a control system with a drive for operating the motor, a plurality of sensors for detecting respective conditions of mixing machine, and a diagnostic control operable to track outputs from the sensors over time, analyze the outputs and produce an alert upon detection of a characteristic indicative of a need for service or repair.
In another aspect, a mixing machine includes a head extending over a bowl receiving location, the head including a downwardly extending rotatable output shaft for receiving a mixer tool, the head including a gear system therewithin for effecting rotation of the rotatable output shaft about its axis and orbiting of the shaft axis about another axis. A motor includes an output operatively connected to drive the gear system. A control system includes a drive for operating the motor, a plurality of sensors, each sensor located for detecting a respective condition of mixing machine, and a diagnostic control operable to (i) track outputs from the plurality of sensors over time, (ii) analyze such tracked outputs and (iii) produce an alert indication based upon the diagnostic control identifying a performance characteristic indicative of a need for service or repair of the mixing machine.
In a further aspect, a mixing machine includes a head extending over a bowl receiving location, the head including a downwardly extending rotatable output shaft for receiving a mixer tool, the head including a planetary system therewithin for effecting rotation of the rotatable output shaft about its axis and orbiting of the shaft axis about another axis. A motor includes an output operatively connected to drive the planetary system. A control system includes a plurality of sensors, each sensor located for detecting a respective condition of mixing machine, and a diagnostic control operable to (i) track outputs from the plurality of sensors over time, (ii) analyze the tracked outputs and (iii) produce an alert indication based upon the diagnostic control identifying a performance characteristic indicative of a need for service or repair of the mixing machine.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Referring to
An exemplary mix position of a bowl 50 is shown schematically in
The mixing machine also includes a user interface 60 with manual user controls (e.g., physically movable buttons, knobs and/or switches) and/or electronic user input controls (e.g., a touch-screen interface), with an associated processor-based controller (e.g., control board(s)) 100. The user interface 60 may have one or more display fields or screens 62 (
The mixing machine control system may include a drive 70 for operating the motor 26 (e.g., a simple drive in the case of a single speed motor or a more dynamic drive, such as a variable frequency drive (VFD), in the case of a variable speed motor).
The mixing machine includes a plurality of sensors for detecting various operating conditions of mixing machine. For example, a set of temperatures sensors 72 (e.g., a controller/VFD heat sink temperature sensor 72A, a motor stator temperature sensor 72B and/or a transmission case temperature sensor 72C), power consumption sensors 74 (e.g., a voltage sensor 74A, a current sensor 74B and/or additional current sensor 74C) and/or mechanical sensors 76 (e.g., a motor shaft position encoder 76A, an output shaft position encoder 76B and/or a transmission case accelerometer 76C) can be provided at various locations in the mixing machine to detect respective conditions of the mixing machine as shown.
A diagnostic control 102 is provided as part of the controller 100 configuration and is operable to track outputs from the various sensors over time. In one implementation, the diagnostic control 102 identifies maximum or minimum condition indicated by each sensor during each mixing operation carried out and stores such maximum or minimum condition in memory for analysis. The diagnostic control 102 is also operable to analyze the stored outputs and produce an alert or alerts upon detection of a characteristic indicative of a need for service or repair of the mixing machine. Exemplary diagnostic alert messages may include motor overheating, transmission overheating, open circuit, short circuit, machine overloading, locked rotor, transmission damage or failure and/or bearing and shaft damage or failure. The alerts may be delivered to one or more of (i) the on-board user interface 60, (ii) a remote device or system 90 (e.g., a mixing machine operator phone, Tablet or computer at the facility where the mixing machine is located, or a service technician phone, Tablet or computer remote from the facility where the mixing machine is located). The alerts may be in the form of a warning message if the characteristic is a trend of one of the conditions toward a defined limit (e.g., preset in memory) over time, or may be a fault message if the characteristic is the one of the conditions actually reaching the defined limit.
In this regard, Table 1 below shows exemplary sensors employed in one implementation of a mixing machine, and Table 2 below shows exemplary diagnostic messages identified and generated by the diagnostic control as alert indications.
In relation to the above noted messages, reference is made to
In some cases, the mixing machine control system includes multiple stored mix programs. For example, each mix program could include at least one mix speed and mix time, or in other cases multiple mix speeds with respective mix times, each of which will be carried out in sequence when the mix program is initiated and run on the machine. Each mix program may be selectable via the user interface of the machine. In such cases, the diagnostic control will track outputs from the sensors over time according to the mix program that results in the outputs, so that analysis of the outputs for detection of the characteristic indicative of a need for service or repair is conducted on a mix program by mix program basis. In this manner, potential condition discrepancies caused by differences between mixing operations can be avoided. By way of example, where a temperature condition is being monitored, the diagnostic control may include one temperature limit for a first mix program and another temperature limit for a second mix program, etc. Where an input current condition is being monitored, the diagnostic control may include one input current limit for a first mix program and another input current limit for a second mix program, etc. Where a power consumption condition is being monitored, the diagnostic control may include one power consumption limit for a first mix program and another power consumption limit for a second mix program, etc. Where a vibration condition is being monitored, the diagnostic control may include one vibration limit for a first mix program and another vibration limit for a second mix program, etc.
The on-board diagnostic control may be initially loaded with starting values for the monitored conditions by running each mixing program one or more times as a diagnostic set-up. The maximum or minimum limits for the conditions for each mixing program can then be set accordingly (e.g., selecting a limit that is a specified amount higher than the initial condition value determined during the diagnostic set-up). The on-board diagnostic control may run the diagnostics analysis of the data continuously or occasionally (e.g., at the end of each mixing operation, at the end of each day or each time the mixing machine is powered up).
The on-board diagnostic control may include more advanced features to not only produce an alert indication, but also to recommend specific service/repair actions. In other cases, the remote service technician device or system may include algorithms and further diagnostics to provide the service technician with such recommended service/repair actions. Predictive service/repair may be achieved that, in the long run, reduces mixing machine down time, as suggested by the system diagram 180 in
It is to be clearly understood that the above description is intended by way of illustration and example only, is not intended to be taken by way of limitation, and that other changes and modifications are possible.
Number | Name | Date | Kind |
---|---|---|---|
1767002 | Meeker et al. | Jun 1930 | A |
1781321 | DeHuff | Nov 1930 | A |
2019911 | Meeker | Nov 1935 | A |
2181079 | DeHuff | Nov 1939 | A |
2185155 | Meeker et al. | Dec 1939 | A |
2251903 | Anstice et al. | Aug 1941 | A |
2616673 | Van Guilder | Nov 1952 | A |
3422330 | Swanke | Jan 1969 | A |
3951351 | Ernster et al. | Apr 1976 | A |
4568193 | Contri et al. | Feb 1986 | A |
4697929 | Muller | Oct 1987 | A |
4819460 | Obradovic | Apr 1989 | A |
4822172 | Stottmann | Apr 1989 | A |
4860816 | Bond | Aug 1989 | A |
4893942 | Stottmann | Jan 1990 | A |
5000578 | Artin et al. | Mar 1991 | A |
5087864 | Abel | Feb 1992 | A |
5140248 | Rowan et al. | Aug 1992 | A |
5204606 | Kuwahara et al. | Apr 1993 | A |
5306083 | Caldwell et al. | Apr 1994 | A |
5348393 | Pappas, Jr. | Sep 1994 | A |
5472276 | Ratermann et al. | Dec 1995 | A |
5547278 | Xie | Aug 1996 | A |
5570955 | Swartwout et al. | Nov 1996 | A |
5653535 | Xie et al. | Aug 1997 | A |
5690427 | Jennings | Nov 1997 | A |
5736828 | Turner et al. | Apr 1998 | A |
5844343 | Horst | Dec 1998 | A |
5872435 | Bolte et al. | Feb 1999 | A |
5906432 | Wade et al. | May 1999 | A |
5934802 | Xie | Aug 1999 | A |
5955861 | Jeong et al. | Sep 1999 | A |
5957021 | Meredith et al. | Sep 1999 | A |
6066074 | Marcinkiewicz | May 2000 | A |
6313597 | Elliott et al. | Nov 2001 | B1 |
6429612 | Kume et al. | Aug 2002 | B1 |
6638122 | Griffith, Sr. | Oct 2003 | B1 |
6704212 | Furukawa et al. | Mar 2004 | B2 |
D490271 | Short et al. | May 2004 | S |
6750629 | Shigemizu et al. | Jun 2004 | B2 |
6756757 | Marcinkiewicz | Jun 2004 | B2 |
6883959 | Donthnier et al. | Apr 2005 | B2 |
6953278 | Short et al. | Oct 2005 | B2 |
6972541 | Matsushiro et al. | Dec 2005 | B2 |
6998557 | McGuffin-Noll | Feb 2006 | B2 |
7005825 | Eguchi | Feb 2006 | B2 |
7014354 | Donthnier et al. | Mar 2006 | B2 |
7207711 | Huang | Apr 2007 | B2 |
7273315 | Huang | Sep 2007 | B2 |
7384187 | Blackburn | Jun 2008 | B2 |
7387430 | Short | Jun 2008 | B2 |
7543980 | Blackburn | Jun 2009 | B2 |
7950843 | Blackburn | May 2011 | B2 |
8308344 | Short | Nov 2012 | B2 |
20020093877 | Brunswick et al. | Jul 2002 | A1 |
20030165068 | Tomonaga | Sep 2003 | A1 |
20040008005 | Sakai et al. | Jan 2004 | A1 |
20040120213 | Short et al. | Jun 2004 | A1 |
20040120215 | Huang et al. | Jun 2004 | A1 |
20040208082 | Huang | Oct 2004 | A1 |
20050122836 | Boyle et al. | Jun 2005 | A1 |
20050141340 | Donthnier et al. | Jun 2005 | A1 |
20060044935 | Benelli | Mar 2006 | A1 |
20060198240 | Short | Jul 2006 | A1 |
20060227654 | Blackburn | Oct 2006 | A1 |
20070195641 | Schnipke | Aug 2007 | A1 |
20080221739 | Pryor | Sep 2008 | A1 |
20080291777 | Schnipke | Nov 2008 | A1 |
20090110788 | Ciancimino | Apr 2009 | A1 |
20090190438 | Short | Jul 2009 | A1 |
20110186668 | Seidler | Aug 2011 | A1 |
20110241590 | Horikoshi | Oct 2011 | A1 |
20120226764 | Philip | Sep 2012 | A1 |
20130214716 | Barfus | Aug 2013 | A1 |
20130293988 | Li | Nov 2013 | A1 |
20140064018 | Lin | Mar 2014 | A1 |
20140070743 | Yoshida | Mar 2014 | A1 |
20140269154 | Kolar | Sep 2014 | A1 |
20140345474 | Trench | Nov 2014 | A1 |
20150331051 | Maki | Nov 2015 | A1 |
20180059790 | Kolar | Mar 2018 | A1 |
20180242594 | Huerta-Ochoa | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
2448220 | May 2012 | EP |
WO 2005112722 | Dec 2005 | WO |
WO 2016145430 | Sep 2016 | WO |
Entry |
---|
PCT, International Search Report and Written Opinion, International Application No. PCT/US2018/019832; dated May 14, 2018, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20180242595 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
62464435 | Feb 2017 | US |