The present application relates to drills and platforms for drills, and more particularly, to mobile drill platforms.
Construction requires a variety of tools and fasteners to create stable structures. Traditional and general tools have been used for a variety of tasks. Although such tools, such a hammer and nail, are sufficient, room for significant improvement exists. Specialized tools can greatly increase the efficiency and productivity of certain jobs.
A mobile platform and related devices, apparatuses and assemblies are disclosed for rapidly screwing fasteners, such as screws, into wood and other materials. The mobile platform can include a cart with wheels, a drill, screw guide tube, and screw feeding device that allows the operator to quickly and efficiently insert the screws into the desired location in workpiece or work surface. The cart can include an upright structure configured to be the height of an average operator.
In operation, the user can walk behind the cart in a comfortable upright position without the need to bend down or get on the user's knees. In the upright position, the operate all functions of the platform via the control computer system, including feeding and drilling the screws. The operator can use the powered wheels to advance the mobile platform to the next desired location and repeat the process.
The mobile platform provides for labor productivity gains while greatly reducing the chance of injury, particular when fastening wood or mass timber decks. The operator of such a platform can operate the platform herein while standing upright. Without the need to constantly bend down or sit down, productivity increases can range from 75% to 90%. By operating the devices herein in a standing position, the risk of injury is decreased. Still further, the mobile platform provides for uniform construction resulting in stronger builds and that a ensured to be compliant with established standards. Further, the flexibility of the system between the lateral distance of screw insertion points and the distance from one insertion to the next allows the platform to be meet standards as they evolve.
In one embodiment, an apparatus can include a cart with wheels, an assembly rail system mounted to the cart, a screw assembly mounted to the assembly rail system. The screw assembly system can include a drill that rotates a drive shaft that engages a screw, a screw guide tube, a screw feeding tube connected to the screw feeding tube, and a screw feeding device. The screw feeding device can include a screw rack and a magnetic grip that moves a screw from the screw rack to the screw feeding tube. Also, the screw assembly can also include a plurality of limit stops, where a limit stop of plurality of limit stops disengages the drill, the pneumatic drive, or both the drill and pneumatic drive. The apparatus can further include a pneumatic drive and the wheels can be motorized.
Still further, a computer control system can be provided that controls the operations of the drill, the screw feeding device, the pneumatic drive, the wheels or a combination thereof. The control by the computer control system limits user interaction with the hardware that provides for a safe operation and limits operator error.
In another embodiment, a screw feeding device is provided. The screw feeding device can include a screw rack, a solenoid to release a single screw from the screw rack, a screw guide bracket, an air piston to advance the screw through the screw guide bracket and a magnetic grip that moves a screw from the screw rack to the screw feeding tube. The screw feeding device can also include a motor and a rotatable rod coupled to the motor, where the magnetic grip is mounted on the rotatable rod. Further, in operation, actuating the motor rotates the rotatable rod until the screw is dropped into a screw feeding tube.
In another embodiment, a modular drill platform can include a cart for facilitating movement of the modular platform in a plurality of directions, a compressor to facilitate operation of a drill of the modular drill platform, a memory that stores instructions and a processor that executes the instructions to perform operations. The operations can include receiving an input, processing the input and causing the modular platform, the cart, or both, to perform an action in response to the input, where the action can include activating the compressor of the modular drill platform, moving the cart, drilling into a work surface, or a combination thereof.
In other embodiments, a method of controlling a modular drill platform is provided. The method can include receiving an input, processing the input, and causing the modular drill platform to perform an action in response to the input. The actions can include activating a compressor of the modular drill platform, moving a cart of the modular drill platform, drilling into a work surface, or a combination thereof. Further, the action can include feeding a screw to be drilled. Additionally, the action can include drilling the screw into the workpiece.
Certain embodiments of the disclosure may include none, some, or all of the above technical advantages. One or more other technical advantages may be readily apparent to one skilled in the art from the figures, descriptions, and claims included herein.
For a more complete understanding of the present disclosure and its features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
Embodiments of the present disclosure are best understood by referring to the figures of the drawings, like terminology being used for like and corresponding parts of the various drawings.
In some embodiments, the mobile apparatus 300 can have a cart 310 having a cart deck 311 on which multiple components are attached. The cart 310 can include non-motorized wheels or casters 312 and/or motorized or drive wheels 313. The cart 310 can have an assembly rail system 320, which may include a first rail 321 and a second rail 322, that holds one or more screw assemblies 200. Such an apparatus 300 provides a modular platform because multiple screw assemblies 200 can be added or removed from the assembly rail system 320. Referring to
As shown in
The computer system or control computing device 360 can provide power to, and control, all of the functions and devices of the apparatus 300. Additionally, the control computing device 360 can include control actuators 331 as shown in
The cart 310 can have casters 312 that pivot, which allow the cart 310 to be rolled along any suitable surface and to change the direction 316 of the cart 310 as needed. The cart 310 can also have drive wheels 313 that contain one or more motors 314 to drive the wheels 313 and the cart 310 with all of the components of the mobile apparatus 300. Referring to
Referring to
The cart 310 can also have an upright structure 323 configured to be the height of an average operator, or less than the height of an average doorway to enable the mobile apparatus 300 to be moved into various facilities without removing components. As shown in
The cart 310 can also include an assembly rail system 320. The assembly rail system 320 can include a first rail 321 and second rail 322 to which the screw assembly 200 can be slidably attached and also temporarily fixed in a desired position. The first rail 321 can be located in the middle of the cart 310 to provide support at a center of gravity of the overall apparatus 300. The second rail 322 can be located on a drill edge of the cart 310. Each screw assembly 200 can slide or roll via rollers on the first and second rails 321, 322 to a desired location. Because the screw assemblies 200 are slidable along the assembly rail system 320, the distance between each screw assembly 200 can be adjusted by the operator. Further, a screw assembly 200 can be removed and additional screw assemblies 200 can be added to adjust the number of screw assemblies 200, and thus screws 1 to be drilled in to the workpiece 2. A screw assembly 200 can also be removed for servicing or maintenance. Although the screw assemblies 200 can slide on the assembly rail system 320, the screw assemblies 200 can also be locked in position relative to the assembly rail system 320. The screw assemblies 200 can be locked by bolts or other fastener to temporarily fix the screw assembly 200 to the assembly rail system 320.
As shown in
The drills 230 can be electric, gas, pneumatic drills 230 for screwing or otherwise inserting a fastener 1, such as a screw 1, in the desired position. The drill 230 can be operated by rotating a drive shaft 220 that engages a screw 1 or other fastener 1 to drive the screw 1 into the desired location. The drills 230 of each screw assembly 200 can be operated simultaneously or without the other drills 230 also being operated. Regardless of whether operated simultaneously, offset or in a solo manner, the drills 230 operate independently of each other. As an example, one drill 230 can rotate its drive shaft 220 faster than another drill 230 rotates its drive shaft 220. Thus, even when operated simultaneously or in a joint fashion, the speed and pressure provided by the drills 230 can operated and applied independently to accommodate differences of the fastener insertion points.
Additionally, the pneumatic drive 240 can provide the downward force 241 to drive the screw 1 into the workpiece 2 while the drill 230 rotates the drive shaft 220. The compressor 350 provides the downward force 241 to move pneumatic drive 240 down to drive in a screw and up to return to a rest position 222. Because each drill 230 has an independent upright rail system 231, each pneumatic drive 240 can descend its respective drive shaft 220 at an independent rate to account for differences in wood that results in screws 1 being inserted at different rates. In some embodiments, the compressor 350 may enable the downward force 241 to move the pneumatic drive 240, and further enable an upward force 242 to return the draft shaft 220 to the rest position 222.
The screw guide tubes 210 can be respective cylindrical tubes concentric with the drive shaft 220 of the respective drill 230. The screw guide tubes 210 can hold the screw 1 in place because the screw guide tubes 210 can be dimensioned with an internal diameter that is only slightly larger than the outer diameter 113 of head 112 of a screw 1 or other fastener 1. Further, the proximal ends 211 of the screw guide tubes 210 that are adjacent to the workpiece 2 provides a visual indication of the screw insertion point. Each proximal end 211 may be have a hole 212 larger than the diameter 113 of the head 112 of the screw 1. A screwing device or drill 230 can drill the screw 1 through the hole 212 at the proximal end 211 of the screw guide tube 210 into the workpiece 2.
Additionally, each screw guide tube 210 can be coupled to the base 202 of a screw assembly 200 to support the screw guide tube 210. The screw assembly base 202 can be slidably connected to the upright rail system 231. Further, each drill 230 can also be coupled to the screw assembly base 202.
The screw guide tubes 210 can include collars 213 around the holes 212 at the proximal end 211 of the screw guide tubes 210. The collars 213 can be press fit on the proximal ends 211 of screw guide tubes 210. In one arrangement, collars 213 can be press-fit on the screw guide tubes 210. The internal diameter of the collars 213 can be slightly larger than the exterior diameter of the screw guide tubes 210. Further, the collars 213 can have an internal annular seat or groove with an internal diameter that is larger than the internal diameter of the collars 213.
The screw guide tube 210 may have a side aperture 214 coupled to a second opening 132 of the screw feeding tube 130 of the screw feeding device 100. The second opening 132 may be located near a bottom end 133 of the screw feeding tube 130. A screw 1 may drop from the bottom end 133 of the screw feeding tube 130 into the screw guide tube 210. Accordingly, the screw guide tube 210 receives the screw 1 from the screw feeding device 100.
Referring back to
A screw guide tube 210 can include an upper portion 216 that houses the drive shaft 220. A lower portion 217 of the screw guide tube 210 can be dimensioned to receive the single screw from the screw feeding device 100. The drive shaft 220 can be lowered through upper portion 216 of the screw guide tube 210 so that the tip 221 of the drive shaft 220 engages the head 112 of the received screw 1. The drive shaft 220 can have a tip 221 dimensioned to fully engage the screw head 112 as the drive shaft 220 moves toward the proximal end 211 of the screw guide tube 210.
The interior surface 218 of screw guide tubes 210 can include a plurality of bristles 2401, shown in
As shown in
The screw assembly 200 can also include limit switches or stops 250. The limit switches or stops 250 disengage the pneumatic drive 240 and/or drill 230 to stop the pneumatic drive 240 and/or drill 230 at a bottom or desired position.
As shown in
The screws 1 can be loaded into the screw rack 110 that has a slot large enough to allow the screw shaft 114 of the screw 1 to freely pass but small enough to maintain the head 112 of the screw 1. The screw rack 110 can be angled toward the ground or workpiece 2 to allow gravity to force the screws 1 forward. At the work end of the screw rack 110, a solenoid 140 can be provided. As shown in
The air piston 160, which is also powered by the compressor 350, can be engaged to slidably advance the screw 1 to and through the screw guide bracket 150. The screw 1 is advanced until it comes into contact with the magnetic screw grips 120 that releasably secure the screw 1. With the screw 1 secured to the magnetic screw grips 120, the screw feeding motor 180 rotates the rotatable rod 170 until the screw 1 is in the screw slot 131, at which point further rotation overcomes the force of the magnetic screw grips 120 to release the screw 1 into an opening 131 of the screw feeding tube 130. In an embodiment, the screw 1 can be dropped into an opening 131 at the top of the screw feeding tube 130. In certain embodiments, the opening 131 is a screw slot 131 along the longitudinal axis of the screw feeding tube 130. Notably, the control computing device 360 can control all of the operations of the screw feeding device 100.
In operation and started from a non-engaged position where the drills 230 are not engaged and pneumatic drives 240 are up, an operator can begin operation by turning on the apparatus 300 via the key switch 337. The operator can use the left and/or fight throttles 335 to position the cart 310 into the appropriate position relying on manual movement 315 or motorized movement 315 provided by the motorized wheels 313, depending on the positioning of the foot pedal 318.
The operator can engage the drill button 334 to start the drilling process. Referring back to
The screw 1 can then descend down the screw feeding tube 130 and into the screw guide tube 210. The plurality of bristles 2401 will center the insertion point of the screw 1 against the workpiece 2 to insure that the screw 1 is inserted roughly perpendicular to the workpiece 2. Referring to
The operator can advance the cart 310 to the next insertion point. The visual indicator or laser will mark the next assertion point when the cart 310 has advanced the appropriate distance. The user can move the cart 310 forward until the appropriate distance for the next screw insertion is reached as indicated by the visual indicator or laser projecting opposite from the direction of operation and at an angle. In on embodiment, the cart 310 will be advanced the desired distance when the visual indicator or laser projects a beam that that will touch the immediately prior inserted screw. When the projected beam touches the prior inserted screw, the cart 310 and its components will be at the desired location to insert the next screw. The visual indicator or laser provides for uniform placement of sets of screws 1 at predetermined distances from one another. When desired, the distances between successive sets of screw placement can be changed by adjusting the angle at which the beam is projected.
Referring to
Referring now also to
In an embodiment, the apparatus 300 can perform an action 370 in response to input 365 received and processed by a processor 363 of the computer control system 360. The action 370 may include activating the screw feeding device 100 to feed a single screw 1 to the screw guide tube 210, activating the screwing device/drill 230 to rotate the drive shaft 220, and activating the pneumatic drive 240 to drill the received screw 1 into the workpiece 2. Data 401 may be generated based on the performance 402 of operations 364 performed by the apparatus 300. The data 401 may be logged for later review by an operator. In some embodiments, the computer control system 360 may transmit the data 401 to an external device 400. In certain embodiments, updated input 403 may be received from the external device 400 in order to improve the performance 402 of the apparatus 300.
The present disclosure may be embodied in various forms, including without limitation, the apparatus 300 for providing a mobile and modular platform for drilling screws 1 into a workpiece 2 and a method of controlling the apparatus 300. As shown in
The method may further include the step of replacing the screw rack 110 with a second rack 110 that holds another plurality of screws 1 (step 383). The method may also include the step of replacing the drive shaft 220 with a second drive shaft 220 having a predetermined tip 221 dimensioned to engage a head 112 of each of the second plurality of screws 1 (step 384). The first drive shaft 220 may be replaceable and adapted to disengage from the screwing device 230 at a connection point 223 accessible through the port 215 in the screw guide tube 210. The second drive shaft 220 may be adapted to engage the screwing device 230.
The present disclosure may also be embodied in a method of operating the apparatus 300, as shown in
The disclosed method may include the step of drilling the received screw 1 into the workpiece 2. In an example, the workpiece 2 may include wood flooring 2. The wheels 312/313 of the cart 310 may facilitate the movement 315 of the cart 310 over the flooring 2. The input 365 for the operation of the apparatus 300 may be based on: the hardness 21 of the workpiece 2 (e.g., wood hardness 21 of the flooring 2), the length 116 of the screws 1, the threading type 117 of the screws 1, and/or the tensile strength 118 of the screws 1.
In some embodiments, the machine 360 may operate as a standalone device. In some embodiments, the machine 360 may be connected (e.g., using communications network, another network, or a combination thereof) to and assist with operations performed by other machines and systems, such as, but not limited to, the mobile and modular apparatus 300, its components (e.g. the computing device 360, the compressor 350, the drills 230, and/or any other components), any other system, program, and/or device, or any combination thereof. The machine 360 may be connected to any one or more components of the mobile and modular apparatus 300. In certain embodiments, the machine 360 may reside on, approximate or within the apparatus 300. In certain embodiments, the machine 360 may be external to the apparatus 300 or offsite. In further embodiments, a portion of the machine 360 may reside within the apparatus 300, and a portion of the machine 360 reside external to the apparatus 300. In a networked deployment, the machine 360 may operate in the capacity of a server or a client user machine in a server-client user network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The machine 360 may comprise a server computer, a client user computer, a personal computer (PC), a tablet PC, a laptop computer, a desktop computer, a control system, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions 370 to be taken by that machine 360. Further, while a single machine 360 is illustrated, the term “machine” shall also be taken to include any collection of machines 360 that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
The computer system 360 may include a processor 363 (e.g., a central processing unit (CPU), a graphics processing unit (GPU, or both), a main memory 361 and a static memory, which communicate with each other via a bus. The computer system 360 may further include a video display unit, which may be, but is not limited to, a liquid crystal display (LCD), a flat panel, a solid-state display, or a cathode ray tube (CRT). The computer system 360 may include an input device, such as, but not limited to, a keyboard, a cursor control device, such as, but not limited to, a mouse, a disk drive unit, a signal generation device, such as, but not limited to, a speaker or remote control, and a network interface device.
The processor 363 may comprise software, hardware, or a combination of software and hardware. In certain embodiments, the processor 363 may be configured to execute instructions from the main memory 361, the static memory, or a combination thereof, to perform the various operations of the mobile and modular apparatus 300. For example, the processor 363 may be utilized to activate or deactivate the cart 310, activate or deactivate the compressor 350, move the drills 230 on the cart 310 in various directions (such as towards a workpiece 2 to be drilled), cause the drills 230 to spin and drill into a workpiece 2, process data generated based on operation of the apparatus 300, process data received from external devices, control the apparatus 300, output visual and/or auditory information via an interface of the apparatus 300, receive and/or process inputs and/or outputs, perform any other operations, or a combination thereof. Notably, any number of processors 363, main memories, static memories and/or any of the other components of the computer system 360 may be incorporated and utilized. In certain embodiments, the computer system 360 may include a communications device, such as but not limited to, a transceiver, a communications module, a communications chip, any type of communications device, or a combination thereof. The communications device may enable the computer system 360 to communicate with the mobile and modular apparatus 300 and/or facilitate communications between the apparatus 300. Additionally, the communications device may enable the computer system 360 to communicate to other devices, which may or may not be communicatively linked to the mobile and modular apparatus 300. In certain embodiments, the communications device may enable the mobile and modular apparatus 300 to transmit data generated by the apparatus 300 to external devices and/or to receive data and/or commands (e.g. instructions for controlling the apparatus 300) from external devices.
The disk drive unit may include a machine-readable medium on which is stored one or more sets of instructions, such as, but not limited to, software embodying any one or more of the methodologies or functions described herein, including those methods illustrated above. The instructions may also reside, completely or at least partially, within the main memory 361, the static memory, or within the processor 363, or a combination thereof, during execution thereof by the computer system 360. The main memory 361 and the processor 363 also may constitute machine-readable media.
Dedicated hardware implementations including, but not limited to, application specific integrated circuits, programmable logic arrays and other hardware devices can likewise be constructed to implement the methods described herein. Applications that may include the apparatus and systems of various embodiments broadly include a variety of electronic and computer systems 360. Some embodiments implement functions in two or more specific interconnected hardware modules or devices with related control and data signals communicated between and through the modules, or as portions of an application-specific integrated circuit. Thus, the example system is applicable to software, firmware, and hardware implementations.
In accordance with various embodiments of the present disclosure, the methods described herein are intended for operation as software programs running on a computer processor 363. Furthermore, software implementations can include, but not limited to, distributed processing or component/object distributed processing, parallel processing, or virtual machine processing can also be constructed to implement the methods described herein.
The present disclosure contemplates a machine-readable medium containing instructions so that a device connected to the communications network, another network, or a combination thereof, can send or receive voice, video or data, and communicate over the communications network, another network, or a combination thereof, using the instructions. The instructions may further be transmitted or received over the communications network, another network, or a combination thereof, via the network interface device. The communications network may be under the control of a service provider, an operator of the apparatus 300, any other designated user, a computer, another network, or a combination thereof. The communications network may be configured to link the apparatus 300 to each other and/or to external devices. For example, the communications network may be utilized by the cart 310 to connect with other devices within or outside communications network. Additionally, the communications network may be configured to transmit, generate, and receive any information and data traversing the components of the apparatus 300. In certain embodiments, the communications network may include any number of servers, databases, or other componentry. The communications network may also include and be connected to a mesh network, a local network, a cloud-computing network, an IMS network, a VoIP network, a security network, a VoLTE network, a wireless network, an Ethernet network, a satellite network, a broadband network, a cellular network, a private network, a cable network, the Internet, an internet protocol network, MPLS network, a content distribution network, any network, or any combination thereof.
While the machine-readable medium is shown in an example embodiment to be a single medium, the term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that causes the machine to perform any one or more of the methodologies of the present disclosure.
The terms “machine-readable medium,” “machine-readable device,” or “computer-readable device” shall accordingly be taken to include, but not be limited to: memory devices, solid-state memories such as a memory card or other package that houses one or more read-only (non-volatile) memories, random access memories, or other re-writable (volatile) memories; magneto-optical or optical medium such as a disk or tape; or other self-contained information archive or set of archives is considered a distribution medium equivalent to a tangible storage medium. The “machine-readable medium,” “machine-readable device,” or “computer-readable device” may be non-transitory, and, in certain embodiments, may not include a wave or signal per se. Accordingly, the disclosure is considered to include any one or more of a machine-readable medium or a distribution medium, as listed herein and including art-recognized equivalents and successor media, in which the software implementations herein are stored.
The illustrations of arrangements described herein are intended to provide a general understanding of the structure of various embodiments, and they are not intended to serve as a complete description of all the elements and features of apparatus and systems that might make use of the structures described herein. Other arrangements may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Figures are also merely representational and may not be drawn to scale. Certain proportions thereof may be exaggerated, while others may be minimized. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Thus, although specific arrangements have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific arrangement shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments and arrangements of the invention. Combinations of the above arrangements, and other arrangements not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description. Therefore, it is intended that the disclosure not be limited to the particular arrangement(s) disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments and arrangements falling within the scope of the appended claims.
The foregoing is provided for purposes of illustrating, explaining, and describing embodiments of this invention. Modifications and adaptations to these embodiments will be apparent to those skilled in the art and may be made without departing from the scope or spirit of this invention. Upon reviewing the aforementioned embodiments, it would be evident to an artisan with ordinary skill in the art that said embodiments can be modified, reduced, or enhanced without departing from the scope and spirit of the claims described below. Although some of the drawings illustrate a number of operations/steps in a particular order, operations which are not order-dependent may be reordered and other operations may be combined or broken out. While some reordering or other groupings are specifically mentioned, others will be apparent to those of ordinary skill in the art and so do not present an exhaustive list of alternatives.
This non-provisional patent application claims priority to, and incorporates herein by reference, U.S. Provisional Patent Application No. 63/072,911 that was filed Aug. 31, 2020.
Number | Name | Date | Kind |
---|---|---|---|
4246939 | Boegel | Jan 1981 | A |
5904079 | Tsuge et al. | May 1999 | A |
5975350 | Han | Nov 1999 | A |
6138535 | Jalbert et al. | Oct 2000 | A |
6170366 | Jalbert et al. | Jan 2001 | B1 |
6186035 | Jalbert et al. | Feb 2001 | B1 |
6230594 | Jalbert et al. | May 2001 | B1 |
6412603 | Nervig et al. | Jul 2002 | B1 |
6866443 | Nanaumi | Mar 2005 | B2 |
6929250 | Blake et al. | Aug 2005 | B2 |
6945140 | Gibbons et al. | Sep 2005 | B2 |
7059616 | Wu | Jun 2006 | B2 |
7134367 | Gehring et al. | Nov 2006 | B2 |
7415910 | Arai | Aug 2008 | B2 |
7493839 | Massari, Jr. et al. | Feb 2009 | B2 |
7857328 | Boss | Dec 2010 | B1 |
7896083 | Vickery | Mar 2011 | B2 |
7962996 | Mondello | Jun 2011 | B1 |
8016300 | Cramer et al. | Sep 2011 | B2 |
8074348 | Haytayan | Dec 2011 | B2 |
8282111 | Hailston et al. | Oct 2012 | B2 |
8726848 | Melhorn et al. | May 2014 | B2 |
8894076 | Hailston et al. | Nov 2014 | B2 |
8931787 | Crawford et al. | Jan 2015 | B2 |
9278040 | Hung | Mar 2016 | B2 |
9283975 | McClanahan et al. | Mar 2016 | B2 |
9352435 | Spishak et al. | May 2016 | B2 |
9573639 | Furtado | Feb 2017 | B1 |
9630640 | Collins et al. | Apr 2017 | B1 |
9682465 | Lan et al. | Jun 2017 | B2 |
9751549 | McClanahan et al. | Sep 2017 | B2 |
9758184 | Vaverek | Sep 2017 | B1 |
9802300 | Vandenberg | Oct 2017 | B2 |
10040674 | Xu et al. | Aug 2018 | B2 |
10118632 | Carzola | Nov 2018 | B2 |
10315295 | Vandenberg | Jun 2019 | B2 |
10543983 | Otto et al. | Jan 2020 | B2 |
10569397 | Arai et al. | Feb 2020 | B2 |
20030047895 | McElroy | Mar 2003 | A1 |
20040139822 | Gehring et al. | Jul 2004 | A1 |
20050039580 | Gibbons et al. | Feb 2005 | A1 |
20060038383 | Wu | Feb 2006 | A1 |
20060053978 | Arai | Mar 2006 | A1 |
20060169415 | Lawson et al. | Aug 2006 | A1 |
20060191385 | Massari et al. | Aug 2006 | A1 |
20060220334 | Liao | Oct 2006 | A1 |
20070187915 | Filiatrault | Aug 2007 | A1 |
20070199277 | Martin | Aug 2007 | A1 |
20070271761 | Haytayan | Nov 2007 | A1 |
20120210831 | Liang | Aug 2012 | A1 |
20120319063 | Hailston et al. | Dec 2012 | A1 |
20140007742 | Tochibori | Jan 2014 | A1 |
20140117638 | Crawford et al. | May 2014 | A1 |
20140218282 | Hung | Aug 2014 | A1 |
20150050107 | Kipp | Feb 2015 | A1 |
20150166314 | Xu et al. | Jun 2015 | A1 |
20150321325 | Vandenberg | Nov 2015 | A1 |
20160136663 | Smith | May 2016 | A1 |
20170101119 | Collins et al. | Apr 2017 | A1 |
20170312896 | Arai et al. | Nov 2017 | A1 |
20170334644 | Otto | Nov 2017 | A1 |
20170341666 | Carzola | Nov 2017 | A1 |
20180117754 | Corn | May 2018 | A1 |
20180243889 | Myers | Aug 2018 | A1 |
20190023298 | Carzola | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
102011013878 | Sep 2012 | DE |
102011013878 | Jul 2014 | DE |
1203488 | Feb 1989 | IT |
WO-02057434 | Jul 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20220063067 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
63072911 | Aug 2020 | US |