This application claims the priority benefit of China application serial no. 202111091734.1 filed on Sep. 17, 2022. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
The invention relates to a machine learning (ML) attack resisting method, in particular to an ML attack resisting method for a strong physically unclonable function (PUF).
The physically unclonable function, as a new security application technology, can be applied to the fields of security key generation and low-cost authentication. The PUF can generate unpredictable security information in a non-storage manner by capturing differences in hardware fabrication, so as to lower the risk of information leakage. The input of the PUF is called challenge, the output of the PUF is called response, each challenge corresponds to a unique response, thus the corresponding challenge and response form a challenge response pair (CRP). PUFs are classified into weak PUFs and strong PUFs according to their different capacities to generate CRPs. The weak PUFs can only generate a limited number of CRPs, thus being mainly used for key generation or random number generation. The strong PUFs can generate a large number of CRPs by reconstructing hardware resources, thus being mainly used for device authentication.
However, the strong PUFs, especially arbiter PUFs (APUFs), are extremely likely to be attacked by ML such as logistic regression (LR), support vector machine (SVM) and artificial neural network (ANN). Due to the fact that the challenge of APUF is used for controlling the path of a signal passing through the PUF, the response reflects the sequence of signals reaching an arbiter along different paths, the total delay of the signal passing through each path is a cumulative delay of all levels of delays, there is a close linear relationship between the challenge for controlling each level of delay and the response representing the total delay, which makes the strong PUFs easy to model and prone to being attacked. The specific structure of the APUF is shown in
To enhance the security of the PUF, Document 1 (Dan F, Xu Y, Li Z, et al. A Modeling Attack Resistant R-XOR APUF Based on FPGA[C] 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP), 2018, pp. 577-581.) has proposed an R-XOR APUF which generates a final response by performing an XOR operation on responses of R APUFs, as shown in
The technical issue to be settled by the invention is to provide an ML attack resisting method for a strong PUF, which can greatly improve the ML attack resistance of the strong PUF, reduce the ML attack prediction rate to about 50% that is close to random guess, and make the strong PUF less likely to be attacked by ML.
The technical solution adopted by the invention to settle the above mentioned technical issue is as follows: an ML attack resisting method for a strong PUF comprises the following steps:
Step 1, collecting n2 CRPs of a strong PUF, wherein n is any positive integer that is not less than 2; denoting a challenge signal of an xth CRP of the strong PUF as Cx, wherein, x=1, 2, . . . , n2, the challenge signal Cx is a b-bit binary number and is expressed as cx1cx2cx3 . . . cxb, cxa represents a signal value of an ath bit of the challenge signal of the xth CRP, a=1, 2, . . . , b, the signal value cxa represents a low level when its value is 0, and represents a high level when its value is 1; denoting a response signal of the xth CRP of the strong PUF as Rx, wherein the response signal Rx is a 1-bit binary number, the response signal Rx represents a low level when its value is 0, and represents a high level when its value is 1, a one-to-one corresponding relationship exits in each CRP of the strong PUF, that is, the challenge signal Cx passes through the strong PUF to obtain the response signal Rx, and the corresponding relationship in the n2 CRPs of the strong PUF is {C1→R1; C2→R2; . . . ; Cn
Step 2, putting the response signals R1, R2, . . . , Rn
Wherein, mij is an element in the ith row and jth column of the plaintext matrix M, i=1,2, . . . , n, j=1,2, . . . , n, m11=R1, m12=R2, . . . , mij=R(i−1)×n+j, . . . , and mnn=Rn
Step 3, multiplying the n-order plaintext matrix M by itself to obtain a ciphertext matrix, wherein the ciphertext matrix is denoted as S, which is expressed by formula (2):
Wherein, sij is an element in the ith row and jth column of the ciphertext matrix S, i=1,2, . . . . , n, j=1,2, . . . , n, sj=Σk=1nmikmkj, and k=1,2, . . . , n;
Step 4, performing binary transform on the ciphertext matrix S to obtain a transform matrix S′, and denoting an element in the ith row and jth column of transform matrix as s′ij, specifically: determining whether the element sij is an odd number or an even number; if the element sij is an odd number, the element s′ij=1; or, if the element sij is an even number, the element s′ij=0;
Step 5, sequentially using elements in the transform matrix S′ as final response signals r1˜rn
Step 6, repeating Step 2 to Step 5 until the number of CRPs reaches a preset required value.
Compared with the prior art, the invention has the following advantages: response signals generated by applying multiple sets of different challenge signals to a strong PUF are used as information to be encrypted, and are put in order to form a plaintext matrix. Then, an encryption operation is performed by multiplying two plaintext matrixes to generate a ciphertext matrix. Next, elements in a transform matrix obtained by performing binary transformation on the ciphertext matrix are used as final responses, which are in one-to-one correspondence with original challenge signals, and are used as final CRPs of the matrix-encrypted strong PUF. In the invention, the correlation between the challenge signals and the response signals is greatly reduced by matrix encryption. The final response signals are not only correlated with the corresponding challenge signals, but also correlated with challenge signals corresponding to other response signals participating in matrix encryption. The correlation between challenges and responses is further reduced, so the attack prediction rate may be decreased to about 50%, which is close to random guesses, and the attack resistance is improved by four to five magnitudes. Moreover, due to the unidirectionality of matrix self-multiplication encryption, even if an attacker steals encrypted response signal data, the attacker cannot obtain the initial response signals through a decryption algorithm, so a complete anti-attack property is realized. Therefore, the invention can greatly improve the ML attack resistance of the strong PUF, reduce the ML attack prediction rate to about 50% that is close to random guesses, and make the strong PUF less likely to be attacked by ML.
The invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.
Embodiment: an ML attack resisting method for a strong PUF comprises the following steps:
Step 1, n2 CRPs of a strong PUF are collected, wherein n is any positive integer that is not less than 2; a challenge signal of an xth CRP of the strong PUF is denoted as Cx, wherein, x=1, 2, . . . , n2, the challenge signal Cx is a b-bit binary number and is expressed as cx1cx2cx3 . . . cxb, cxa represents a signal value of an ath bit of the challenge signal of the xth CRP, a=1, 2, . . . , b, the signal value cxa represents a low level when its value is 0, and represents a high level when its value is 1; a response signal of the xth CRP of the strong PUF is denoted as Rx, wherein the response signal Rx is a 1-bit binary number, the response signal Rx represents a low level when its value is 0, and represents a high level when its value is 1, a one-to-one corresponding relationship exits in each CRP of the strong PUF, that is, the challenge signal Cx passes through the strong PUF to obtain the response signal Rx, and the corresponding relationship in the n2 CRPs of the strong PUF is {C1→R1; C2→R2; . . . ; Cn
Step 2, the response signals R1, R2, . . . , Rn
Wherein, mij is an element in the ith row and jth column of the plaintext matrix M, i =1,2, . . . , n, j=1,2, . . . , n, m11=R1, m12=R2, . . . , mij=R(i−1)×n+j, . . . , and mnn=Rn
Step 3, the n-order plaintext matrix M is multiplied by itself to obtain a ciphertext matrix, wherein the ciphertext matrix is denoted as S, which is expressed by formula (2):
Wherein, sij is an element in the ith row and jth column of the ciphertext matrix S, i=1,2, . . . , n, j=1,2, . . . , n, sij=Σk=1nmikmkj, and k=1,2, . . . , n;
Step 4, binary transform is performed on the ciphertext matrix S to obtain a transform matrix S′, and an element in the ith row and jth column of transform matrix is denoted as s′ij, specifically: whether the element sij is an odd number or an even number is determined; if the element sij is an odd number, the element s′ij=1 ; or, if the element sij is an even number, the element s′ij=0;
Step 5, elements in the transform matrix S′ are sequentially used as final response signals r1˜rn
Step 6, Step 2 to Step 5 are repeated until the number of CRPs reaches a preset required value.
When a certain number of CRPs are collected, the performance of the ML attack resisting method for a strong PUF in the invention is verified through python simulation, and the distribution of 0/1 in responses obtained by adopting the ML attack resisting method in the invention is tested to determine the randomness of the ML attack resisting method.
The relationship between the attack prediction rate and the number of training sets CRP under the condition that a 64-bit APUF adopts the ML attack resisting method of the invention and the relationship between the attack prediction rate and the number of training sets CRP under the condition that the 64-bit APUF does not adopt the ML attack resisting method of the invention adopted are shown in
The relationship between the order n of the plaintext matrix in the ML attack resisting method for a strong PUF of the invention and the attack prediction rate is shown in
The relationship between the proportion of 0/1 in responses of 100,000 CRPs and the order n of the plaintext matrix under the condition that the 64-bit APUF adopts the ML attack resisting method for a strong PUF of the invention is shown in
To sum up, the ML attack resisting method for a strong PUF provided by the invention can greatly improve the ML resistance of the strong PUF. Comparing with an original strong PUF not using the method, the correlation between challenge signals and response signals is greatly reduced through encryption of the ML attack resisting method for a strong PUF. The final response signals are not only correlated with the corresponding challenge signals but also correlated with challenge signals corresponding to other response signals participating in matrix encryption, thus the correlation between challenges and responses is further reduced. The final attack prediction rate may be decreased to about 50%, which is close to random guesses, and the attack resistance is improved by four to five magnitudes. In addition, due to the unidirectionality of matrix self-multiplication encryption, even if an attacker steals encrypted response signal data, the attacker cannot obtain the initial response signals through a decryption algorithm, so this method has a good anti-attack capacity and may be used by public. Moreover, in order to guarantee the maximum attack resistance of the algorithm and the optimal randomness of the responses, the order n of the plaintext matrix in the matrix encryption algorithm should not be less than 5.
Number | Date | Country | Kind |
---|---|---|---|
202111091734.1 | Sep 2021 | CN | national |