The invention relates to two-component cartridges for plastic materials such as sealing materials, cements, dental form materials or other materials. Such cartridges comprise two chambers which are often arranged co-axially and are often formed by two tubular bodies which are disposed one in the other at their front areas'. A first chamber is formed by the interior space of the inner tubular body and second chamber is formed as an annular chamber between the outer and the inner tubular body. At their rear ends, the two tubular bodies are held in their concentric positions by an annular piston closing the outer annular chamber between the tubular bodies.
The concentric front end areas of the two tubular bodies inserted into one another have discharge openings for the material components disposed in the inner, first chamber and, respectively, the outer second chamber. Up to its use, the two-chamber cartridge is closed by a closing cover, by which it can also be closed during an interruption of its use. For use a mixer is mounted onto the discharge neck of the outer tubular body, which includes a mixing tube in which a number of mixing structures are arranged axially one after the other so as to mix the first material component discharged from the first chamber with the second material component discharged from the second chamber as fast as possible and as homogenously as possible. At the end of the mixing tube, a completely homogenous mixture of the two material components is then supposed to be discharged.
However, it is well-known that such two-component cartridges have problems which, in spite of substantial efforts, have not yet been solved.
One problem is that it must be made sure that the two material components remain completely separated before use that is they must not come into contact with each other in order to prevent a premature reaction between the two material components and their curing or hardening. To this end, it is necessary that, on one hand, the cover completely closes the discharge arrangement of the two tubular bodies completely and tightly and that, in addition, the cover provides for a sealing separation of the discharge opening of the first chamber and that of the second chamber.
A second problem concerns the design of the mixing system which should provide for a homogeneous mixing of the two material components in a mixing tube which is as short as possible and includes as few as possible mixing elements because the required discharge pressure of the two-component cartridge is of course larger the larger the number of subsequent mixing element in the mixing tube is, since each additional mixing element increases the flow resistance. This problem becomes more important the more viscous, the material components to be pressed out of the chambers are.
In order to make the mixer to be threaded onto the discharge neck of the two-component cartridge as short as possible and provide the smallest possible number of mixing elements, the two material components are divided already in the discharge structure into a plurality of strands which enter the mixer and, in this way, accelerate the mixing procedure.
To this end, WO 2005/0925225 A1 discloses a two-component cartridge consisting of two co-axially arranged tubular bodies which, in the area of the concentric discharge passages of the two tubular bodies are formed in such a way that the first material components discharged from the first chamber as well as the second material component discharged from the second chamber are divided into several strands, wherein all material strands form in the discharge neck an annular arrangement in which the material strands of the first material component and those of the second material component are arranged alternately.
The neck section of the inner tubular body, which is disposed in the neck section of the outer tubular body, is provided with an annular arrangement of separate segment-like or cylindrical discharge channels, which is disposed star-like in the discharge neck of the outer tubular body. The circumferential intermediate chambers disposed between the individual discharge channels of the inner annular body which form the discharge passages for the first material component form the discharge passages for the second material component. The circumferentially alternate material strands of the first material component and the second material component then enter the inlet end of the mixer as a parallel strand bundle.
In this known arrangement, it is however disadvantageous that the material strands of the first material component and of the second material component reach the inlet end of the mixer as parallel strands because they are guided over the full length of the neck arrangement through parallel passages so that, without any transverse flow component present in the material strands, mixing is initiated only by the first mixing element of the mixer.
A further disadvantage of the arrangement described resides in the fact that the cover needs to close each of the outlet passages of the discharge neck of the inner tubular body individually and consequently requires the provision of a plug for engaging into each outlet passage. Complete sealing of such an arrangement however is hard to achieve with a cylindrical plug for a cylindrical discharge channel and much more difficult for an annular array of discharge passages. In each case, the closure cap needs to comprise two parts and include a central plug part on which the closure plugs to be inserted into the discharge passages are formed and also a threaded sleeve which can be threaded onto discharge neck of the outer tubular body.
It is the object of the present invention to provide an arrangement which provides for improved mixing of the material components in a relatively short discharge neck of the two-component cartridge.
In a mixing system for two-component cartridges having a neck section structure with an inner discharge channel and an outer tubular discharge channel for discharging first and second material components from first and second chambers of the cartridge, the inner discharge channel is provided with star-like pockets extending into the outer discharge channel for dividing the second material flow into second material flow strands and a baffle plate is arranged centrally in front of the inner discharge channel for directing the inner material flow outwardly through the pockets in strands of inner material components between the outer material component strands, so that a pre-mixing of the material components occurs already directly at the openings of the discharge channels.
The baffle plate covers the center area over a part corresponding to the cross-section of the cylindrical discharge channel so that the material of the first material component flowing out of the inner space of the first tubular body is forced to flow radially outwardly past the buffer plate and into the pocket-like extensions of the discharge channel. In this way, a plurality of material strands are formed which leave the pocket-like extensions with an axial, radially outwardly diverging, directional flow component.
In a first embodiment of the invention, the baffle plate is formed by a central body which is arranged ahead of the mixing element at the entrance end thereof. The central body may be in the form of a knob and provided with a redirecting tip which points in a direction opposite the material flow and which extends into the discharge end of the outlet channel for the first material component when the mixer is mounted onto the discharge neck. In this embodiment, the cover may have a simple shape. It only needs to have a central plug which extends up to the cylindrical discharge channel of the discharge neck of the inner tubular body for closing the discharge neck. In this way, a reliable seal can be established in a simple manner.
In a second embodiment, the baffle plate is formed integrally with the discharge neck via connecting elements for example ribs or webs which extend radially from the inner wall of the discharge channel. Preferably, the connecting elements are connected to the inner wall of the cylindrical discharge channel so far upstream that, downstream thereof, there is a sufficiently long axial cylindrical or slightly conical discharge channel section in which a hollow plug which is connected to the cover can be accommodated and which acts as a seal that can be moved over the baffle plate.
The second material component which flows out through the annular channel formed between the neck sections of the inner and the outer tubular bodies is also divided into several material strands by flow baffles which are formed by the pocket-like extensions of the exit channel for the first material component which are arranged in circumferential direction alternately with regard to the material strands of the first material components discharged via the pocket-like extensions. With this flow redirection of the second material component by the outer walls of the pocket-like extensions of the inner discharge channels for the first material component, the second material component is redirected sidewardly whereby the material strands of the second material component are subjected to a flow direction component in circumferential direction so that, instantly, a mixing with the material strands of the first material components takes place even before the material strands reach the first mixing element in the mixing tube of the mixer.
The arrangement according to the invention makes a noticeable reduction of the number of the mixing elements in the mixing tube of the mixer possible while still achieving a homogeneous mixing of the two material components and also a substantial reduction of the discharge pressure required. This is based on the following advantages.
Within the neck arrangement, the first material component as well as the second material component are flowing through cross-sectional areas which remain the same up to the point where the inner discharge channel for the first material component widens in the form of the annularly arranged pocket-like extensions which project into the annular flow channel for the second material component. There, overall, the flow cross-section becomes somewhat narrower because of the knob-like central body disposed in the entrance area of the mixer, so that the mixing is intensified because the flow has not only an axial flow direction component but also a circumferential flow direction component. This area of reduced flow cross-section however is axially very short so that the flow resistance induced thereby is quite low. The subsequent mixing process for the two material components then requires only a relatively small number of mixing element in the mixing tube.
The cartridge according to the invention provides for a greater efficiency of mixing of the two material components and it requires only a smaller number of mixing elements in the mixing tube and, consequently, a lower discharge pressure which is particularly advantageous in connection with viscous materials.
Furthermore, with the arrangement according to the invention, the design of the cover is simplified and its sealing capability is substantially improved. Since the inner discharge channel for the first material component is cylindrical and arranged centrally and there is only one such channel the cover may be a single part and have only a central plug which extends into the cylindrical part of the discharge channel for the first material component in order to firmly seal it.
The invention will become more readily apparent from the following description of two exemplary embodiments with reference to the accompanying drawings.
The neck section 6 of the inner tubular body 5 forms a cylindrical discharge channel 9 for the first material component and the neck section 3 of the outer tubular body 1 forms between itself and the neck section 6 of the inner tubular body 5 an annular discharge channel 10 for the second material component. It is noted that the branched section of the neck section 6 of the inner tubular body 5 which is disposed in the rear part of the neck 3 of the outer tubular body 5 has several passages extending axially along its outer surface so as to provide for communication between the annular second chamber 8 and the annular discharge channel 10. These passages are not visible in
The mixer 12 comprises a mixing tube 14, which, at its inlet end, is provided with an enlarged diameter threaded sleeve 15, which is threaded onto the external thread 4 of the neck section 3 of the outer tubular body 1. The mixing tube 14 is provided with a number of axially adjacent mixing elements 16 which are known per se and which tilt and divide the material strands again and again so as to provide for a through mixing of the two material components.
As shown in
As shown in
The second material component discharged via the annular discharge channel 10 is then also divided via the pocket-like extensions 18 of the discharge channel 9 into several material strands which are received between the material strands of the first material component and are provided with a transverse directional flow component by a deflection in circumferential direction applied by the pocket-like extensions 18 which enhances an instant mixing with the material strands of the first material component.
In the first embodiment of the invention shown in
In
The difference between the embodiment of
Instead, in the embodiment of
However, the webs 19a are connected to the inner wall of the suck section 6 only at a certain axial distance from the end of the cylindrical part of the discharge channel 9 upstream of the location of the baffle plate 20a. Downstream of the connection location of the webs 19a a short cylindrical end section 9a of the discharge channel 9 is established into which a cylindrical annular sleeve formed on a closure cap can extend for sealingly closing the discharge channel 9. As shown in the figures, the diameter of the baffle plate 20a is somewhat smaller than the cross-section of the cylinder discharge channel 9 so that such a cylindrical annular sleeve formed on a cover can be moved over the baffle plate 20a and, in this way, in cooperation with the end section 9a of the discharge channel, sealingly closes the discharge channel 9.
A further modification which corresponds essentially to the embodiment according to
Number | Date | Country | Kind |
---|---|---|---|
20 2009 007 919.8 | May 2009 | DE | national |
09 007 452.7 | Jun 2009 | EP | regional |