Mixture fitting for a combustible gas burner system

Information

  • Patent Grant
  • 6796302
  • Patent Number
    6,796,302
  • Date Filed
    Thursday, February 7, 2002
    22 years ago
  • Date Issued
    Tuesday, September 28, 2004
    20 years ago
Abstract
A mixture fitting for use in a combustible gas system, for example, a fireplace. The mixture fitting may include a first portion configured to be coupled to a combustible gas source and a second portion configured to be coupled to a burner assembly. The first and second portions together form a gas passage. The mixture fitting also includes an air orifice extending from an exposed surface of the mixture fitting to the gas passage. The air orifice is configured to allow primary air to travel through the air orifice and into the gas passage to facilitate mixing of air with the combustible gas. Alternatively, the air orifice may be angled, and multiple air orifices may also be provided.
Description




FIELD OF THE INVENTION




The present invention relates to a combustible gas burner system. More particularly, the invention relates to an apparatus for optimizing the mixture of air with a combustible gas in a combustible gas burner system.




BACKGROUND OF THE INVENTION




Many devices combust material to create a flame. For example, a fireplace is an efficient method for providing warmth and creating the appeal of a fire. A gas fireplace combusts a gas, usually LP or natural gas or a mixture thereof, combined with air to create a gas flame. A gas fireplace typically includes a valve assembly that is coupled at a first end to a combustible gas source and at a second end to a burner assembly. The valve assembly functions to control the amount and pressure of combustible gas delivered to the burner assembly. In addition, the valve assembly and/or burner assembly may introduce and mix air with the combustible gas before it is ignited. Prior burner assemblies are shown in U.S. Pat. No. 5,328,356 to Hawkinson and U.S. Pat. No. 5,601,073 to Shimek.




The efficiency of a fireplace can depend upon a variety of factors. Important factors include the relative amounts of air and combustible gas, as well as the degree of mixture of the air and gas, delivered within the fireplace for ignition. Therefore, it is desirable to provide an apparatus that optimizes the amount of air and the mixture of air with combustible gas in a combustible gas burner system to increase efficiency.




SUMMARY OF THE INVENTION




Generally, the present invention relates to a combustible gas burner system. More particularly, the invention relates to an apparatus for optimizing the mixture of air with a combustible gas in a combustible gas burner system.




In one aspect, the invention relates to a mixture fitting for use in a combustible gas system that may include a first portion configured to be coupled to a combustible gas source and a second portion configured to be coupled to a burner assembly, wherein the first and second portions define a gas passage. The mixture fitting may also include an air orifice defined by the mixture fitting extending from an exposed surface of the mixture fitting to the gas passage and configured to allow primary air to travel through the air orifice and into the gas passage.




In another aspect, the invention relates to an apparatus for mixing air with combustible gas including a combustible gas source, and a mixture fitting defining a gas passage and an air orifice extending from an exposed surface of the mixture fitting to the gas passage, wherein the combustible gas source is coupled to the mixture fitting to deliver combustible gas to the gas passage, and wherein the air orifice is configured to provide primary air to the gas passage for mixture with the combustible gas.




In another aspect, the invention relates to a gas fireplace comprising a combustion chamber enclosure defining a combustion chamber and a burner assembly disposed within the fireplace, wherein the burner assembly includes a burner disposed to combust a combustible gas and air mixture within the combustion chamber, wherein the burner defines a burner tube aperture, a burner tube coupled to the burner tube aperture, and an air shutter coupled to the burner tube. The fireplace further includes a mixture fitting defining a gas passage and an air orifice, wherein combustible gas is delivered through the gas passage and mixed with primary air entering the gas passage through the air orifice to form the combustible gas and air mixture and wherein the mixture fitting is configured to deliver the combustible gas and air mixture to the burner through the burner tube.




In yet another aspect, the invention relates to a method for the mixing of combustible gas and air including steps of: providing a combustible gas source; and providing a mixture fitting that defines a gas passage and an air orifice oriented at an angle in a direction of a normal flow of the combustible gas, wherein the combustible gas source delivers combustible gas to the gas passage and wherein the air orifice provides primary air to the gas passage for mixture with the combustible gas.




Another aspect of the invention relates to a method for generating a combustible gas and air mixture in a gas fireplace including the steps of: supplying combustible gas from a combustible gas source; conducting the combustible gas from the combustible gas source to a mixture fitting, wherein the mixture fitting defines a gas passage and an air orifice; passing the combustible gas through the gas passage; providing primary air into the gas passage through the air orifice; mixing the air with the combustible gas within the gas passage to form the combustible gas and air mixture; and directing the combustible gas and air mixture from the mixture fitting.




The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. Figures in the detailed description that follow more particularly exemplify embodiments of the invention. While certain embodiments will be illustrated and describing embodiments of the invention, the invention is not limited to use in such embodiments.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:





FIG. 1

is a side schematic cross-sectional view of an example embodiment of a fireplace;





FIG. 2

is a perspective schematic view of example embodiments of a valve assembly and a burner assembly of the fireplace of

FIG. 1

including an example embodiment of a mixture fitting made in accordance with the present invention;





FIG. 3

is an enlarged perspective view of a portion of the example valve and burner assemblies of

FIG. 2

including the example embodiment of the mixture fitting;





FIG. 4

is an exploded perspective schematic view of the example valve assembly of

FIG. 2

;





FIG. 5

is an exploded perspective schematic view of the example burner assembly of

FIG. 2

;





FIG. 6

is a perspective view of the example embodiment of the mixture fitting of

FIG. 2

shown in isolation;





FIG. 7

is a side view of the example embodiment of the mixture fitting of

FIG. 6

;





FIG. 8

is a first end view of the example embodiment of the mixture fitting shown in

FIG. 6

;





FIG. 9

is a second end view of the example embodiment of the mixture fitting shown in

FIG. 6

;





FIG. 10

is a cross-sectional view taken along line A—A of the example embodiment of the mixture fitting shown in

FIG. 9

;





FIG. 11

is a perspective view of a second example embodiment of a mixture fitting made in accordance with the present invention;





FIG. 12

is a side view of the example embodiment of the mixture fitting of

FIG. 11

;





FIG. 13

is a first end view of the example embodiment of the mixture fitting shown in

FIG. 11

;





FIG. 14

is a second end view of the example embodiment of the mixture fitting shown in

FIG. 11

;





FIG. 15

is a cross-sectional view taken along line B—B of the example embodiment of the mixture fitting shown in

FIG. 14

; and





FIG. 16

is a side schematic cross-sectional view of a second example embodiment of a burner tube made in accordance with the invention.











While the invention is amenable to various modifications and alternant forms, specifics thereof have been shown by way of example and the drawings, and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.




DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The invention is applicable to a combustible gas burner system. In particular, the invention is directed to an apparatus for optimizing the addition and mixture of air with a combustible gas in a gas burner system. While the present invention is not so limited, an appreciation of the various aspects of the invention will be gained through a discussion of the examples provided below.




Embodiments of the present invention may be used in conjunction with any system or apparatus that ignites a combustible gas to generate a gas flame. A non-exhaustive list of such devices may include fireplaces, grills, furnaces, stoves, appliances, etcetera. While the example embodiments of the present invention provided below are described in conjunction with an example fireplace, the present invention is equally applicable to other systems or apparatuses besides a fireplace that ignite a combustible gas to generate a gas flame.




As used herein, the term “coupled” means any structure or method that may be used to provide connectivity between two or more elements, which may or may not include a direct physical connection between the elements. The terms “efficiency” or “more efficient” are used herein to mean either an increase in temperature for combustion of a given volume of gas or a decrease in an amount of gas needed to generate a given temperature.




Referring now to

FIG. 1

, a perspective view of an example embodiment of a fireplace


100


is shown. The fireplace


100


includes a combustion chamber enclosure


201


. The combustion chamber enclosure


201


comprises panels


212


,


216


, and


282


(one or more additional panels that comprise example combustion chamber enclosure


201


are not shown in

FIG. 1

) that together define a combustion chamber


130


. The combustion chamber enclosure


201


further defines an opening


110


that may optionally be covered by a panel


244


. The fireplace


100


may generally function to ignite combustible gas provided from a combustible gas source to create a gas flame.




The panels


212


,


216


,


244


, and


282


comprising the fireplace


100


are shown in one configuration. Other configurations are also possible. For example, the present invention may be applicable to any prefabricated gas fireplace such as a direct vent, a universal vent, a B-vent, a horizontal/vertical-vent, a dual direct vent, or a multisided unit. The present invention may also be applicable to other combustible gas burner systems other than a fireplace, as noted above.




Referring now to

FIGS. 2-5

, an example embodiment of a valve assembly


200


and a burner assembly


300


are shown. The valve assembly


200


and the burner assembly


300


may be utilized in conjunction with the fireplace


100


to delivery and ignite combustible gas to create a gas flame. The valve assembly


200


includes a variable valve


821


that functions to adjust an amount and pressure of combustible gas provided to the burner assembly


300


. A flex piping


822


is coupled via a brass fitting assembly


802


to a first end of the variable valve


821


. A flex ball valve assembly


808


is coupled to a second end of the variable valve


821


. The flex ball valve assembly


808


, in turn, can be connected to a source of combustible gas such as, for example, LP or natural gas, or mixtures thereof with air. A compression elbow fitting


803


is coupled on a first end via a brass fitting


801


and a grommet


804


to the flex piping


822


.




The burner assembly


300


generally includes a burner


301


comprising a burner pan


703


coupled to a burner top


709


. The burner top


709


includes apertures


711


defined through the burner top


709


in a predetermined pattern. This predetermined pattern may be modified to alter the characteristics of the flame pattern resulting from combustion. As shown in

FIG. 1

, the burner top


709


forms a portion of panel


216


of combustion chamber


201


of fireplace


100


. Alternatively, a burner top can form an entire bottom panel of a combustion chamber enclosure and be composed of any material such as metal or a vacuum or compression molded refractory ceramic fiber material.




Other components of the burner assembly


300


include a burner deflector


704


, a burner diffuser


706


, and a burner support


705


disposed within the burner pan


703


. A pilot assembly bracket


814


and electronic pilot


809


are disposed adjacent the burner top


709


to cause ignition of the combustible gas escaping from the apertures


711


. A pair of burner legs


708


supports the burner pan


703


and related structures. A burner tube


707


is positioned below the burner pan


703


. A first end


720


of the burner tube


707


is coupled to the burner pan


703


at an aperture


710


defined in the burner pan


703


. An air shutter


701


with slots


746


is coupled to a second end


730


of the burner tube


707


. Longitudinal slots


745


formed in the burner tube


707


correspond to the slots


746


formed in the air shutter


701


, allowing for secondary air to enter through a space


747


into the tube


707


and mix with the gas, as described in detail below.




It is preferable in a combustible gas burner system to have a mixture consisting of given quantity of air and fuel to create desired efficiencies in combustion. For example, in the example embodiments shown, it is desirable to have approximately a 10 to 1 mixture of air to gas during combustion. In addition, it is preferable to assure a generally consistent mixture of air and gas to promote efficient combustion.




The valve assembly


200


is coupled to the burner assembly


300


as follows. The compression elbow fitting


803


of the valve assembly


200


is coupled to the air shutter


701


of the burner assembly


300


through a first example embodiment of a mixture fitting


810


made in accordance with the present invention. The example mixture fitting


810


, shown in isolation in

FIGS. 6-10

, includes a first portion


865


defining a first gas passage


870


and a second portion


860


defining a second gas passage


877


of an increased diameter. The first gas passage


870


and the second gas passage


877


form a gas passage


871


. Optionally, the first portion


865


can be threaded for coupling to the compression elbow fitting


803


. Alternatively, the mixture fitting can be welded or otherwise connected to the compression elbow fitting. Positioned between and coupling the first portion


865


and the second portion


860


is a hex portion


862


. The first gas passage


870


is fluidly coupled to the second gas passage


877


through the aperture


875


defined in the hex portion


862


. In this configuration, the first portion


865


can be coupled to the compression elbow fitting


803


and the second portion


860


can be coupled to the air shutter


701


.




Also formed in the first portion


865


are two example air orifices


880


and


881


that extend from an exposed surface


866


of the first portion


865


through to the gas passage


870


. The exposed surface


866


may be any surface of the mixture fitting


810


that is exposed to air. The air orifices


880


and


881


in the example embodiment are positioned on opposed sides of the first portion


865


and extend at an angle relative to a longitudinal axis


895


of the mixture fitting


810


. The air orifices


880


and


881


angle towards the second portion


860


in a direction of gas flow as the air orifices extend from the surface


866


to the gas passage


870


. In this configuration, the air orifices


880


and


881


allow primary air to aspirate through the orifices


880


and


881


and into the gas passage


871


, as described in greater detail below.




The air orifices


880


and


881


are important to the overall efficiency of the valve and burner assemblies


200


and


300


in that aspirating the air through the air orifices breaks a boundary layer that may form along the walls that form the gas passage


871


and promotes a turbulent flow that facilitates the mixture of the combustible gas with the air. This may improve the overall efficiency of the fireplace. As gas flows through a tube, the gas closest to the edges of the tube approaches a velocity of zero to form the boundary layer. In the example embodiment, this boundary layer is positioned adjacent an outer diameter


879


of the gas passage


871


as combustible gas flows through the passage.




In the example embodiment, the velocity and pressure of the combustible gas flowing through the gas passage


871


creates a pressure gradient that allows for aspiration of primary air through air orifices


880


and


881


in a direction of arrows


891


and


892


and into the passage


871


. The air orifices


880


and


881


function to allow primary air to enter the gas passage


871


adjacent to its outer diameter


879


and therefore through the boundary layer of gas formed at the outer diameter


879


. The primary air functions to create turbulence and further mix the gas and air already contained in the gas passage


871


. For example, the primary air may break up the gas in the boundary layer, thereby reducing the boundary layer and promoting a more consistent mixture of combustible gas and air as the gas and air mixture flows through the passage


871


to the burner assembly


300


. Further, the primary air may cause turbulence, thereby facilitating the mixing of gas and air. In this manner, the example mixture fitting


810


can assure a more consistent mixture of combustible gas and air, thereby allowing for greater efficiency in combustion of the gas by the burner assembly


300


.




The valve and burner assemblies


200


and


300


may function to deliver and combust the air-gas mixture as follows. Combustible gas from a combustible gas source is supplied via the flex ball valve assembly


808


to the variable valve


821


. The variable valve


821


delivers the combustible gas through the flex piping


822


to the compression elbow fitting


803


. The gas then flows through the example mixture fitting


810


, in which primary air enters through the air orifices


880


and


881


, breaking up the boundary layer of gas formed around the outer diameter


879


of the passage


871


and causing more turbulent flow to further facilitate the mixture of gas and air in the gas passage


871


. The gas is then delivered through the air shutter


701


to the burner tube


707


, and the slots


745


and


746


in the shutter


701


and the burner tube


707


allow secondary air to enter through the space


747


to provide additional air for combustion. The burner tube


707


then directs the combustible gas to the burner


301


of the burner assembly


300


, where the combustible gas and air mixture is ignited and combustion occurs.




The primary air entering the mixture fitting


810


differs from the secondary air entering through the space


747


in that the primary air is provided at a sufficient velocity to promote mixing of the air and gas to create a more consistent mixture, while the secondary air is provided as an additional source of air for combustion.




A second example embodiment of a mixture fitting


910


made in accordance with the present invention is shown in

FIGS. 11-15

. The mixture fitting


910


is similar to that of mixture fitting


810


, except that the mixture fitting


910


includes four air orifices. Air orifices


980


and


981


are positioned in an opposing fashion and air orifices


982


and


983


are also positioned opposing each other and 90-degrees away from the air orifices


980


and


981


. In this configuration, air may enter each of the air orifices


980


,


981


,


982


, and


983


to mix with the boundary layer formed on the outer diameter of the gas passage


871


, thereby increasing air content, turbulent flow, and further optimizing the mixture of combustible gas and air.




Alternatively to the two example embodiments shown, one air orifice or greater than four air orifices may be used as desired. Each orifice can be a hole, slit, slot, have different sizes, include a mesh cover to keep particulates from entering the orifice, and, if multiple holes are employed, a pattern can be used. In addition, the air orifices can be angled (as illustrated in the example embodiments) or may be perpendicular to the longitudinal axis


895


. Alternatively, the angle of the air orifices can be varied individually or as a group to create the desired efficiencies.




The air that passes through the air orifices can either be aspirated (as shown in the embodiment provided) or optionally force injected into the passage. If the air is forced into the mixing fitting, the air can be oxygenated or oxygen rich through the use of an oxygenator. The terms “provide” or “providing” are used herein to describe both aspiration of air as well as forced injection of air into the air orifices.




An alternative example embodiment of a burner tube


507


made in accordance with the present invention is shown in FIG.


16


. The burner tube


507


is similar to that of burner tube


707


, except that the burner tube


507


includes a surface


521


extending from a first end


520


to a second end


530


of the burner tube


507


. The surface


521


may be uneven, irregularly shaped, asymmetric, undulate, or otherwise vary. The configuration of the surface


521


of the burner tube


507


may be important because air traveling through the burner tube may laminate along a surface of the tube. The irregularly shaped surface of the burner tube


507


may function to facilitate further mixture of the air with the gas as both travel from the valve assembly


200


through the burner tube


507


to the burner


301


. In this configuration, the burner tube


507


may function to deliver a gas-air mixture of a greater consistency, thereby creating greater efficiency when the gas-air mixture is combusted.




The surface


521


of the burner tube


507


may be evenly or unevenly varied to promote greater mixing. Other methods of promoting mixing can also be used, such as with additional variations in the diameter of the burner tube


507


. For example, the burner tube


507


may be formed in an egg carton shape or a variety of other irregularly-shaped patterns to promote mixture of the air with the gas. Alternatively, the burner tube


507


may be configured as an insert for existing burner tubes. In this manner, the burner tube


507


could be inserted into existing burner tubes to facilitate in the mixing of gas and air as the air approaches the burner


301


.




The example mixture fittings


810


and


910


and the burner tube


507


may function to increase efficiency of a system or apparatus that utilizes combustible gas to create a gas flame. First, the air orifices of the mixture fittings introduce additional air into the combustible gas, thereby optimizing the air and combustible gas mixture. Second, the angled position of the air orifices allows the air to be introduced adjacent an outer diameter of the gas passage, thereby mixing the boundary layer with air to reduce or eliminate it.




The present invention should not be considered limited to the particular examples or materials described above, but rather should be understood to cover all aspect of the invention as fairly set out in the attached claims. Various modifications, equivalent processes, as well as numerous structures to which the present invention may be applicable will be readily apparent to those of skill in the art to which the present invention is directed upon review of the instant specification.



Claims
  • 1. A gas fireplace comprising:a combustion chamber enclosure defining a combustion chamber; a burner assembly disposed within the fireplace, wherein the burner assembly includes: a burner disposed to combust a combustible gas and air mixture within the combustion chamber, wherein the burner defines a burner tube aperture, a burner tube coupled to the burner tube aperture, and an air shutter coupled to the burner tube, wherein the air shutter defines an air aperture configured to deliver secondary air to the combustible gas and air mixture, and a mixture fitting aperture; and a mixture fitting defining a gas passage, and an air orifice extending from a first end at an outer surface of the mixture fitting to a second end at the gas passage, wherein combustible gas is delivered through the gas passage and mixed with primary air entering the gas passage through the air orifice to form the combustible gas and air mixture, wherein the mixture fitting is configured to deliver the combustible gas and air mixture to the burner through the burner tube, wherein the air orifice is oriented at an angle in a direction of a flow of the combustible gas within the gas passage such that the first end is positioned upstream of the flow of the combustible gas with resect to the second end of the air orifice, and when at least a portion of the mixture fitting is inserted into the mixture fitting aperture of the air shutter.
US Referenced Citations (11)
Number Name Date Kind
1818783 Beam Aug 1931 A
1961751 Feyling Jun 1934 A
2450790 Greaves Oct 1948 A
3078915 Webster Feb 1963 A
3825404 De Gouville Jul 1974 A
3923448 Guth Dec 1975 A
5213494 Jeppesen May 1993 A
5328356 Hawkinson Jul 1994 A
5601073 Shimek Feb 1997 A
5931661 Kingery Aug 1999 A
6053165 Butler et al. Apr 2000 A
Foreign Referenced Citations (2)
Number Date Country
86 31 526.9 Oct 1987 DE
815408 Jul 1937 FR
Non-Patent Literature Citations (1)
Entry
Declaration of Gary Lee Butler with attached Exhibit A, executed on Jul. 19, 2002.