Mixing-promoting spacer patterns for spiral-wound elements

Information

  • Patent Grant
  • 11745143
  • Patent Number
    11,745,143
  • Date Filed
    Thursday, April 19, 2018
    6 years ago
  • Date Issued
    Tuesday, September 5, 2023
    7 months ago
Abstract
Embodiments of the present invention provide for the deposition of spacing elements for spiral wound elements which promote mixing within the feed space during element operation thereby improving element performance and reducing concentration polarization and potential for biological fouling.
Description
TECHNICAL FIELD

The subject invention relates to a permeable membrane system utilized for the separation of fluid components, specifically spiral-wound permeable membrane elements.


BACKGROUND ART

Spiral-wound membrane filtration elements well known in the art comprise a laminated structure including a membrane sheet sealed to or around a porous permeate spacer which creates a path for removal of the fluid passing through the membrane to a central tube. This laminated structure is wrapped spirally around the central tube and spaced from itself with a porous feed spacer to allow axial flow of the fluid through the element. The porous feed spacer is placed between the folded layers of membrane sheet to form a leaf, and one or several of these leaves are stacked in between layers of permeate spacer and rolled to create the element. While this feed spacer is necessary to maintain open and uniform axial flow between the laminated structure, it is also a source of flow restriction and pressure drop within the axial flow channel and also presents areas of restriction of flow and contact to the membrane that contribute significantly to membrane fouling via biological growth, scale formation, and particle capture.


Improvements to the design of spiral wound elements have been disclosed by Barger et al. and Bradford et al., which replace the feed spacer with islands or protrusions either deposited or embossed directly onto the outside or active surface of the membrane. This configuration is advantageous in that it maintains spacing for axial flow through the element while minimizing obstruction within the flow channel. It also eliminates the porous feed spacer as a separate component, thus simplifying element manufacture. Patent publication number US2016-0008763-A1 entitled Improved Spiral Wound Element Construction teaches the application of printed patterns on the back side of the active surface of the membrane sheet, or directly on the surface of the permeate spacer.


The following references, each of which is incorporated herein by reference, can facilitate understanding of the invention: U.S. Pat. Nos. 3,962,096; 4,476,022; 4,756,835; 4,834,881; 4,855,058; 4,902,417; 4,861,487; 6,632,357; and US application 2016-0008763-A1.


DISCLOSURE OF INVENTION

Embodiments of the present invention provide a membrane for use in a spiral wound permeable membrane system, comprising a membrane having spacing features disposed on a surface of the membrane, wherein the spacing features are configured such that the features direct fluid flow along one or more tortuous paths.


In some embodiments, the spacing features comprise a plurality of substantially parallel line segments disposed in an array wherein the line segments are oriented at an angle other than zero degrees to the direction of fluid flow in the permeable membrane system, the line segments are separated from each other by a first distance along a dimension perpendicular to the overall direction of fluid flow and by a second distance along a dimension parallel to the overall direction of fluid flow, and wherein the line segments are disposed to prevent fluid flow direct from inlet to outlet of the system. In some embodiments, the line segments are 0.01″ to 0.03″ wide, 0.1″ to 0.3″ long, the first distance is 0.4″ to 0.7″, and the second distance is 0.4″ to 0.7″. In some embodiments, the line segments are 0.02″ wide, 0.1875″ long, the first distance is 0.5625″, and the second distance is 0.5625″.


In some embodiments, the spacing features comprise a plurality of chevron shaped features, disposed in a two-dimensional array on the membrane, with each line of the array offset from adjacent lines such that fluid flowing between two chevrons in one line is turned by a chevron in a successive line. In some embodiments, each feature is 0.01″ to 0.03″ in thickness, 0.08″ to 0.2″ in width, 0.1″ to 0.3″ in height, disposed with a gap of 0.4″ to 0.7″ between adjacent features in each line and line spaced 0.4″ to 0.7″ apart. In some embodiments, each feature is 0.02″ in thickness, 0.0938″ in width, 0.1875″ in height, disposed with a gap of 0.5625″ between adjacent features in each line and line spaced 0.5625″ apart.


In some embodiments, the spacing features comprise a plurality of line segments, wherein a first subset of the line segments are oriented at a first angle to the direction from inlet to outlet, and wherein a second subset of the line segments are oriented at a second angle to the direction from inlet to outlet, and wherein the line segments are positioned such that fluid flow in a direction along a line segment in the first subset is redirected by a line segment in the second subset. In some embodiments, the features are 0.01″ to 0.03″ in thickness, with equal length and height of 0.1″ to 0.3″. In some embodiments, the first angle is 35° to 55° and the second angle is 125° to 145°. In some embodiments, the first angle is 45° and the second angle is 135°. In some embodiments, the features are separated by 0.4″ to 0.7″. In some embodiments, the features are separated by 0.5625″. In some embodiments, the first angle is 12.5° to 32.5° and the second angle is 147.5° to 167.5°. In some embodiments, the first angle is 22.5° and the second angle is 157.5°. In some embodiments, the features are separated by 0.19″ to 0.39″.


In some embodiments, the spacing features comprise a first plurality of spacing features extend a first height above the surface of the membrane, and a second plurality of spacing features extend a second height above the surface of the membrane, wherein the second height is less than the first height. In some embodiments, the second height is no more than one half the first height.


In some embodiments, the spacing features are no more than 0.01″ in height.


Some embodiments provide a membrane for use in a spiral wound permeable membrane system, comprising a membrane having spacing features disposed on a surface of the membrane, wherein the spacing features are no more than 0.01″ in height.


In some embodiments, the spacing features are made of one or more of thermoplastics, reactive polymers, waxes, or resins; deposited directly onto the membrane surface.


In some embodiments, the spacing features are made of one or more of high-temperature thermoplastics, metals, or ceramics; formed apart from the membrane surface and then adhered to the membrane surface.


Embodiments of the present invention provide a permeable membrane system comprising a membrane as described herein.


Embodiments of the present invention provide a water treatment facility comprising one or more permeable membrane systems as described herein.


Embodiments of the present invention provide a method of treating water, comprising providing a permeable membrane system as described herein, and passing water to be treated through the permeable membrane system.


Embodiments of the present invention provide a method of making a permeable membrane system, comprising providing a membrane as described herein, and spirally winding the membrane.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a schematic illustration of an example embodiment comprising an array of mixing promoting features oriented perpendicular to the direction of fluid flow in a spiral-wound element.



FIG. 2 is a schematic illustration of an example embodiment comprising an array of chevron shaped mixing promoting features oriented with their point directed in the opposite direction of fluid flow in a spiral-wound element.



FIG. 3A is a schematic illustration of an example embodiment comprising two arrays of mixing promoting features oriented at opposing angles with respect to the direction of fluid flow in a spiral-wound element.



FIG. 3B is a schematic illustration of an example embodiment comprising two arrays of mixing promoting features oriented at opposing shallow angles with respect to the direction of fluid flow in a spiral-wound element.



FIG. 4A is a schematic illustration of a profile view of an example embodiment where a first array of mixing promoting features is the full height of the fluid flow channel while a second array of mixing promoting features is one-half the height of the first array and deposited on a single side of the membrane leaf.



FIG. 4B is a schematic illustration of a profile view of an example embodiment where a first array of mixing promoting features is the full height of the fluid flow channel while a second array of mixing promoting features is one-half the height of the first array and deposited on the full length of the membrane leaf.



FIG. 5 is a profile view of an embodiment where an array of mixing promoting features is of a minimal height in order to promote high flow velocity, shear, and mixing.





MODES FOR CARRYING OUT THE INVENTION AND INDUSTRIAL APPLICABILITY

Embossing or depositing features onto the surface of the membrane sheet, or onto or into the permeate carrier sheet of a spiral-wound element to provide spacing between adjacent membrane sheets can provide several advantages as compared to feed spacer mesh, including more open flow channels, lower pressure drop, reduced fouling, and the ability to produce thinner feed space than would be practical using a mesh. Thinner feed spacers produce higher fluid shear between the active surfaces of the membrane sheet and can promote higher flux through a unit area of the membrane sheets. The membrane sheet itself can be made with a non-woven porous layer of polypropylene, bonded to a porous layer of polysulfone, with the membrane polymer material cast onto the polysulfone layer. Various other materials and methods can be used to make the membrane sheet. Membrane sheet can be made that provides varying degrees of removal efficiency. Micro filtration membranes can typically remove material as small as about 0.1 micron, typical of bacteria and protozoa, or other contaminants of such size in industrial applications. Ultra filtration membranes can have pore sizes as small as about 0.01 micron and can remove, as an example, viruses from fluid sources. Nano filtration membranes can have pore sizes small enough to remove di-valent ions, but will pass monovalent ions such as sodium and chloride. An example of application of nano filtration is water softening to remove, as an example, calcium carbonate. Reverse osmosis is typically the smallest pore size, and is sufficient to remove mono-valent salts, typically used in desalination applications. Various configurations of these spacer features have been disclosed by Barger et al. and Bradford et al. PCT/US14/18813, incorporated herein by reference, discloses various methods and materials suitable for depositing spacing features on membrane sheets. Those methods and materials can be useful in implementing embodiments of the present invention.


The present invention provides various patterns and configurations of embossed or deposited features that enhance mixing of the fluid in the feed/reject channel. During fluid separation within a spiral-wound element, ions, compounds, or solids can become concentrated at the reject or outlet end of the flow channel and at the membrane surface where separation occurs. Enhanced mixing and in some cases shortened diffusion paths for the fluid can be advantageous because it can counter this concentration of substances at the membrane surface as well as prevent stagnation points where biological fouling can occur. Mixing can also reduce the likelihood of precipitation of solids into scale by reducing the localized concentration of dissolved solids.


Referring to FIG. 1, in an example embodiment of the present invention, an array of line segment features is embossed or deposited on one half of the membrane leaf, with each segment feature oriented in a direction perpendicular to flow, with regular open spaces between the segment features. These segment features define the feed space and flow paths for liquid through the spiral-wound element. Adjacent rows of these features are staggered such that the open spaces on one row are at least partly aligned with the line segments of the adjacent row forcing a tortuous path (repeated twists, turns, or bends) for liquid flow between the features. As an example, suitable features for some spiral wound element applications can be 0.01″ to 0.03″ wide, e.g. 0.020″ wide, and 0.1″ to 0.3″ long, e.g. 0.1875″ long, with a gap of 0.4″ to 0.7″, e.g. 0.5625″, between adjacent features in each row and rows spaced 0.4″ to 0.7″, e.g. 0.5625″, apart. This pattern will provide a higher pressure drop but also higher levels of mixing than other example embodiments described herein, such as those where the features are angled with respect to the direction of fluid flow. Alternative dimensional relationships, such as smaller or larger gap sizes, feature length, or row spacing can also be utilized in order to best optimize mixing and pressure drop within the element for various applications.


In another example embodiment of the present invention shown in FIG. 2, an array of chevron or parabolic curved features is embossed or deposited on one half of the membrane leaf such that their pointed ends are directed in opposite direction as fluid flow, e.g. pointing towards the inlet of the spiral-wound element. These features define the feed space and flow paths for liquid through the spiral-wound element. Adjacent rows of these features are staggered such that the open spaces on one row are at least partly aligned with the features of the adjacent row forcing a tortuous path for liquid flow between the features. As an example, suitable features for some spiral wound element applications can be 0.01″ to 0.03″ in thickness, e.g. 0.020″ in thickness, with equal width of 0.08″ to 0.2″, e.g. 0.0938″, and height of 0.1″ to 0.3″, e.g. 0.1875″, with a gap of 0.4″ to 0.7″, e.g. 0.5625″, between adjacent features in each row and rows spaced 0.4″ to 0.7″, e.g. 0.5625″, apart. This pattern can provide lower pressure drop with high levels of mixing relative to other example embodiments, but can foster stagnation zones behind the features. Replacing the chevrons with diamonds can create similar flow paths while reducing the potential for stagnant zones. Alternative dimensional relationships, such as smaller or larger gap sizes, feature length, different length legs on each side of the chevron, or row spacing can also be utilized in order to best optimize mixing and pressure drop within the element for various applications.


A further example embodiment of the present invention comprises an array of angled line segments embossed or deposited on one half of the membrane leaf arranged in a cross-hatched pattern of alternating rows of alternating angles. These features define the feed space and flow paths for liquid through the spiral-wound element. Adjacent rows of these features are staggered such that the open spaces on one row are at least partly aligned with the features of the adjacent row forcing a tortuous path for liquid flow between the features. FIG. 3A shows features that are 0.01″ to 0.03″ in thickness, e.g. 0.020″ in thickness, with equal length and height of 0.1″ to 0.3″, e.g. 0.1875″, creating angles of 35° to 55°, e.g. 45°, and 125° to 145°, e.g. 135°, respectively for adjacent rows with respect to the direction of fluid flow, suitable for some spiral wound element applications. The gap between adjacent features in each row is 0.4″ to 0.7″, e.g. 0.5625″, and rows are spaced 0.4″ to 0.7″, e.g. 0.5625″, apart. These features promote turbulence and mixing while minimizing both pressure drop and potential stagnation points which can cause biological fouling. Alternatively, the features can be placed at shallow angles with respect to the direction of fluid flow and closer spacing in order to reduce pressure drop as shown in FIG. 3B, for example at angles of 12.5° to 32.5°, e.g. 22.5°, and 147.5° to 167.5°, e.g. 157.5°, with spacing within each row of 0.19″ to 0.39″, e.g. 0.29″, between features. Alternative dimensional relationships, such as smaller or larger gap sizes, feature length, or row spacing, as well as other angles can also be utilized in order to best optimize mixing and pressure drop within the element for various applications.


Another example embodiment employs printed or deposited spacers in arrays of different heights within a given membrane leaf as shown in FIG. 4A and FIG. 4B. In some example applications, one array of features is 0.010″-0.025″ in height, e.g. 0.015″ in height, and the second array of features is half the height of the first array, e.g. e.g. 0.0075″ in height. The first array of features is used to support the feed space between the folded leaf of the spiral-wound element, while the second array is in place to promote mixing within the feed space. The arrays can be symmetrical in that for each full height feature in the first array there is a corresponding feature in the second array evenly spaced within the first array, or the second array can have more elements than the first array. Having a second array of half-height features encourages mixing while reducing pressure drop within the element when compared to a corresponding array of full-height features. The first and second array can be of the same design and orientation, or they can have differing designs and differing orientations. The array designs can include any of the previously listed embodiments, and additionally can include simpler shapes including round or polygonal posts or islands. Spacing of the first array can be larger than the arrays previously described, with spacing of the array of 0.5″ to 1″ in each dimension in some example embodiments. The secondary array can also be embossed or deposited over the full length of the membrane leaf such that when the leaf is folded, one-half of the array is on the side of the array with the first array and the other half is on the surface opposite that of the first array so that the half-height features protrude from both the top and the bottom of the flow channel in order to promote more even mixing.


In an example embodiment a very thin array of feed spacing features as in FIG. 5, less than or equal to 0.010″ in height, is employed to promote high velocity and high shear within the feed channel, as well as reducing diffusion distances to reduce concentration polarization. By reducing concentration polarization, or the accumulation of ions at the membrane surface, the pressure required to push molecules through the membrane surface is reduced. This creates greater flux per square foot of membrane surface (more fluid flow per square foot), resulting in less energy or higher production for a given size membrane element. This flux increase creates more fluid flow which is in addition to more surface area in the membrane element by virtue of thinner feed spaces that allow for more membrane sheet to be rolled into the same size membrane element. The array designs can include any of the previously listed embodiments, and additionally can include simpler shapes such as round or polygonal posts or islands. While this arrangement will increase pressure drop within the channel, the advantages of increased mixing and reduced diffusion distances can outweigh the restriction to flow in some applications.


Changing the feature pattern and spacing to increase pressure drop will also increase mixing which is advantageous in applications where higher shear and mixing can reduce concentration polarization near the membrane surface, such as applications where the solution being filtered is high in total dissolved solids (TDS). For applications with low TDS, it can be more preferable to have more open channels, less mixing, and reduced pressure drop to improve energy efficiency.


The features can comprise any number of materials that are compatible with the separated fluid and the permeate carrier including, but not limited to, thermoplastics, reactive polymers, waxes, or resins. Additionally, materials that are compatible with the separated fluid but not compatible with direct deposition to the permeate carrier, including, but not limited to high-temperature thermoplastics, metals, or ceramics, may be pre-formed, cast, or cut to the proper dimensions and adhered to the surface of the permeate carrier with an adhesive that is compatible with the permeate carrier.


The present invention has been described in connection with various example embodiments. It will be understood that the above description is merely illustrative of the applications of the principles of the present invention, the scope of which is to be determined by the claims viewed in light of the specification. Other variants and modifications of the invention will be apparent to those skilled in the art.

Claims
  • 1. A membrane for use in a spiral wound permeable membrane system, comprising a membrane having spacing features deposited directly onto a surface of the membrane, wherein the spacing features are configured such that the features direct fluid flow along one or more tortuous paths, wherein the spacing features comprise a first plurality of spacing features that extend a first height above the surface of the membrane, and a second plurality of spacing features that extend a second height above the surface of the membrane, wherein the second height is less than the first height.
  • 2. A membrane as in claim 1, wherein the spacing features comprise a plurality of substantially parallel line segments disposed in an array wherein the line segments are oriented at an angle other than zero degrees to the direction of fluid flow in the permeable membrane system, the line segments are separated from each other by a first distance along a dimension perpendicular to the overall direction of fluid flow and by a second distance along a dimension parallel to the overall direction of fluid flow, and wherein the line segments are disposed to prevent fluid flow direct from inlet to outlet of the system.
  • 3. A membrane as in claim 2, wherein the line segments are 0.01″ to 0.03″ wide, 0.1″ to 0.3″ long, the first distance is 0.4″ to 0.7″, and the second distance is 0.4″ to 0.7″.
  • 4. A membrane as in claim 3, wherein the line segments are 0.02″ wide, 0.1875″ long, the first distance is 0.5625″, and the second distance is 0.5625″.
  • 5. A membrane as in claim 1, wherein the spacing features comprise a plurality of chevron shaped features, disposed in a two-dimensional array on the membrane, with each line of the array offset from adjacent lines such that fluid flowing between two chevrons in one line is turned by a chevron in a successive line.
  • 6. A membrane as in claim 5, wherein each feature is 0.01″ to 0.03″ in thickness, 0.08″ to 0.2″ in width, 0.1″ to 0.3″ in height, disposed with a gap of 0.4″ to 0.7″ between adjacent features in each line and line spaced 0.4″ to 0.7″ apart.
  • 7. A membrane as in claim 6, wherein each feature is 0.02″ in thickness, 0.0938″ in width, 0.1875″ in height, disposed with a gap of 0.5625″ between adjacent features in each line and line spaced 0.5625″ apart.
  • 8. A membrane as in claim 1, wherein the spacing features comprise a plurality of line segments, wherein a first subset of the line segments are oriented at a first angle to the direction from inlet to outlet, and wherein a second subset of the line segments are oriented at a second angle to the direction from inlet to outlet, and wherein the line segments are positioned such that fluid flow in a direction along a line segment in the first subset is redirected by a line segment in the second subset.
  • 9. A membrane as in claim 8, wherein the features are 0.01″ to 0.03″ in thickness, with equal length and height of 0.1″ to 0.3″.
  • 10. A membrane as in claim 9, wherein the first angle is 35° to 55° and the second angle is 125° to 145°.
  • 11. A membrane as in claim 10, wherein the features are separated by 0.4″ to 0.7″.
  • 12. A membrane as in claim 11, wherein the features are separated by 0.5625″.
  • 13. A membrane as in claim 9, wherein the first angle is 12.5° to 32.5° and the second angle is 147.5° to 167.5°.
  • 14. A membrane as in claim 1, wherein the features are separated by 0.19″ to 0.39″.
  • 15. A membrane as in claim 1, wherein the second height is no more than one half the first height.
  • 16. A membrane as in claim 1, wherein the spacing features are no more than 0.01″ in height.
  • 17. A membrane as in claim 1, wherein the spacing features are made of one or more of thermoplastics, reactive polymers, waxes, or resins; deposited directly onto the membrane surface.
  • 18. A membrane as in claim 1, wherein the spacing features are made of one or more of high-temperature thermoplastics, metals, or ceramics; formed apart from the membrane surface and then adhered to the membrane surface.
  • 19. A permeable membrane system comprising a membrane as in claim 1.
  • 20. A method of treating water, comprising providing a permeable membrane system as in claim 19, and passing water to be treated through the permeable membrane system.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national stage application under 35 U.S.C. 371 of PCT application PCT/US2018/028453, filed 19 Apr. 2018, which claims priority to U.S. provisional application 62/487,973, filed 20 Apr. 2017. Each of the foregoing is incorporated by reference herein.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/028453 4/19/2018 WO
Publishing Document Publishing Date Country Kind
WO2018/195367 10/25/2018 WO A
US Referenced Citations (257)
Number Name Date Kind
3963621 Newman Jun 1976 A
4187173 Keefer Feb 1980 A
4208289 Bray Jun 1980 A
4222874 Connelly Sep 1980 A
4228014 Timm et al. Oct 1980 A
4230564 Keefer Oct 1980 A
4230579 Bray et al. Oct 1980 A
4235723 Bartlett, Jr. Nov 1980 A
4277340 Kanamaru et al. Jul 1981 A
4288326 Keefer Sep 1981 A
4309287 Roos et al. Jan 1982 A
4326960 Iwahori et al. Apr 1982 A
4341631 Hargitay Jul 1982 A
4347132 Davis Aug 1982 A
4354939 Pohl Oct 1982 A
4358377 Clark Nov 1982 A
4409849 Roos Oct 1983 A
4410429 Harvey et al. Oct 1983 A
4411785 Yu et al. Oct 1983 A
4426285 Davis Jan 1984 A
4434056 Keefer Feb 1984 A
4454891 Dreibelbis et al. Jun 1984 A
4461707 Thayer et al. Jul 1984 A
4476022 Doll Oct 1984 A
4482459 Shiver Nov 1984 A
4534713 Wanner Aug 1985 A
4556488 Timm et al. Dec 1985 A
4585554 Burrows Apr 1986 A
RE32144 Keefer May 1986 E
4595497 Burrows Jun 1986 A
4599171 Padilla et al. Jul 1986 A
4600512 Aid Jul 1986 A
4608140 Goldstein Aug 1986 A
4613436 Wight et al. Sep 1986 A
4623451 Oliver Nov 1986 A
4623467 Hamlin Nov 1986 A
4640774 Garcera et al. Feb 1987 A
4645601 Regunathan et al. Feb 1987 A
4652373 Trimmer Mar 1987 A
4657674 Burrows Apr 1987 A
4670144 McCausland et al. Jun 1987 A
4695375 Tyler Sep 1987 A
4704324 Davis et al. Nov 1987 A
4705625 Hart, Jr. Nov 1987 A
4735716 Petrucci et al. Apr 1988 A
4735718 Peters Apr 1988 A
4741823 Olsen et al. May 1988 A
4743366 Burrows May 1988 A
4744895 Gales et al. May 1988 A
4744900 Bratt May 1988 A
4756835 Wilson Jul 1988 A
4775465 Burrows Oct 1988 A
4781831 Goldsmith Nov 1988 A
4784771 Wathen et al. Nov 1988 A
4802982 Lien Feb 1989 A
4814079 Schneider Mar 1989 A
4820413 Lopez Apr 1989 A
4830744 Burrows May 1989 A
4832850 Cais et al. May 1989 A
4834873 Burrows May 1989 A
4842725 Blad et al. Jun 1989 A
4842736 Bray Jun 1989 A
4844805 Solomon Jul 1989 A
4855058 Holland et al. Aug 1989 A
4856559 Lipshultz et al. Aug 1989 A
4869821 Korin Sep 1989 A
4874514 Casey, Jr. Oct 1989 A
4876002 Marshall et al. Oct 1989 A
4877521 Petrucci et al. Oct 1989 A
4882061 Petrucci et al. Nov 1989 A
4882223 Aptel et al. Nov 1989 A
RE33135 Wanner, Sr. et al. Dec 1989 E
4885092 Zwick Dec 1989 A
4886597 Wild et al. Dec 1989 A
4892657 Mohn et al. Jan 1990 A
4902417 Lien Feb 1990 A
4906372 Hopkins Mar 1990 A
4917847 Solomon Apr 1990 A
4937557 Tucci et al. Jun 1990 A
4944877 Maples Jul 1990 A
4988525 Gresch Jan 1991 A
4990248 Brown et al. Feb 1991 A
4992170 Menon et al. Feb 1991 A
4995977 Hilgendorff et al. Feb 1991 A
5002664 Clack et al. Mar 1991 A
5017284 Miler et al. May 1991 A
5043066 Miller et al. Aug 1991 A
5045197 Burrows Sep 1991 A
5057212 Burrows Oct 1991 A
5069789 Mohn et al. Dec 1991 A
5078876 Whittier et al. Jan 1992 A
5094749 Seita et al. Mar 1992 A
5096574 Birdsong et al. Mar 1992 A
5104532 Thompson et al. Apr 1992 A
5108604 Robbins Apr 1992 A
5128035 Clack et al. Jul 1992 A
5131277 Birdsong et al. Jul 1992 A
5132017 Birdsong et al. Jul 1992 A
5145575 Burrows Sep 1992 A
5167786 Eberle Dec 1992 A
5167826 Eaton Dec 1992 A
5183567 Mohn et al. Feb 1993 A
5194156 Tomchak Mar 1993 A
5198110 Hanai et al. Mar 1993 A
5204002 Belfort et al. Apr 1993 A
5232591 Solomon Aug 1993 A
5234583 Cluff Aug 1993 A
5240612 Grangeon et al. Aug 1993 A
5279732 Edens Jan 1994 A
5296148 Colangelo et al. Mar 1994 A
5354464 Slovak et al. Oct 1994 A
5362383 Zimmerman et al. Nov 1994 A
5462414 Permar Oct 1995 A
5466366 Chia-ching Nov 1995 A
5468387 Solomon Nov 1995 A
5507943 Labrador Apr 1996 A
RE35252 Clack et al. May 1996 E
5545320 Heine et al. Aug 1996 A
5573662 Abe et al. Nov 1996 A
5597487 Vogel et al. Jan 1997 A
5626752 Mohn et al. May 1997 A
5626758 Belfort May 1997 A
5628198 Permar May 1997 A
5681459 Bowman Oct 1997 A
5681467 Solie et al. Oct 1997 A
5788858 Acernese et al. Aug 1998 A
5795475 Luedke et al. Aug 1998 A
5811251 Hirose et al. Sep 1998 A
5824217 Pearl et al. Oct 1998 A
5914041 Chancellor Jun 1999 A
5944985 Bowman Aug 1999 A
5985146 Knappe et al. Nov 1999 A
6030535 Hayashi et al. Feb 2000 A
6071404 Tsui Jun 2000 A
6071414 Kishi Jun 2000 A
6099735 Kelada Aug 2000 A
6109029 Vowles et al. Aug 2000 A
6110360 Hart, Jr. Aug 2000 A
6117297 Goldstein Sep 2000 A
6120682 Cook Sep 2000 A
6126833 Stobbe et al. Oct 2000 A
6174437 Haney Jan 2001 B1
6190557 Hisada et al. Feb 2001 B1
6193879 Bowman Feb 2001 B1
6197191 Wobben Mar 2001 B1
6217773 Graham Apr 2001 B1
6258270 Hilgendorff et al. Jul 2001 B1
6277282 Kihara et al. Aug 2001 B1
6299766 Permar Oct 2001 B1
6345961 Oklejas, Jr. Feb 2002 B1
6348148 Bosley Feb 2002 B1
6379518 Osawa et al. Apr 2002 B1
6379548 Kurokawa et al. Apr 2002 B1
6383384 Anderson May 2002 B1
RE37759 Belfort Jun 2002 E
RE77591 Belfort Jun 2002
6402956 Andou et al. Jun 2002 B1
6423212 Bosko Jul 2002 B1
6423223 Northcut et al. Jul 2002 B1
6432301 Dengler Aug 2002 B1
6436282 Gundrum et al. Aug 2002 B1
6447259 Elliott-Moore Sep 2002 B2
6514398 DiMascio et al. Feb 2003 B2
6521124 Northcut et al. Feb 2003 B2
6521127 Chancellor Feb 2003 B1
6524478 Heine et al. Feb 2003 B1
6540915 Patil Apr 2003 B2
6575308 Fuls et al. Jun 2003 B1
6579451 Avero Jun 2003 B1
6607668 Rela Aug 2003 B2
6613231 Jitariouk Sep 2003 B1
6632357 Barger et al. Oct 2003 B1
6790345 Broussard Sep 2004 B2
6805796 Hirose et al. Oct 2004 B2
6830683 Gundrum et al. Dec 2004 B2
6866831 Nakao et al. Mar 2005 B2
6929743 Diel Aug 2005 B2
6929748 Avijit et al. Aug 2005 B2
7021667 Campbell et al. Apr 2006 B2
7186331 Maartens et al. Mar 2007 B2
7244357 Herrington et al. Jul 2007 B2
7297268 Herrington et al. Nov 2007 B2
7306437 Hauge Dec 2007 B2
7311831 Bradford et al. Dec 2007 B2
7351335 Broens et al. Apr 2008 B2
7387725 Choi et al. Jun 2008 B2
7416666 Gordon Aug 2008 B2
7449093 Dudziak et al. Nov 2008 B2
7455778 Gordon Nov 2008 B2
7501064 Schmidt et al. Mar 2009 B2
7514010 Salmon Apr 2009 B2
7520981 Barber Apr 2009 B2
7540956 Kurth et al. Jun 2009 B1
7650805 Nauseda et al. Jan 2010 B2
7733459 Dierichs et al. Jun 2010 B2
7736503 Kennedy et al. Jun 2010 B2
7862723 Cartwright Jan 2011 B2
7875184 Parker et al. Jan 2011 B2
7892429 Oklejas, Jr. Feb 2011 B2
7901580 Salyer Mar 2011 B2
7909998 Kennedy et al. Mar 2011 B2
7910004 Cohen et al. Mar 2011 B2
7927082 Haudenschild Apr 2011 B2
7981293 Powell Jul 2011 B2
8021550 Beauchamp et al. Sep 2011 B2
8101074 Larsen Jan 2012 B2
8114286 Kawakami Feb 2012 B2
8147699 Goldsmith Apr 2012 B2
8257594 Astle et al. Sep 2012 B2
8282823 Acernese et al. Oct 2012 B2
8292088 Francisco et al. Oct 2012 B2
8292492 Ho et al. Oct 2012 B2
8414767 Gaignet et al. Apr 2013 B2
8425734 Goel et al. Apr 2013 B2
8454829 Yaeger Jun 2013 B2
8506685 Taylor et al. Aug 2013 B2
8518225 Sumita et al. Aug 2013 B2
8628642 Goel et al. Jan 2014 B2
8652326 Johann et al. Feb 2014 B2
8685252 Vuong et al. Apr 2014 B2
8696904 Thiyagarajan et al. Apr 2014 B2
8771510 Takahashi et al. Jul 2014 B2
8778055 Taylor et al. Jul 2014 B2
8808538 Oklejas, Jr. Aug 2014 B2
8889009 Brausch et al. Nov 2014 B2
8944257 Eisen et al. Feb 2015 B2
8961790 Beauchamp et al. Feb 2015 B2
8968566 Beauchamp et al. Mar 2015 B2
8999162 Vuong et al. Apr 2015 B2
9011664 Takahashi et al. Apr 2015 B2
9011688 Takahashi et al. Apr 2015 B2
9108162 Takahashi et al. Aug 2015 B2
9114365 Schmitt Aug 2015 B2
9260325 Takahashi et al. Feb 2016 B2
9328743 Hirosawa et al. May 2016 B2
9387445 Kimura et al. Jul 2016 B2
9403125 Shaffer Aug 2016 B2
9475008 Salama et al. Oct 2016 B2
9492792 Tomescu et al. Nov 2016 B2
9546671 Hirosawa et al. Jan 2017 B2
9597640 Koiwa et al. Mar 2017 B2
9616390 Hirozawa et al. Apr 2017 B2
9617172 Baski Apr 2017 B1
9724646 Okamoto et al. Aug 2017 B2
9731984 Beall Aug 2017 B2
9758389 Rau, III Sep 2017 B2
9764291 Hirozawa et al. Sep 2017 B2
9808767 Tabayashi et al. Nov 2017 B2
20080290031 Popa Nov 2008 A1
20120018366 Buser Jan 2012 A1
20120298578 Herrington Nov 2012 A1
20130334128 Takagi et al. Dec 2013 A1
20150068971 Koiwa et al. Mar 2015 A1
20150298064 Takagi et al. Oct 2015 A1
20150343388 Hester et al. Dec 2015 A1
20160008763 Roderick et al. Jan 2016 A1
20160236132 Hara et al. Aug 2016 A1
Foreign Referenced Citations (11)
Number Date Country
2662925 Jan 2009 CA
2825674 Aug 2011 CA
2902094 Aug 2015 EP
20110002036 Jan 2011 KR
20110002036 Jan 2011 KR
WO2010047360 Apr 2010 WO
WO-2011094236 Aug 2011 WO
WO2015016253 Feb 2015 WO
WO2002055179 Aug 2015 WO
WO2016199272 Dec 2016 WO
WO2017087461 May 2017 WO
Related Publications (1)
Number Date Country
20200188854 A1 Jun 2020 US
Provisional Applications (1)
Number Date Country
62487973 Apr 2017 US