The present embodiments relate to an improved mobile cooling box with air vents that provide sufficient air flow into and out of the interior of the mobile cooling box while preventing entry of dirt and other material from the outside into the inside of the mobile cooling box.
Mobile cooling boxes are well-known from the state of the art. Usually, a mobile cooling box comprises a thermo-isolated housing for storing the goods to be stored and cooled inside and a lid for allowing access to the inside to put into or remove the goods from the mobile cooling box. It is within the nature of mobile cooling boxes that such boxes are not stationary but are movable by the user. Typically, such mobile cooling boxes are used for any kind of non-stationary use, like for example during outdoor activities, camping, yachting or the like to store and cool goods like food, drinks or even medical products, etc. for a certain period of time.
Most of the mobile cooling boxes have an integrated electrically driven cooling unit to provide efficient cooling to the goods stored in the mobile cooling box. In order to provide venting to the cooling unit, or in other words, to provide an air flow to and from the cooling unit and its periphery, and in particular the condenser of the cooling unit, the housing of the mobile cooling unit has openings in the side wall and in the region of the condenser of the cooling unit. These openings are basically simple cut-outs from the material of the side wall and, thus, nest to air also dirt, dust and other material of the outside of the mobile cooling box can rather easily enter the inside of the mobile cooling box. This may especially occur when the mobile cooling box is carried around and used during outdoor activities in outdoor areas.
Indeed, there are possibilities available in the prior art for a working air vent design and arrangement which basically fulfills the requirements for such an air vent for a mobile cooling box. However, taking the above drawbacks and requirements especially connected to the use of mobile cooling boxes into account there is indeed room for improvements in this regard.
The present embodiments, therefore, provide for an efficient venting of the cooling unit and its periphery, while at the same time significantly reduces the soiling and dirtying of the inside of the mobile cooling box.
In order to solve the posed problem, the present embodiments provide a mobile cooling box having a box main body and at least one lid for opening the mobile cooling box and providing access, from above, to the inside of the mobile cooling box. The mobile cooling box may further have at least one air vent on at least one side wall of the box main body, wherein the at least one air vent comprises an opening, defined by a horizontal slot, enabling an air flow through the respective side wall of the mobile cooling box. In some embodiments, a plurality of air vents may be provided on the at least one side wall of the box main body having a plurality of openings or horizontal slots, respectively, enabling an air flow through the respective side wall of the mobile cooling box to and from the cooling unit, and to and from the condenser of the cooling unit.
According to some embodiments, the at least one opening or slot comprises one or more shielding elements that are designed in such a way that the one or more shielding elements at least partly block the view into the inside of the mobile cooling box from the outside of the mobile cooling box. By blocking at least part of the view to the inside of the mobile cooling box by the one or more shielding elements, dirtying and soiling of the inside of the mobile cooling box is reduced significantly, when the mobile cooling box is used in an outdoor area. The vents may be designed and configured in a way that from the outside one cannot see inside the box through the slots at all, in a perspective perpendicular to the surface of the side wall at the region where the vents are located.
According to one embodiment of the mobile cooling box, the at least one opening or slot, respectively, has an upper edge and a lower edge both lying in the plane of the respective side wall. One of the shielding elements extends from the lower edge to the inside of the mobile cooling box and upwards with respect to said lower edge. Thereby, the entering of dust and other dirt or particles and material from the outside is significantly hindered.
According to one embodiment of the mobile cooling box, in a vertical cross section perpendicular to said side wall, the shielding element extends from the lower edge in upward curved form. This further hinders effectively the entering of dust and dirt.
According to one embodiment of the mobile cooling box, the shielding element extends from the lower edge in the form of a segment of a circle. This further hinders the entering of dust and dirt. Furthermore, this enables an easier cleaning from the outside, since the visible surface of the side wall is reachable by the user, for example, with a sponge.
According to one embodiment of the mobile cooling box, the at least one opening or slot, respectively, has an upper edge and a lower edge both lying in the plane of the respective side wall and one of the shielding elements extends from the upper edge to the inside of the mobile cooling box. This also reduces effectively the entering of dust and dirt.
According to one embodiment of the mobile cooling box, in a vertical cross section perpendicular to said side wall, the shielding element may extend from the upper edge in downward curved form. This further reduces the entering of dust and dirt into the area of the cooling unit of the mobile cooling box.
According to one embodiment of the mobile cooling box, the shielding element may extend from the upper edge in the form of a segment of a circle. This further hinders the entering of dust and dirt and, furthermore, enables an easy cleaning from the outside, since the visible surface of the side wall is reachable by the user for effective cleaning from the outside, for example, with a sponge.
According to one embodiment of the mobile cooling box, said side wall is formed together with the shielding elements as a one-piece component. This provides for easy and cost-effective production processes and no whatsoever sort of assembling time and effort.
The material forming the side wall and, consequently, also the air vents, is not particularly limited. For example, injection molded plastic or pressed metal sheet can be used.
According to a further embodiment of the mobile cooling box, however, the one-piece component may be made of plastic. For example, it may be produced by injection molding. Other plastic forming processes are also possible.
In the following, embodiments of the mobile cooling box are described in more detail with reference to the accompanying drawings, wherein
The illustrated mobile cooling boxes 1 in
In this context and within the framework of the present embodiments, but without limitation, all directional terms, like front, rear, back, upper, lower, above, sink, as well as broadness and depth refer to the mobile cooling box 1 standing on the ground as usually intended and from a perspective facing the side of the mobile cooling box 1 were the edge of the lid is pivotable to the above while opening, unless explicitly stated otherwise.
Each illustrated mobile cooling box 1 is of different depth and width. The lid 3 or the lids 3 are to be opened from a side where the fender frame 23 is not located. This is in case of the mobile cooling box 1 of rather small size, as illustrated in
The mobile cooling box 1 has an electrically driven cooling unit and comprises an internal battery (not shown). The mobile cooling box 1 can be used in plugged-in mode or in battery mode. The mobile cooling box 1, therefore, has the required sockets 24 located at one of its sides.
In the following, different aspects and features of the mobile cooling box are described. As will become apparent, many of the following aspects relate to readily mountable modules for various functions which can be mounted without limitation to the mobile cooling box 1 regardless of the size thereof.
The
As shown in
The circuit board 110 forms a latch 111 extending away from the right side of the assembly with respect to the housing 120 and the front cover 130. The latch 111 is engaged with the designated opening at the mobile cooling box 1. The circuit board 110 is essentially longer in size than the housing 120 at the right side. The circuit board 110 extends over the edge of the housing 120 and the front cover 130. In the illustrated embodiment, the circuit board 110 extends over the edge of the housing 120 and the front cover 130 for about 1 cm, but also other dimensions are possible. At the backside of the circuit board 110 the part forming the latch 111 is further strengthened by additional material provided in this area.
As shown in
The user interface module 100 further has a USB port 113. In the illustrated embodiment a single USB port 113 is provided. However, there can be also a plurality of USB ports provided, for example depending on the size of the mobile cooling box. The USB port 113 is present at the circuit board 110. Moreover, two through holes for a screw connection are provided. By using the USB port 113 the user can recharge external devices like batteries, lamps, smartphones, etc. Moreover, the USB port 113 provides access to the internal control of the mobile cooling box 1 and, depending on the settings and version, enables download of internal data and/or programming of functions of the mobile cooling box 1.
The housing 120 is clamped onto or over the circuit board 110 by respective clip-in elements 121. In the shown example, three clip-in elements 121 on each of the upper and the lower side of the housing 120 are sufficient to achieve a stable and robust fixation of the housing 120. The housing 120 is formed of an injection molded plastic component. The housing provides co-injected regions of plastic that is softer than at other regions of the housing 120.
At the housing 120, the area of the USB port 113 is left open to allow access to the USB port 113. A rubber cap 140 is provided for covering the USB port 113 when not in use. In the present embodiments, the rubber cap 140 is swingably attached to the housing 120 to avoid losing the rubber cap 140. By removing the rubber cap 113 from the housing 120 access to the USB port 113 becomes possible. Here, the size and design of the rubber cap 140 ensures coverage of the through holes 121 provided for the screw connection at the same time.
The user interface module 100 further has a display 160, the display 160 is arranged behind the front cover 130 and the front cover 130 of the user interface module 100 is transparent at least in the area of the display 160.
The user interface module 100 further has three operation devices, here in the form of buttons 150 extending from the user interface module 100. One of the buttons 150 is located at the right side of the display 160 and provides an up-and-down selection button 150 for navigating through the menu of the control menu of the implemented software. In the illustrated embodiment, two further buttons 150, here designed in form of single round buttons, are provided at both sides next to the display 160, or, respectively, the afore-mentioned button 150. The buttons 150 are made of rubber, or covered by rubber, in order to provide good haptics and provide a stable and robust design.
The front cover 130 user interface module 100 is of a scratch resistant material or has a scratch resistant coating.
The user interface module 100 is capable of wireless communication with an external electronic device, for example by Bluetooth technology, WLAN or any other suitable technology. The external electronic device can be a remote control, a smartphone or the like. Hence, the user interface 100 and thus the mobile cooling box is remote controllable with the external electronic device. In case of using a smartphone, a respective app is available and to be used on the smartphone.
The user interface module 100 provides to the user functions and controls like ON/OFF-switching the cooling, temperature control including setting, if desired in a time-shift manner, displaying current temperature, temperature history graphs, temperature type setting (° C./° F.), alarm setting, energy saving mode, displaying battery status, including voltage level and/or battery remaining time, power consumption history graphs, lid 3 open indication, wireless communication ON/OFF and setting display brightness. The below list shall not be construed as conclusive. Further functions are, thus, also possible.
For mounting the user interface module 100, the part on the right side of the user interface module 100 that is supposed to be engaged with the designated opening at the mobile cooling box 1 is laterally slid into the designated opening. This step is illustrated in
The mobile cooling box 1 according to some embodiments and as described before has at least one lid 3. By using the lid 3 the mobile cooling box 1 can be opened from one side-edge of the lid 3. Thereby, access is provided to the inside of the box 1. At the opposite side-edge of the lid 3, the lid 3 is hinged to the box main body 2. By this hinge connection the lid 3 can be pivoted upwards.
As shown in
The latch handle module 200 is an assembly of components including an actuating element 201, a locking element 202 and a casing 203. The actuating element 201 is manually operable by the user. The locking element 202 is engageable with a corresponding counterpart at the box main body 2. By engaging the corresponding counterpart at the box main body 2 the lid 3 is locked from being opened.
The latch handle module 200 provides a mechanism for locking and unlocking the lid 3. According to the latch handle module 200 the actuating element 201 and the locking element 202 are mechanically connected to each other. As illustrated in
As regards the working principle of the latch handle module 200, the latch handle module 200 further comprises a shaft 204. The shaft 204 has a longitudinal axis being co-linear with the axis of rotation of the actuating element 201. The actuating element 201 is connected to and pivotable about the shaft 204. The shaft 204 is of a rigid metal material and extends essentially over the entire width of the latch handle module 200. The latch handle module 200 further has two springs 205 by means of which the mechanism provided by the latch handle module 200 is spring loaded. The mechanism provided by the latch handle module 200 is spring loaded for providing a restoring force that ensures that the actuating element 201 and the locking element 202 return to their respective initial positions after an operation of the actuating element 201 by the user.
As shown in
The handle module 300 is designed in a way that the handle 301 hangs downwards in an unactuated state and can be swung out and upwards for carrying the mobile cooling box 1.
Each of the brackets 303 comprises a mounting area, or mount, 304 and a shielding area, or shield, 305. The mounting area 304 faces the outer side surface of the box main body 2 to which the bracket 303 is fixed. The shielding area 305 hides the hangers 302 and the handlebar 301 in an unactuated state of the handle module 300 and in a lateral perspective along the longitudinal axis of the handlebar 301.
The handle module 300 is designed so that, in an unactuated state of the handle module 300 and in a lateral perspective along the longitudinal axis of the handlebar 301, at least a section of the outer contour of the shielding area 305 is flush with the handlebar 301 and with the hangers 302. Thus, when the mobile cooling box 1 is not carried, the handlebar 301 with its hangers 302 exactly hides behind the bracket 303 in the respective lateral perspective.
The handlebar 301 and its hangers 302 are spring-loaded. Thus, in an unactuated state, the handlebar 301 and the hangers 302 are forced in a direction to the mobile cooling box 1 and are thus kept hidden in-between the shielding areas 305 of both brackets 303. For this purpose, two springs 308 are arranged within the handle module 300. The springs 308 force the hangers 302 relative to the brackets 303 to abut against the part with the mounting area 304.
The handle module 300 is designed in a way that, in an actuated state, the hangers 302 with the handlebar 301 are swung out and upwards and rest in a position relative to the mobile cooling box 1. Thus, the mobile cooling box 1 can be carried in a comfortable way. The hangers 302 with the handlebar 301 rest in the position by means of a region of the hangers 302 abutting against a region of the brackets 303. Thereby, at the joint between the brackets 303 and the hangers 302, the hangers are rounded in a section around the respective pivot axis. Moreover, a corresponding roundness is present at the brackets 303 to the extent that, when the hangers pivot out, the round part of the brackets 303 that enclose the round part of the hangers abut against the flanks of the hangers 302. Thus, further rotation of the hangers 302 is blocked.
Furthermore, at its mounting area 304 each bracket 303 comprises two through holes 306 for fixing the bracket 303 to the outer side surface of the box main body 2 by means of fixing elements 307. In the illustrated embodiment of the mobile cooling box the fixing elements are designed in the form of screws but are not limited thereto. The through holes 306 and the respective fixing elements 307 are covered by the hanger 302 that is mounted to said bracket 303, in an unactuated state of the handle module 300. Thereby, the hanger 302 abuts against said mounting area 304.
An additional accessory, like for example a bottle opener (not shown) or other equipment or tooling, can be attached at the through holes 306 by respective means, like for example screws.
As mentioned, the mobile cooling box 1 is basically rectangular in shape and has different dimensions in width and depth and height. Further, the two handle modules 300 are located at the respective two shorter outer side surfaces of the mobile cooling box 1 being opposite to each other. Thereby, when carrying the mobile cooling box 1 a tilting of the mobile cooling box 1 can be avoided.
In the present embodiment the handlebar 301 has a circular cross-section. Moreover, the handlebar 301 has a length of at least 10 cm to ease gripping the handlebar by the user's hand. However, other dimensions are also possible. The lower part of the hangers 302 correspond with this rounded contour. Also, the lower part of the brackets 303 partly correspond with this contour. Hence, the components are flush in an unactuated state.
At least the handlebar 301, the hangers 302 and the brackets 303 of the handle module 300 are made of aluminum. At least part of the surface of the aluminum is roughened and has an oxidic protective layer.
As illustrated in
The air vents 400 comprise a plurality of horizontal opening or slots 401 (in the following generally referred to as slots), respectively, allowing air circulation through the respective side wall of the mobile cooling box 1. The slots 401 comprise shielding elements 402 protruding inside the mobile cooling box 1. Each of the shielding elements 402 is designed in such a way that the shielding element at least partly blocks the view into the inside of the mobile cooling box 1 from the outside. In other words, the inside of the mobile cooling box 1 is not visible from the outside due to the design of the shielding elements 402.
One slot 401 has an upper edge 403 and a lower edge 404. Both, the upper edge 403 and the lower edge 404 lie in the plane of the respective side wall. One of the shielding elements 402 extends from the lower edge 404 to the inside of the mobile cooling box 1 and further upwards with respect to said lower edge 404, virtually in the direction of and at least up to the height of the upper edge 403. Thus, the inside of the mobile cooling box 1 is not visible from the outside due to the design of the shielding element 402.
Particularly, in a vertical cross section perpendicular to said side wall, the shielding element 402 extends from the lower edge 404 in upward curved form, namely in the form of a segment of a circle.
Furthermore, one of the shielding elements 402 extends from the upper edge 403 to the inside of the mobile cooling box 1.
Particularly, in a vertical cross section perpendicular to said side wall, the shielding element 402 extends from the upper edge 403 to the inside of the mobile cooling box 1 in a straight horizontal direction. This has essentially the function of providing more stability to the side wall and to uniform the upper and lower edges 403 and 404 with regard to the roundness.
The side wall where the vents are present is manufactured together with the shielding elements 402 as a one-piece component which is made of plastic and manufactured by injection molding.
As is shown in
The hinge module 500 further comprises a bearing module 530. The bearing module 530 has a hinge bearing 531 accommodating the hinge pin 511. The hinge pin 511 laterally extends with its front end into the hinge bearing 531. Thus, during pivoting the lid 3 with respect to the box main body 2 an axis of the hinge bearing 531 remains co-linear with the longitudinal axis of the hinge pin 511.
For the mounting of the pin module 510, the pin module 510 further comprises an engaging portion, here in form of a bolt portion 513. The bolt portion 513 has a male thread and extends from the rear end of the hinge pin 511. The bolt portion 513 has a longitudinal axis being co-linear to that of the hinge pin 511.
The pin module 510 further comprises a backing plate 514 between the hinge pin 511 and the bolt portion 513. The backing plate 514 lies in a plane perpendicular to the longitudinal axis of the hinge pin 511 and has a pin-side surface and a bolt-side surface. The backing plate 514 has a circular shape so that it is symmetrical with regard to rotation.
The pin module 510 is mounted to the box main body 2 at a vertical surface thereof which is the inner sides of a part of the box main body 2. The backing plate 514 abuts with its bolt-side surface against said vertical surface of the box main body 2.
Furthermore, the vertical surface of the box main body 2 to which the pin module 510 is attached to has a pin module attachment portion 520. The pin module attachment portion 520 comprises a bore 521 having a female thread, in which the bolt portion 513 is fastened, and a recess 522 for accommodating the backing plate 514. The recess 522 has a depth corresponding to the thickness of the backing plate 514. Hence, the transition from said vertical surface of the box main body 2 to the surface of the pin-side surface of the backing plate 514 is flush. In order to provide for sufficient stability, the thickness of the backing plate 514 is about 2 mm.
Furthermore, the hinge pin 511 has a tool engagement portion 512 at its front end for fastening the pin module 510. The tool engagement portion 512 is a hexagonal socket that is engageable with a hex key at the front end face of the hinge pin 511. Moreover, the entire hinge pin 511 has a smooth outer surface of a cylindrical shape, so that the pivoting movement can be guided over the entire length of the hinge pin 511.
The entire pin module 510 including the hinge pin 511, the backing plate 514 and the bolt portion 513 is formed of metal. Moreover, the entire pin module 510 is formed as one single and integral component. Thus, the pin module 510 is very robust component.
The bearing module 530 is present at the lid 3 and the pin module 510 is present at the box main body 2. The hinge bearing 531 only partly envelops the hinge pin 511 and is open in a direction perpendicular to the longitudinal axis of the hinge pin 511. Thus, the bearing module 530 allows the hinge pin 511 to be released from the hinge bearing 531, thereby enabling the lid 3 to be removed completely from the box main body 2. In particular, when it is pivoted in an open direction for about 60° and more the lid 3 can be removed. Thus, the bearing module 530 is configured so that the lid 3 cannot be removed from the box main body 2 when the mobile cooling box 1 is closed.
The bearing module 530 further comprises a spring element 533. The spring element 533 protrudes out of an upper surface part of the hinge bearing 531. The spring element 533 is configured to hold the hinge pin 511 within the hinge bearing 531 and to provide a certain resistance during removing the lid 3 from the box main body 2.
The bearing module 530 further comprises an abutting portion 532. When the lid 3 is pivoted in the open direction for an angle of about 100° the abutting portion 532 abuts against a region of the box main body 2. Thereby, the lid 3 is enabled to rest in an open position.
As shown in
The mobile cooling box 1 is equipped with an ice maker module 600. The ice maker module 600 has a freezing compartment 606. The ice maker module 600 can be removably placed on a freezing zone 602 on a floor part of the lining 601.
The mobile cooling box 1 further comprises an evaporator 603 arranged underneath the lining 601 at the freezing zone 602, for providing sufficient cooling power for freezing goods.
The ice maker module 600 is an assembly of components, namely a frame 604 and a cover 607. The frame 604 has lateral walls 605 limiting the freezing compartment 606. The cover 607 is attached to the upper side of the frame 604 for opening and closing the ice maker module 600 and providing access from above to the freezing compartment 606. The freezing compartment 606 is limited at its ground by the lining 601 at the freezing zone 602. Thus, the goods to freeze are placed directly on the floor part of the freezing zone 602 for efficient freezing.
The freezing zone 602 is rectangular and is located in a niche limited by the lining 601 of three of the inner side walls 21. The ice maker module 600 fits in the niche.
At least one pair of corresponding attachment means 608 configured to releasably engage with each other is present at the lining 601 of the inner side walls 21 adjacent to the freezing zone 602 and at the ice maker module 600, respectively. By the at least one pair of corresponding attachment means 608 the position of the ice maker module 600 is secured. The pair of attachment means 608 provides for a form-locked connection being a snap-in connection. The snap-in connection consists of hook and a corresponding recess. The hook is a projecting element that is configured to snap in the recess. The hook is located at the ice maker module 600 and the corresponding recess is located at the lining 601 of the respective inner side wall 21. The hook is located at the frame 604 of the ice maker module 600.
The hook and the recess of one pair of corresponding attachment means 608 are formed as integral parts of the lining 601 and the ice maker module 600, respectively.
Furthermore, the cover 607 is hinged to the frame 604. Thus, the cover 607 is swingably openable to the above and can be opened about an angle of about 100°. The cover 607 has a grip portion 609 by means of which the cover 607 can be opened and closed by the hand of the user.
The ice maker module 600 further comprises two ice trays 610. The ice trays 601 fit into the freezing compartment 606. Each of the ice trays 601 is equipped with a cap 611. Each ice tray 610 has a plurality of recesses for forming ice cubes. The cap 611 has small holes 612 in form of bores with a rather small diameter. By these holes air exchange is enabled between inside and outside of the ice tray, but predominantly preventing water from leaking out.
The opening of the tiny holes has a cross section of about 0.20 mm. Above each recess, one of the tiny holes is arranged.
As shown in
The front cover is mounted to the inner lining in a waterproof manner. Specifically, the front cover of the lamp module 700 is clipped in a corresponding recessed part of the inner lining and is equipped with sealed portions.
Furthermore, the front cover of the lamp module 700 is transparent and provides a diffuse light. The light is emitted from diodes inside the lamp module 700 and both, the light-emitting diodes and the reed sensor are mounted on a circuit board of the lamp module 700.
For switching the light ON and OFF, a magnet is incorporated in the part of the lid 3 that functionally corresponds with the reed sensor. In the closed state of the lid 3, the magnet is located in the vicinity of the light module 700 so that the light module is switch OFF. While opening or in the opened state the distance of the magnet, thus, is increased and the light module is switch ON by the reed sensor.
Number | Date | Country | Kind |
---|---|---|---|
102019200068.1 | Jan 2019 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
1691468 | Cooper et al. | Nov 1928 | A |
2012800 | Allen | Aug 1935 | A |
2492601 | Steel | Dec 1949 | A |
2642728 | Thomaras | Jun 1953 | A |
2715817 | Brodheim | Aug 1955 | A |
2766901 | Sunko | Oct 1956 | A |
2926504 | Hellinger | Mar 1960 | A |
3796063 | Wulke et al. | Mar 1974 | A |
3938694 | Archuleta | Feb 1976 | A |
3979007 | Thornbloom, Jr. | Sep 1976 | A |
D256587 | Tatsumi | Aug 1980 | S |
4468932 | Bullard | Sep 1984 | A |
4886176 | Steakley | Dec 1989 | A |
5024471 | Kahl et al. | Jun 1991 | A |
5301508 | Kahl et al. | Apr 1994 | A |
5319937 | Fritsch et al. | Jun 1994 | A |
D349007 | Costello | Jul 1994 | S |
5407218 | Jackson | Apr 1995 | A |
5676296 | Masters | Oct 1997 | A |
5860281 | Coffee et al. | Jan 1999 | A |
5897435 | Thomas | Apr 1999 | A |
6027249 | Bielinski | Feb 2000 | A |
6308518 | Hunter | Oct 2001 | B1 |
6349845 | Duncan | Feb 2002 | B1 |
6354101 | Levitin | Mar 2002 | B1 |
6354104 | Feagin | Mar 2002 | B1 |
6474097 | Treppedi et al. | Nov 2002 | B2 |
D497517 | Reuter | Oct 2004 | S |
D500057 | Reuter | Dec 2004 | S |
6964447 | McNamee | Nov 2005 | B2 |
D516099 | Maruyama | Feb 2006 | S |
7143601 | Jimenez | Dec 2006 | B1 |
D534771 | Zorn | Jan 2007 | S |
7178673 | Miller | Feb 2007 | B1 |
7415794 | Thompson | Aug 2008 | B1 |
7617699 | Parmely | Nov 2009 | B1 |
7913849 | Pedrazzi et al. | Mar 2011 | B2 |
D640102 | Hawkins | Jun 2011 | S |
8210819 | Wiebe et al. | Jul 2012 | B2 |
8312816 | Vaccarella | Nov 2012 | B2 |
D712720 | Seiders | Sep 2014 | S |
D712721 | Seiders | Sep 2014 | S |
D712722 | Seiders | Sep 2014 | S |
D712723 | Seiders | Sep 2014 | S |
D714125 | Seiders | Sep 2014 | S |
8827109 | Sheehan | Sep 2014 | B1 |
8910819 | Seiders | Dec 2014 | B2 |
D722474 | Seiders | Feb 2015 | S |
D722475 | Seiders | Feb 2015 | S |
D732348 | Seiders et al. | Jun 2015 | S |
D732349 | Seiders et al. | Jun 2015 | S |
D732350 | Seiders et al. | Jun 2015 | S |
D732899 | Seiders et al. | Jun 2015 | S |
9137232 | Eschbatch et al. | Sep 2015 | B2 |
9139352 | Seiders et al. | Sep 2015 | B2 |
9163871 | Costello | Oct 2015 | B1 |
9187232 | Seiders | Nov 2015 | B2 |
9220250 | Davis, Sr. | Dec 2015 | B1 |
9232290 | Besay | Jan 2016 | B2 |
D752347 | Seiders et al. | Mar 2016 | S |
9282797 | Soto | Mar 2016 | B1 |
9320938 | Belmore | Apr 2016 | B1 |
D792486 | Li | Jul 2017 | S |
D802028 | Li | Nov 2017 | S |
D802029 | Li | Nov 2017 | S |
D802630 | Li | Nov 2017 | S |
9951986 | Turner | Apr 2018 | B1 |
D820049 | Ahlstrom | Jun 2018 | S |
D836993 | Meda | Jan 2019 | S |
D836994 | Meda | Jan 2019 | S |
D844386 | Ahlstrom | Apr 2019 | S |
D887788 | Meda | Jun 2020 | S |
D888503 | Meda | Jun 2020 | S |
10717499 | Street et al. | Jul 2020 | B1 |
D894043 | Meda | Aug 2020 | S |
D901986 | Meda | Nov 2020 | S |
D920743 | Meda et al. | Jun 2021 | S |
D927938 | Meda et al. | Aug 2021 | S |
D929471 | Meda et al. | Aug 2021 | S |
D935280 | Thelin et al. | Nov 2021 | S |
20020095947 | Treppedi et al. | Jul 2002 | A1 |
20030019873 | Nam et al. | Jan 2003 | A1 |
20030042266 | Young et al. | Mar 2003 | A1 |
20050274726 | Boggs et al. | Dec 2005 | A1 |
20050279750 | Barquist et al. | Dec 2005 | A1 |
20070101754 | Maldonado | May 2007 | A1 |
20070125100 | Shoenfeld | Jun 2007 | A1 |
20090126419 | Yoon et al. | May 2009 | A1 |
20100251730 | Whillock, Sr. | Oct 2010 | A1 |
20110226785 | Sakell | Sep 2011 | A1 |
20150008242 | Kpabar, Jr. | Jan 2015 | A1 |
20150021106 | LaRosa | Jan 2015 | A1 |
20150114024 | Grepper | Apr 2015 | A1 |
20150241107 | Mech | Aug 2015 | A1 |
20150322698 | Seiders | Nov 2015 | A1 |
20150353263 | Seiders et al. | Dec 2015 | A1 |
20160101924 | Mitchell et al. | Apr 2016 | A1 |
20160187046 | Chen et al. | Jun 2016 | A1 |
20170023290 | DeMuth | Jan 2017 | A1 |
20170108253 | Monroy | Apr 2017 | A1 |
20180100682 | Nilsen et al. | Apr 2018 | A1 |
20180141718 | Ahlstrom | May 2018 | A1 |
20180201432 | Harding | Jul 2018 | A1 |
20180306479 | Vazquez | Oct 2018 | A1 |
20190161240 | Ahlstrom | May 2019 | A1 |
20190308795 | Juneau | Oct 2019 | A1 |
20200062454 | Duong et al. | Feb 2020 | A1 |
20200216229 | Weixian | Jul 2020 | A1 |
20200217571 | Weixian | Jul 2020 | A1 |
20200217574 | Thelin | Jul 2020 | A1 |
20200217575 | Thelin | Jul 2020 | A1 |
20200217576 | Weixian | Jul 2020 | A1 |
20200217578 | Wang | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
201712770 | May 2017 | AU |
201712777 | May 2017 | AU |
201712780 | May 2017 | AU |
201712782 | May 2017 | AU |
201712791 | May 2017 | AU |
201712799 | May 2017 | AU |
201712802 | May 2017 | AU |
201712803 | May 2017 | AU |
201712785 | Jul 2017 | AU |
201716789 | Nov 2017 | AU |
201716791 | Nov 2017 | AU |
201717667 | Jan 2018 | AU |
201717669 | Jan 2018 | AU |
201717670 | Jan 2018 | AU |
201717674 | Jan 2018 | AU |
201717676 | Jan 2018 | AU |
201717662 | Feb 2018 | AU |
201816061 | Jan 2019 | AU |
201910011 | Feb 2019 | AU |
201913598 | Aug 2019 | AU |
201913601 | Aug 2019 | AU |
201913603 | Aug 2019 | AU |
201913604 | Aug 2019 | AU |
201913607 | Aug 2019 | AU |
201913624 | Aug 2019 | AU |
201913626 | Aug 2019 | AU |
201913627 | Aug 2019 | AU |
201913631 | Aug 2019 | AU |
201913633 | Aug 2019 | AU |
202012545 | Jun 2020 | AU |
202012548 | Jun 2020 | AU |
2019284128 | Jul 2020 | AU |
2019284129 | Jul 2020 | AU |
2019284130 | Jul 2020 | AU |
2019284131 | Jul 2020 | AU |
2019284133 | Jul 2020 | AU |
2019284134 | Jul 2020 | AU |
101074057 | Nov 2007 | CN |
206488529 | Sep 2017 | CN |
107804580 | Mar 2018 | CN |
207081259 | Mar 2018 | CN |
208312853 | Jan 2019 | CN |
106233083 | Jul 2019 | CN |
305240920 | Jul 2019 | CN |
110191654 | Aug 2019 | CN |
209893773 | Jan 2020 | CN |
305553099 | Jan 2020 | CN |
305751278 | May 2020 | CN |
306079204 | Sep 2020 | CN |
666767 | Oct 1938 | DE |
20110247 | Dec 2002 | DE |
202004010081 | Sep 2004 | DE |
19981898 | Jul 2005 | DE |
202007001638 | May 2007 | DE |
202009015164 | Mar 2010 | DE |
102011100722 | Nov 2012 | DE |
202014000386 | Apr 2014 | DE |
202013007655 | Jan 2015 | DE |
102014221784 | Apr 2016 | DE |
102019200065 | Jan 2019 | DE |
102019200067 | Jan 2019 | DE |
102019200068 | Jan 2019 | DE |
102019200070 | Jan 2019 | DE |
112017005901 | Aug 2019 | DE |
102019200063 | Jul 2020 | DE |
102019200064 | Jul 2020 | DE |
005230802-001 | Apr 2018 | EM |
005230802-002 | Apr 2018 | EM |
001470413-0001-02 | Jan 2019 | EM |
005948601-0001-30 | Jan 2019 | EM |
1000577 | May 2000 | EP |
2772704 | Sep 2014 | EP |
432256 | Jul 1935 | GB |
2419177 | Apr 2006 | GB |
H1194417 | Apr 1999 | JP |
4362188 | Nov 2009 | JP |
1020050042093 | May 2005 | KR |
9936324 | Jul 1999 | WO |
2014131679 | Sep 2014 | WO |
2017071654 | May 2017 | WO |
2018095957 | May 2018 | WO |
2018231826 | Dec 2018 | WO |
2018233611 | Dec 2018 | WO |
2019206219 | Oct 2019 | WO |
Entry |
---|
United States Patent Office, Notice of Allowance in U.S. Appl. No. 29/697,070 dated Apr. 28, 2021. |
Corrected Notice of Allowance Issued in U.S. Appl. No. 29/711,905 dated Aug. 11, 2021. |
Corrected Notice of Allowance Issued in U.S. Appl. No. 29/711,906 dated Aug. 11, 2021. |
Restriction Requirement Issued in U.S. Appl. No. 16/728,623 dated Aug. 30, 2021. |
Design U.S. Appl. No. 29/803,817 titled “Fender Frame, Internal Closure, and Hinge of a Cooler” filed Aug. 16, 2021. |
Design U.S. Appl. No. 29/585,279, filed Nov. 22, 2016 titled Latch. |
Design U.S. Appl. No. 29/605,186, filed May 24, 2017 filed titled Refrigerating Apparatus. |
Design U.S. Appl. No. 29/650,906, filed Jun. 11, 2018 titled Soft Bag Cooler. |
Design U.S. Appl. No. 29/670,885, filed Nov. 20, 2018 titled Cooler. |
Design U.S. Appl. No. 29/670,888, filed Nov. 20, 2018 titled Cooler. |
Design U.S. Appl. No. 29/697,069, filed Jul. 3, 2019 titled Cooler. |
Design U.S. Appl. No. 29/697,070, filed Jul. 3, 2019 titled Cooler. |
Design U.S. Appl. No. 29/697,071, filed Jul. 3, 2019 titled Cooler. |
Design U.S. Appl. No. 29/708,155, filed Oct. 3, 2019 titled Latch. |
Design U.S. Appl. No. 29/708,156, filed Oct. 3, 2019 titled Latch. |
Design U.S. Appl. No. 29/711,905, filed Nov. 4, 2019 titled Cover for a Cooler. |
Design U.S. Appl. No. 29/711,906, filed Nov. 4, 2019 titled Cover for a Cooler. |
U.S. Appl. No. 16/728,604, filed Dec. 27, 2019 titled Mobile Cooling Box with Handle Module. |
U.S. Appl. No. 16/728,657, filed Dec. 27, 2019 titled Mobile Cooling Box with Hinge Module. |
U.S. Appl. No. 16/728,715, filed Dec. 27, 2019 titled Mobile Cooling Box with Ice Maker. |
U.S. Appl. No. 16/728,687, filed Dec. 27, 2019 titled Mobile Cooling Box with Latch Handle. |
U.S. Appl. No. 16/728,623, filed Dec. 27, 2019 titled Mobile Cooling Box with User Interface Module. |
U.S. Appl. No. 16/800,512, filed Feb. 25, 2020 titled Cover for a Cooler. |
Design U.S. Appl. No. 29/743,180, filed Jul. 20, 2020 titled Cooler. |
Dometic Product Catalog—Coolers; 2015. |
Dometic Product Catalog—Coolers; 2016. |
Examination Report Issued for DE Application No. 102020209896.4 dated Apr. 19, 2021. |
Corrected Notice of Allowance Issued in U.S. Appl. No. 29/711,905 dated Sep. 24, 2021. |
Corrected Notice of Allowance Issued in U.S. Appl. No. 29/711,906 dated Sep. 24, 2021. |
United Kingdom Application No. 6157637 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157638 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157639 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157640 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157641 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157642 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157643 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157644 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157645 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157646 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157647 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157648 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157649 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157650 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157651 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157652 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157653 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157654 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157655 titled “Mini Fridge” filed on Aug. 27, 2021. |
United Kingdom Application No. 6157656 titled “Mini Fridge” filed on Aug. 27, 2021. |
Final Office Action Issued in U.S. Appl. No. 16/728,715 dated Oct. 7, 2021. |
Non Final Office Action Issued in U.S. Appl. No. 16/728,604 dated Oct. 25, 2021. |
Australian Patent Application No. 2020264299 entitled “Cover for a cooler” filed Nov. 4, 2020. |
German Patent Application No. 102020213897.4 titled “Cover for a cooler” filed Nov. 4, 2020. |
Non Final Office Action Issued in U.S. Appl. No. 16/728,657 dated Nov. 15, 2021. |
Notice of Allowance Issued in U.S. Appl. No. 29/785,568 dated Nov. 16, 2021. |
Notice of Allowance Issued in U.S. Appl. No. 29/697,071 dated Apr. 12, 2021. |
United States Patent Office, Office Action for U.S. Appl. No. 16/728,715 dated May 19, 2021. |
Design U.S. Appl. No. 29/785,568, filed May 26, 2021 titled “Cooler Fender Frame”. |
Non Final Office Action Issued in U.S. Appl. No. 16/728,715 dated May 19, 2021. |
Corrected Notice of Allowance for U.S. Appl. No. 29/697,070 dated Jun. 3, 2021. |
Corrected Notice of Allowance for U.S. Appl. No. 29/697,071 dated Jun. 3, 2021. |
Amazon.com, ICECO insulated protective cover, first date available Oct. 11, 2019. (Year 2019), pp. 1-2. |
Corrected Notice of Allowance Issued in U.S. Appl. No. 29/697,070 dated Jun. 9, 2021. |
Corrected Notice of Allowance Issued in U.S. Appl. No. 29/697,071 dated Jun. 9, 2021. |
Notice of Allowance Issued in U.S. Appl. No. 29/711,905 dated Jul. 12, 2021. |
Notice of Allowance Issued in U.S. Appl. No. 29/711,906 dated Jul. 12, 2021. |
Examination report mailed in German Application No. 102019200068.1 dated Oct. 8, 2019. |
DE Patent application 102019200068.1 entitled “Mobile Cooling Box with Air Vents” filed on Jan. 4, 2019. |
AU Patent application 2019284130 entitled “Mobile Cooling Box with Air Vents” filed on Dec. 30, 2019. |
Restriction Requirement for Design U.S. Appl. No. 29/697,070 dated Dec. 28, 2020. |
Notice of Allowance Issued in U.S. Appl. No. 29/697,071 dated Dec. 23, 2020. |
Examination report mailed in EU Design Application No. 005948601-0001/005948601-0030 dated Jan. 9, 2019. |
Examination report mailed in DE Patent Application No. 102019200070.3 dated Sep. 24, 2019. |
Examination report mailed in DE Patent Application No. 102019200064.9 dated Sep. 27, 2019. |
Examination report mailed in DE Patent Application No. 102019200067.3 dated Oct. 8, 2019. |
Examination report mailed in DE Patent Application No. 102019200063.0 dated Oct. 15, 2019. |
Notification to Grant Patent Right for CN Design Application No. 201930331393.8 dated Oct. 29, 2019. |
CN Design application No. 201930331393.8 entitled “ Cooler” filed on Jun. 25, 2019. |
CN Patent Application No. 201911066985.7 entitled “Cover for a Cooler” filed Nov. 4, 2019. |
DE Design Application No. 102019200067.3 entitled “Mobile Cooling Box With Ice Maker” filed Jan. 4, 2019. |
DE Patent Application No. 102019200063.0 entitled “Mobile Cooling Box with User Interface Module” filed Jan. 4, 2019. |
DE Patent Application No. 102019200064.9 entitled “Mobile Cooling Box with Latch Handle Opening” filed Jan. 4, 2019. |
DE Patent Application No. 102019200070.3 entitled “Mobile Cooling Box With Hinge Module” filed Jan. 4, 2019. |
European Design Application No. 005948601 “Cooler” filed Jan. 4, 2019. |
Design U.S. Appl. No. 29/666,264 entitled “Cooler” filed Oct. 11, 2018. |
Design U.S. Appl. No. 29/650,910, filed Jun. 11, 2018 titled “Zipper Pull”. |
AU Patent Application No. 202012545 entitled “Cover for Cooler” filed May 1, 2020. |
AU Patent Application No. 202012548 entitled “Cover for Cooler” filed Apr. 30, 2020. |
European Design Application No. 007847777-0002 “CFX3 Protective covers” filed Apr. 30, 2020. |
Decision to Grant mailed in DE Patent Application No. 102019200064.9 dated Jul. 31, 2020. |
Decision to Grant mailed in DE Patent Application No. 102019200063.0 dated Aug. 4, 2020. |
Restriction Requirement for U.S Design U.S. Appl. No. 29/697,069 dated Sep. 24, 2020. |
AU Patent Application No. 2019284133 entitled “Mobile cooling box with ice maker” filed Dec. 30, 2019. |
AU Patent Application No. 2019284131 entitled “Mobile cooling box with hinge moduler” filed Dec. 30, 2019. |
AU Patent Application No. 2019284128 entitled “Mobile cooling box with user interface moduler” filed Dec. 30, 2019. |
AU Patent Application No. 2019284134 entitled “Mobile Cooling Box with Latch Handle Opening” filed Dec. 30, 2019. |
Notice of Allowance Issued in U.S. Appl. No. 29/697,069 dated Feb. 1, 2021. |
Decision to Grant mailed in DE Patent Application No. 102019200065.7 dated Aug. 4, 2020. |
Decision to Grant mailed in DE Patent Application No. 102019200068.1 dated Oct. 15, 2020. |
Examination report mailed in DE Application No. 102019200068.1 dated Oct. 8, 2019. |
DE Patent application 102020209896.4 entitled “Handle Module” filed on Aug. 5, 2020. |
Examination report mailed in DE Application No. 102019200065.7 dated Sep. 30, 2019. |
Corrected Notice of Allowance Issued in U.S. Appl. No. 29/697,069 dated Feb. 26, 2021. |
Corrected Notice of Allowance Issued in U.S. Appl. No. 29/785,568 dated Dec. 6, 2021. |
Office Action Issued in German Patent Application No. 102019200070.3 dated Aug. 25, 2021. |
Notice of Allowance Issued in U.S. Appl. No. 16/728,715 dated Feb. 2, 2022. |
Notice of Allowance Issued in U.S. Appl. No. 29/711,906 dated Feb. 7, 2022. |
Notice of Allowance Issued in U.S. Appl. No. 29/785,568 dated Feb. 8, 2022. |
Corrected Notice of Allowance Issued in U.S. Appl. No. 16/728,715 dated Feb. 23, 2022. |
Notice of Allowance Issued in U.S. Appl. No. 16/728,657 dated Mar. 9, 2022. |
Supplemental Notice of Allowance Issued in U.S. Appl. No. 29/711,906 dated Mar. 10, 2022. |
Corrected Notice of Allowance Issued in U.S. Appl. No. 29/785,568 dated Mar. 9, 2022. |
Corrected Notice of Allowance Issued in U.S. Appl. No. 16/728,715 dated Mar. 9, 2022. |
Decision to Grant Issued in German Application No. 102019200070.3 dated Mar. 2, 2022. |
Notice of Allowance Issued in U.S. Appl. No. 16/728,604 dated Apr. 13, 2022. |
Non Final Office Action Issued in U.S. Appl. No. 16/728,687 dated Apr. 15, 2022. |
Notice of Allowance Issued in U.S. Appl. No. 16/728,657 dated Mar. 24, 2022. |
Notice of Allowance Issued in U.S. Appl. No. 29/711,906 dated May 2, 2022. |
Supplemental Notice of Allowance Issued in U.S. Appl. No. 16/728,657 dated May 2, 2022. |
Supplemental Notice of Allowance Issued in U.S. Appl. No. 16/728,604 dated May 13, 2022. |
Corrected Notice of Allowance Issued in U.S. Appl. No. 16/728,715 dated May 16, 2022. |
Restriction Requirement Issued in U.S. Appl. No. 16/800,512 dated May 24, 2022. |
U.S. Appl. No. 17/825,374 titled “Mobile Cooling Box with Ice Maker” filed on May 26, 2022. |
Design U.S. Appl. No. 29/840,161 titled “Cooler Fender Frame” filed on May 26, 2022. |
Notice of Allowance Issued in U.S. Appl. No. 16/728,657 dated Jun. 15, 2022. |
Corrected Notice of Allowability Issued in U.S. Appl. No. 16/728,604 dated Jul. 8, 2022. |
U.S. Appl. No. 17/872,514 titled “Mobile Cooling Box with Ice Maker” filed on Jul. 25, 2022. |
U.S. Appl. No. 17/886,803 titled “Mobile Cooling Box with Handle Module” filed on Aug. 12, 2022. |
Non-Final Office Action Issued in U.S. Appl. No. 16/728,623 dated Oct. 3, 2022. |
Non-Final Office Action Issued in U.S. Appl. No. 16/800,512 dated Oct. 11, 2022. |
Non-Final Office Action issued in U.S. Appl. No. 17/825,374 dated Oct. 25, 2022. |
Final Office Action Issued in U.S. Appl. No. 16/728,687 dated Nov. 28, 2022. |
Decision to Grant Issued in German Application No. 102020209896.4 dated Jan. 10, 2023. |
Notice of Allowability issued in U.S. Appl. No. 17/825,374 dated Mar. 7, 2023. |
Corrected Notice of Allowability issued in U.S. Appl. No. 17/825,374 dated Mar. 16, 2023. |
Non-Final Office Action issued in U.S. Appl. No. 16/728,687 dated Mar. 17, 2023. |
Final Office Action Issued in U.S. Appl. No. 16/800,512 dated Feb. 14, 2023. |
Ex-Parte Quayle Action issued in U.S. Appl. No. 17/872,514 mailed on May 5, 2023. |
Patent Certificate issued in DE Patent Application No. 102020209896.4 mailed on Apr. 20, 2023. |
Number | Date | Country | |
---|---|---|---|
20200217578 A1 | Jul 2020 | US |