Mobile communication apparatus

Information

  • Patent Grant
  • 6442399
  • Patent Number
    6,442,399
  • Date Filed
    Thursday, February 17, 2000
    24 years ago
  • Date Issued
    Tuesday, August 27, 2002
    22 years ago
Abstract
A portable telephone includes a portable telephone body made from plastic having a receiver, a transmitter, and dial keys, and a chip antenna which is mounted on a circuit board secured at the inside of the portable telephone body and which is electrically connected to an RF section provided on the circuit board in the portable telephone. The chip antenna is disposed near the transmitter at a location where a transmitted electromagnetic signal is unlikely to be affected by the body of a person who is holding the portable telephone.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a mobile communication apparatus including a chip antenna for use in mobile communication or in a local area network (LAN).




2. Description of the Related Art




In a portable telephone


50


, which is an example of a conventional mobile communication apparatus, as shown in

FIGS. 10 and 11

, a nondirectional whip antenna


51


is protrusively mounted at the upper part of a portable telephone body


52


and an electromagnetic signal is transmitted or received with the use of this whip antenna


51


.




In the portable telephone, however, since the whip antenna is nondirectional, a transmitted electromagnetic signal is affected by the body of the person who is holding the portable telephone during use and therefore the antenna characteristics deteriorate. Especially in a high-power portable telephone, the user's body greatly affects its antenna characteristics.




To reduce these effects, the whip antenna can be mounted, for example, at the lower part of the portable telephone body; however, since the whip antenna protrudes near the mouth of the person, the antenna may be an obstacle during communication.




SUMMARY OF THE INVENTION




The present invention is made to solve such problems. Accordingly, it is a feature of the present invention to provide a mobile communication apparatus which prevents transmitted electromagnetic signals from be affected by the body of a person who is holding the apparatus and which is configured such that its antenna is not an obstacle during communication.




This feature of the present invention may be achieved through the provision of a mobile communication apparatus including a chip antenna provided with: a base member made from at least one of a dielectric material and a magnetic material, at least one conductor formed at least at one of the inside and a surface of the base member, and at least one electromagnetic signal supply terminal provided on a surface of the base member in order to apply an electromagnetic signal voltage to the conductor; and an apparatus body for accommodating the chip antenna within its interior, wherein the chip antenna is disposed at a place in the apparatus body where an electromagnetic signal for transmission or reception is not significantly adversely affected.




According to the mobile communication apparatus described above, an electromagnetic signal for transmission or reception is prevented from being adversely affected by disposing the chip antenna at a position in the portable telephone body where the electromagnetic signal is unlikely to be affected by the body of a person who is using the mobile communication apparatus. Therefore, the deterioration of the antenna characteristics during transmission and reception caused by these effects can be reduced.




Since the chip antenna is disposed inside the portable telephone body, the antenna is not an obstacle during communication.




In the mobile communication apparatus, the chip antenna may be disposed at a place which is positioned at the lower part of the apparatus body during use.




According to the mobile communication apparatus described above, since the chip antenna is disposed at a portion located at the lower part of the body during use, the deterioration of the antenna characteristics during transmission and reception caused by the body of the person who is using the telephone can be further reduced.




According to a mobile communication apparatus of the present invention, a transmitted electromagnetic signal can be prevented from being adversely affected by disposing the chip antenna at a place in the body where the transmitted electromagnetic signal is unlikely to be affected by the body of a person who is holding the apparatus.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an elevation of a portable telephone, partially in phantom, which is an example of a mobile communication apparatus according to a first embodiment of the present invention.





FIG. 2

is a side view of the mobile communication apparatus shown in FIG.


1


.





FIG. 3

is a perspective view of a chip antenna which can be used in a mobile communication apparatus of the present invention.





FIG. 4

is an exploded perspective view of the chip antenna shown in FIG.


3


.





FIG. 5

is a transparent perspective view of a modification of the chip antenna shown in FIG.


3


.





FIG. 6

is a transparent perspective view of another modification of the chip antenna shown in FIG.


3


.





FIG. 7

is a chart indicating the antenna gain of the mobile communication apparatus shown in FIG.


1


.





FIG. 8

is an elevation of a portable telephone, partially in phantom, which is an example of a mobile communication apparatus according to a second embodiment of the present invention.





FIG. 9

is a side view of the mobile communication apparatus shown in FIG.


8


.





FIG. 10

is an elevation of a conventional mobile communication apparatus.





FIG. 11

is a side view of the mobile communication apparatus shown in

FIG. 10

;





FIG. 12

is an isometric view illustrating an embodiment of another chip antenna which can be used in a mobile communication apparatus of the present invention; and





FIG. 13

is an exploded isometric view of FIG.


12


.











DESCRIPTION OF EMBODIMENTS OF THE INVENTION




Embodiments of a mobile communication apparatus according to the present invention will be described below by referring to the drawings.




FIG.


1


and

FIG. 2

are a partially transparent elevation and a partially transparent side view of a mobile communication apparatus according to a first embodiment of the present invention. In

FIGS. 1 and 2

, a portable telephone


10


includes a portable telephone body


14


made from, for example, plastic having a receiver


11


, a transmitter


12


, and dial keys


13


, and a chip antenna


17


which is mounted on a circuit board


15


secured at the inside of the portable telephone body


14


and which is electrically connected to an RF section


16


provided on the circuit board


15


in the portable telephone


10


with a transmission line (not shown) on the circuit board


15


. The chip antenna


17


is disposed at a place where a transmitted electromagnetic signal is unlikely to be affected by the body of a person who is holding the portable telephone


10


, for example, near the transmitter


12


.




Even when the chip antenna


17


is of a nondirectional type, in the portable telephone


10


configured as described above, since the emission path of an electromagnetic signal transmitted from the chip antenna


17


is away from a person who is holding the portable telephone


10


, the transmitted electromagnetic signal is unlikely to be affected by the body of the person and the antenna characteristics of the chip antenna


17


are prevented from deteriorating.




The chip antenna


17


is formed, for example, by a conductor


19


helically wound in the longitudinal direction of a rectangular-parallelepiped base member


18


and disposed in the inside of the member


18


, as shown in FIG.


3


and FIG.


4


. The base member


18


is made from laminated rectangular sheet layers


18




a


to


18




c


which are made from a dielectric material having barium oxide, aluminum oxide, and silica as main components. Among these layers, on surfaces of the sheet layers


18




b


and


18




c


, straight or almost L-shaped electrically conductive patterns


19




a


to


19




h


made from copper or a copper alloy are formed by printing, deposition, bonding, or plating. Via holes


20


are also provided for the sheet layer


18




b


in the thickness direction. By laminating the sheet layers


18




a


to


18




c


and connecting the electrically conductive patterns


19




a


to


19




h


with the via holes


20


, winding cross sections perpendicular to a winding axis C become rectangles and the helically wound conductor


19


is formed.




One end of the conductor


19


(one end of the electrically conductive pattern


19




a


) is led to a surface of the base member


18


to form an electromagnetic signal supply section


21


and is connected to an electromagnetic signal supply terminal


22


provided on a surface of the base member


18


in order to apply an electromagnetic signal to the conductor


19


. The other end of the conductor


19


(one end of the electrically conductive pattern


19




h


) forms a free end


23


inside the base member


18


.




FIG.


5


and

FIG. 6

are transparent perspective views of a modification of the chip antenna


17


shown in

FIG. 3. A

chip antenna


171


shown in

FIG. 5

includes a rectangular-parallelepiped base member


181


, and a conductor


191


helically wound in the longitudinal direction of the base member


181


along surfaces of the base member


181


, and an electromagnetic signal supply terminal


221


used for applying an electromagnetic signal to the conductor


191


and provided on surfaces of the base member


181


. One end of the conductor


191


is connected to the electromagnetic signal supply terminal


221


on a surface of the base member


181


. The other end of the conductor


191


forms a free end


231


on a surface of the base member


181


. In this case, since the conductor can be easily formed helically on surfaces of the base member by printing or other methods, the manufacturing process of the antenna can be simplified.




A chip antenna


172


shown in

FIG. 6

includes a rectangular-parallelepiped base member


182


, a conductor


192


formed in a meandering shape on a surface of the base member


182


, and an electromagnetic signal supply terminal


222


used for applying an electromagnetic signal to the conductor


192


. One end of the conductor


192


is connected to the electromagnetic signal supply terminal


222


on a surface of the base member


182


. The other end of the conductor


192


forms a free end


232


on a surface of the base member


182


. In this case, since the meandering-shaped conductor is formed only on one main surface of the base member, the base member can be made with a low profile, and thereby the chip antenna can also be made with a low profile. The meandering-shaped conductor may also be formed inside the base member.




An antenna gain in a case when the chip antenna


17


is disposed near the transmission section


12


in the portable telephone body


14


as shown in

FIG. 1

is compared with an antenna gain in a case when the whip antenna


50


is protrusively mounted at the upper section of the portable telephone


51


.

FIG. 7

shows a comparison result. In

FIG. 7

, a solid line indicates an antenna gain in the present embodiment, and a dotted line indicates an antenna gain in the conventional case. Point A indicates the position of the portable telephones


10


and


50


, and point B indicates the position of a person who is holding the telephones.




It is understood from the result in

FIG. 7

that, in the portable telephone according to the present embodiment, the antenna gain is substantially constant in the range of 0 degrees to 360 degrees and the person who is holding the telephone does not affect the antenna gain.




In contrast, the antenna gain of the conventional portable telephone greatly decreases near a person who is holding the telephone. This indicates that a transmitted electromagnetic signal is affected by the body of the person.




As described above, in the first embodiment, a transmitted electromagnetic signal is prevented from being adversely affected by disposing the chip antenna near the transmission section at the lower section of the portable telephone, which is a position in the portable telephone where a transmitted electromagnetic signal is unlikely to be affected by the body of a person who is holding the telephone. Therefore, the deterioration of the antenna characteristics caused by the body of a person who is holding the telephone during transmission and receiving can be reduced.




Since the chip antenna is disposed inside the portable telephone body, the antenna is not an obstacle during communication.




FIG.


8


and

FIG. 9

are a partially transparent elevation and a partially transparent side view of a mobile communication apparatus according to a second embodiment of the present invention. In

FIGS. 8 and 9

, a portable telephone


30


is equipped with a cover


32


rotatably connected to the lower part of a portable telephone body


14


by a hinge section


31


. With the cover


32


being opened, dial keys


13


are pressed to use the portable telephone


30


.




A chip antenna


17


mounted on a circuit board


33


is disposed at a tip of the cover


32


. This chip antenna


17


is electrically connected with a lead (not shown) to the RF section


35


of the portable telephone


30


provided on a circuit board


34


secured to the inside of the portable telephone body


14


. At the tip of the cover


32


, a transmitted electromagnetic signal is unlikely to be affected by the body of a person who is holding the telephone.




As described above, in the second embodiment, by disposing the chip antenna at the tip of the cover in the portable telephone, where a transmitted electromagnetic signal is unlikely to be affected by the body of a person who is holding the telephone, the distance between the person who is holding the telephone and the chip antenna can be increased during transmission and reception. Therefore, in addition to the advantages of the first embodiment, the deterioration of the antenna characteristics during transmission and reception caused by the body of the person who is holding the telephone can be further reduced.




In the first and second embodiments, the base member of the chip antenna is made from a dielectric material. The material of the base member is not limited to a dielectric material and may be a magnetic material such as ferrite, or a combination of a dielectric material and a magnetic material.




In the above embodiments, a single conductor is used. A plurality of conductors disposed in parallel to each other may also be used. In this case, a plurality of resonant frequencies can be provided according to the number of conductors, and one antenna can handle multiple bands.




In the above embodiments, the conductor is formed inside the base member of the chip antenna or on a surface of the base member. Also, conductive patterns may be wound both on a surface and in the inside of the base member to form the conductor.





FIGS. 12 and 13

are an isometric view and an exploded isometric view illustrating an embodiment of a chip antenna


40


, which may be used advantageously in the mobile communication apparatus of the present invention in lieu of the chip antenna


17


.




The chip antenna


40


, which is the same as the chip antenna described in U.S. Ser. No. 08/693,447, comprises a conductor


42


which is spiralled along the longitudinal direction in a rectangular dielectric base member


41


. The dielectric base member is formed by laminating rectangular sheets


43




a


-


43




e


, each having a dielectric constant of 2 to 130, or having a relative permeability of 2 to 7, as shown in Tables 1 and 2.















TABLE 1









No.




Composition




Dielectric Constant




Q · f


























1




Bi—Pb—Ba—Sm—Ti—O




130




1,000






2




Bi—Pb—Ba—Nd—Ti—O




110




2,500






3




Pb—Ba—Nd—Ti—O




90




5,000






4




Ba—Nd—Ti—O




60




4,000






5




Nd—Ti—O




37




8,000






6




Mg—Ca—Ti—O




21




20,000






7




Mg—Si—O




10




80,000






8




Bi—Al—Si—O




6




2,000






9




(Ba—Al—Si—O) + Teflon ®




4




4,000







Polytetrafluoroethylene Resin






10




Teflon ®




2




10,000







Polytetrafluoroethylene Resin

























TABLE 2











Relative




Threshold






No.




Composition




Permeability




Frequency











11




Ni/Co/Fe/O = 0.49/0.04/0.94/4.00




7




130 MHZ






12




Ni/Co/Fe/0 + 0.47/0.06/0.94/4.00




5




360 MHZ






13




Ni/Co/Fe/0 + 0.45/0.08/0.94/4.00




4




410 MHZ






14




(Ni/Co/Fe/0 + 0.45/0.08/0.94/4.00 +




2




900 MHZ







Teflon














The Q·f in Table 1 represents the product of the Q value and a measuring frequency and is a function of the material. The threshold frequency in Table 2 represents the frequency that the Q value is reduced by half to an almost constant Q value at a low frequency region, and represents the upper limit of the frequency applicable to the material.




At the surface of the sheet layers


43




b


and


43




d


of the sheet layers


43




a


through


43




e


, each of which has a dielectric constant ε of 1<ε<130 or a relative permeability μ of 1<μ<7, linear conductive patterns


44




a


through


44




h


comprising a metal mainly containing Cu, Ni, Ag, Pd, Pt or Au are provided by printing, evaporating, laminating or plating, as shown in Table 3. In the sheet layer


43




d


, a via hole


45




a


is formed at both ends of the conductive patterns


44




e


through


44




g


and one end of the conductive pattern


44




h


. Further, in the sheet layer


43




c


, a via hole


45




b


is provided at the position corresponding to the via hole


45




a


, in other words, at one end of the conductive pattern


44




a


and at both ends of the conductive patterns


44




b


through


44




d


. A spiral conductor


42


having a rectangular cross-section is formed by laminating the sheet layers


43




a


through


43




e


so that the conductive patterns


44




a


through


44




h


come in contact with via holes


45




a


,


45




b


. In material Nos. 1 to 8 and Nos. 11 to 13, the chip antenna


40


is made by monolithically sintering the base member


41


and the conductive patterns


14




a


through


14




h


under the conditions shown in Table 3. On the other hand, such a sintering process is not employed in material Nos. 9, 10 and 14 each containing a resin.















TABLE 3











Sintering




Sintering






Metal




Material No.




Atmosphere




Temperature











Cu




8




Reductive




≦1,000° C.






Ni




7




Reductive




1,000 to 1,200° C.






Ag—Pd alloy




1,2,3,4,5,11,12




Air




1,000 to 1,250° C.






Pt




6




Air




≦1,250° C.













Ag




9,11,14




Not Sintered














Each material No. in Table 3 is identical to that in Tables 1 and 2.




One end of the conductor


42


, i.e., the other end of the conductive pattern


44




a


, is brought to the surface of the dielectric base member


41


to form a feeding end


47


which connects to a feeding terminal


46


for applying a voltage to the conductor


42


, and the other end, i.e., the other end of the conductive pattern


44




h


, forms a free end


48


in the dielectric base member


41


.




Table 4 shows relative bandwidth at the resonance point of the chip antenna


40


when using various materials as the sheet layers


43




a


through


43




e


comprising the base member


41


. The relative bandwidth is determined by the equation: relative bandwidth [%]=(bandwidth [GHz]/center frequency [GHz])


100


. The chip antennas


40


for 0.24 GHz and 0.82 GHz are prepared by adjusting the turn numbers and length of the conductor


42


.















TABLE 4













Relative Bandwidth














Material No.




0.24 GHz




0.82 GHz
















1




Not measurable




Not measurable






2




1.1




1.0






3




1.7




1.5






4




2.4




2.3






5




2.9




2.7






6




3.1




3.0






7




3.5




3.3






8




3.8




3.4






9




4.1




3.7






10




4.5




4.3






11




Not measurable




Not measurable






12




2.5




2.4






13




3.0




2.7






14




3.2




3.0














Each material No. in Table 4 is identical to that in Tables 1 and 2. In Table 4, Not Measurable means a relative bandwidth of 0.5 [%] or less, or a too small resonance to measure.




Results in Table 4 demonstrate that chip antennas using a material having a dielectric constant of 130 (No. 1 in Table 1) and a material having a relative permeability of 7 (No. 11 in Table 2) do not exhibit antenna characteristics, as shown as “Not Measurable”. On the other hand, when the dielectric constant is 1 or the relative permeability is 1, no compact chip antenna is achieved by the wavelength shortening effect due to the same value as the air. Thus, suitable materials have a dielectric constant ε of 1<ε<130, or a relative permeability μ of 1<μ<7.




In the embodiment of the chip antenna


40


, set forth above, several materials are used as examples, but the chip antenna is not limited thereto.




Further, although the embodiment of the chip antenna


40


set forth above illustrates an antenna having one conductor, two or more conductors may be available.




Moreover, although the embodiment of the chip antenna


40


set forth above illustrates a conductor formed inside the base member, the conductor may be formed by coiling the conductive patterns on the surface of the base member and/or inside the base member. Alternatively, a conductor may be formed by forming a spiral groove on the surface of the base member and coiling a wire material, such as a plated wire or enamelled wire, along the groove, or a conductor may be meanderingly formed on the surface of the base member and/or inside the base member.




The feeding terminal is essential for the practice of the chip antenna


40


.




Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. Therefore, the present invention is not limited by the specific disclosure herein.



Claims
  • 1. A mobile communication apparatus comprising:an apparatus body and a chip antenna in said apparatus body, said chip antenna having: a first generally planar sheet having a plurality of spaced, first conductors formed on one major surface thereof; a second generally planar sheet having a plurality of spaced second conductors formed on one major surface thereof; at least one generally planar additional sheet located between said first and second generally planar sheets; said first, second and at least one generally planar additional sheet being laminated together to form an elongated structure wherein respective pairs of first and second conductors are coupled to one another through said at least one generally planar additional sheet to form respective spiral loops of a spiral antenna so that a central axis of said spiral antenna extends generally parallel to a longitudinal direction of said elongated structure; each of said sheets being formed of a material having a permeability of 1<μ<7; and a feeding terminal coupled to one end of said spiral antenna so that said chip antenna forms a mono-pole antenna; wherein said chip antenna is disposed at a place in said apparatus body where electromagnetic signals transmitted and received by said chip antenna, during use, are not significantly adversely affected by a user's body.
  • 2. A mobile communication apparatus according to claim 1, wherein said chip antenna is disposed at a lower part of said apparatus body during use.
  • 3. A mobile communication apparatus according to claim 2, wherein said apparatus body comprises a cover which is extendable away from a main part of the apparatus body during use, said chip antenna being disposed at said cover.
  • 4. A method of manufacturing a mobile communication apparatus comprising the steps of:providing an apparatus body and a chip antenna in said apparatus body, said chip antenna having: a first generally planar sheet having a plurality of spaced, first conductors formed on one major surface thereof; a second generally planar sheet having a plurality of spaced second conductors formed on one major surface thereof; at least one generally planar additional sheet located between said first and second generally planar sheets; said first, second and at least one generally planar additional sheet being laminated together to form an elongated structure wherein respective pairs of first and second conductors are coupled to one another through said at least one generally planar additional sheet to form respective spiral loops of a spiral antenna so that a central axis of said spiral antenna extends generally parallel to a longitudinal direction of said elongated structure; each of said sheets being formed of a material having a permeability of 1<μ<7; and a feeding terminal coupled to one end of said spiral antenna so that said chip antenna forms a mono-pole antenna; determining a place in said apparatus body where electromagnetic signals transmitted and received by said chip antenna, during use, are not significantly adversely affected by a user's body; and disposing said chip antenna at said place.
  • 5. A method of manufacturing a mobile communication apparatus according to claim 4, wherein said chip antenna is disposed at a lower part of said apparatus body during use.
  • 6. A method of manufacturing a mobile communication apparatus according to claim 5, further comprising the step of providing said apparatus body with a cover which is extendable away from a main part of the apparatus body during use, and disposing said chip antenna at said cover.
  • 7. A mobile communication apparatus comprising:an apparatus body having a transmitter and a receiver, and a chip antenna in said apparatus body, said chip antenna comprising: a first generally planar sheet having a plurality of spaced, first conductors formed on one major surface thereof; a second generally planar sheet having a plurality of spaced second conductors formed on one major surface thereof; at least one generally planar additional sheet located between said first and second generally planar sheets; said first, second and at least one generally planar additional sheet being laminated together to form an elongated structure wherein respective pairs of first and second conductors are coupled to one another through said at least one generally planar additional sheet to form respective spiral loops of a spiral antenna so that a central axis of said spiral antenna extends generally parallel to a longitudinal direction of said elongated structure; each of said sheets being formed of a material having a permeability of 1<μ<7; and a feeding terminal coupled to one end of said spiral antenna so that said chip antenna forms a mono-pole antenna; wherein said chip antenna is disposed at a place in said apparatus body such that a location of said chip antenna is closer to a location of said transmitter than to a location of said receiver.
  • 8. A mobile communication apparatus according to claim 7, wherein said chip antenna is disposed at a lower part of said apparatus body during use.
  • 9. A mobile communication apparatus according to claim 8, wherein said apparatus body comprises a cover which is extendable away from a main part of the apparatus body during use, said chip antenna being disposed at said cover.
  • 10. A mobile communication apparatus comprising:an apparatus body having a transmitter and a receiver, and a chip antenna in said apparatus body, said chip antenna comprising: a first generally planar sheet having a plurality of spaced, first conductors formed on one major surface thereof; a second generally planar sheet having a plurality of spaced second conductors formed on one major surface thereof; at least one generally planar additional sheet located between said first and second generally planar sheets; said first, second and at least one generally planar additional sheet being laminated together to form an elongated structure wherein respective pairs of first and second conductors are coupled to one another through said at least one generally planar additional sheet to form respective spiral loops of a spiral antenna so that a central axis of said spiral antenna extends generally parallel to a longitudinal direction of said elongated structure; each of said sheets being formed of a material having a permeability of 1<μ<7; and a feeding terminal coupled to one end of said spiral antenna so that said chip antenna forms a mono-pole antenna; wherein said chip antenna is disposed at a lower part of said apparatus body during use.
  • 11. A mobile communication apparatus according to claim 10, wherein said apparatus body comprises a cover which is extendable away from a main part of the apparatus body during use, said chip antenna being disposed at said cover.
Priority Claims (2)
Number Date Country Kind
7-201153 Aug 1995 JP
8-222090 Aug 1996 JP
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. Ser. No. 08/693,447, filed Aug. 7, 1996 now U.S. Pat. No. 6,052,096 entitled “CHIP ANTENNA” and U.S. Ser. No. 08/917,059, now abandoned filed Aug. 22, 1997 entitled “MOBILE COMMUNICATION APPARATUS”, the entire respective disclosures of which are incorporated by reference herein.

US Referenced Citations (4)
Number Name Date Kind
5337061 Pye et al. Aug 1994 A
5530919 Tsuru et al. Jun 1996 A
5797084 Tsuru et al. Aug 1998 A
6052096 Tsuru et al. Apr 2000 A
Foreign Referenced Citations (8)
Number Date Country
5868704 May 1983 JP
62123805 Jun 1987 JP
1198121 Aug 1989 JP
4-106909 Apr 1992 JP
6-112655 Apr 1994 JP
6338816 Dec 1994 JP
7-86819 Mar 1995 JP
7273685 Oct 1995 JP
Non-Patent Literature Citations (1)
Entry
Office Action issued by the Japanese Patent Office on Apr. 25, 2000 in the corresponding Japanese application along with an English translation thereof.
Continuation in Parts (2)
Number Date Country
Parent 08/917059 Aug 1997 US
Child 09/506474 US
Parent 08/693447 Aug 1996 US
Child 08/917059 US