This invention relates to imaging systems in general, and more particularly to mobile anatomical imaging systems.
In many situations it can be desirable to image the interior of opaque objects. By way of example but not limitation, in the medical field, it can be desirable to image the interior of a patient's body so as to allow viewing of internal structures without physically penetrating the skin of the patient.
Computerized Tomography (CT) has emerged as a key imaging modality in the medical field. CT imaging machines generally operate by directing X-rays into the body from a variety of positions, detecting the X-rays passing through the body, and then processing the detected X-rays so as to build a three-dimensional (3D) data set of the patient's anatomy. This 3D data set can then be processed so as to create a 3D computer model of the patient's anatomy. The 3D data set and 3D computer model can then be visualized so as to provide images (e.g., slice images, 3D computer images, etc.) of the patient's anatomy.
By way of example but not limitation, and looking now at
Looking next at
In practice, it is now common to effect helical scanning of the patient's anatomy so as to generate a 3D data set of the scanned anatomy, which can then be processed so as to create a 3D computer model of the scanned anatomy. The 3D data set and 3D computer model can then be visualized so as to provide images (e.g., slice images, 3D computer images, etc.) of the patient's anatomy.
The various electronic hardware and software for controlling the operation of rotating disc 23, X-ray tube assembly 25 and X-ray detector assembly 30, as well as for processing the acquired scan data so as to generate the desired slice images, 3D data set and 3D computer model, may be of the sort well known in the art and may be located in torus 10 and/or base 15.
The images produced by CT imaging machine 5 may be viewed on a display screen 41 provided on CT imaging machine 5 or on a remote screen (not shown).
In many cases, CT imaging machine 5 is intended to be stationary, in which case base 15 of CT imaging machine 5 is set in a fixed position on the floor of a room and a special motorized bed is provided to move the patient relative to CT imaging machine 5 during scanning. More particularly, and looking now at
In other cases, CT imaging machine 5 is intended to be mobile so that the CT imaging machine may be brought to the patient and the patient scanned at the patient's current location, with the CT imaging machine moving relative to the patient during scanning. Scanning the patient with a mobile CT imaging machine 5 can be highly advantageous, since it can reduce delays in patient scanning (e.g., the patient can be scanned in an emergency room rather than waiting to be transported to the radiology department) and/or it can allow the patient to be scanned without requiring movement of the patient (e.g., the patient can be scanned at their bedside in an intensive care unit, “ICU”).
To this end, and looking now at
In one preferred form of the invention, gross movement mechanism 55 preferably comprises a plurality of free-rolling casters 62, and fine movement mechanism 60 preferably comprises a plurality of centipede belt drives 63 (which can be configured for either stepped or continuous motion, whereby to provide either stepped or continuous scanning of the patient). Hydraulic apparatus 65 permits either gross movement mechanism 55 or fine movement mechanism 60 to be engaged with the floor, whereby to facilitate appropriate movement of mobile CT imaging machine 5B.
Thus, with mobile CT imaging machine 5B, the mobile CT imaging machine may be pre-positioned in an “out of the way” location (e.g., in an unused corner of an emergency room) and then, when a patient requires scanning, the patient may be quickly and easily scanned at their bedside, i.e., by simply moving the mobile CT imaging machine to the patient's bedside on gross movement mechanism 55 (e.g., on casters 62), and thereafter moving the mobile CT imaging machine during scanning on fine movement mechanism 60 (e.g., on centipede belt drives 63).
Note that other mobile CT imaging machines are known in the art.
By way of example but not limitation, and looking now at
By way of further example but not limitation, and looking now at
In some circumstances, the patient may be in a location where a bed is not available, or if a bed is available, the available bed is not radiolucent (and therefore cannot be used to support the patient during scanning). In these circumstances, CT scanning of at least the torso of the patient, and in many cases most of the anatomy of the patient, is not possible. It would, therefore, be desirable to provide a mobile CT imaging machine comprising an on-board motorized bed (i.e., a motorized bed mounted to the CT imaging machine) so that the mobile CT imaging machine and the on-board motorized bed can be moved as a unit to the patient, whereby to permit scanning of the patient without requiring the patient to move to the location of a scanning bed.
Thus, there exists a need for a new and improved mobile CT imaging machine comprising an on-board motorized bed for permitting scanning of the patient wherever the CT machine is located.
In addition to the foregoing, in some circumstances a patient being scanned with a mobile CT imaging machine may also have a condition which is susceptible to being separately scanned with an ultrasound imager. In this case, it may be desirable to scan the patient with an ultrasound imager, rather than with CT, in order to reduce (or eliminate) the radiation exposure of the patient. It would, therefore, be desirable to provide a mobile CT imaging machine comprising an on-board ultrasound imager so that the mobile CT imaging machine and the on-board ultrasound imager can be moved as a single unit to the patient, whereby to permit scanning of the patient using the desired imaging modality (e.g., CT and/or ultrasound).
Thus, there also exists a need for a new and improved mobile CT imaging system comprising an on-board ultrasound imager.
These and other objects of the present invention are addressed by the provision and use of a new and improved mobile CT imaging system which comprises a mobile CT imaging machine comprising an on-board motorized bed and/or an on-board ultrasound imager.
In one preferred form of the invention, there is provided an imaging system for imaging an object, the imaging system comprising:
an imaging unit comprising a housing having a center opening for receiving the object to be imaged; and
a patient support for supporting the object to be imaged, the patient support being pivotally mounted to the housing, wherein the patient support is configured to pivot between (i) a first, folded configuration in which the patient support is disposed close to the housing, whereby to facilitate transport of the imaging unit, and (ii) a second, unfolded configuration in which the patient support is aligned with the center opening, whereby to facilitate imaging of the object on the patient support.
In another preferred form of the invention, there is provided a method for imaging an object, the method comprising:
providing an imaging system comprising:
positioning the patient support in its second, unfolded configuration;
positioning an object on the patient support while the patient support is in its second, unfolded configuration;
moving the object into the central opening; and
imaging the object in the central opening.
These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which is to be considered together with the accompanying drawings wherein like numbers refer to like parts and further wherein:
Looking first at
Novel mobile CT imaging machine 105 may be the aforementioned mobile CT imaging machine 5B (i.e., where free-rolling castors 62 are used to move the system quickly between locations, and centipede belt drives 63 are used to move the machine during scanning); or novel mobile CT imaging machine 105 may be the aforementioned mobile CT imaging machine 5C (i.e., where powered mecanum wheels 70 (also known as “omni” wheels or “ilon” wheels) are used to move the machine quickly between locations, and powered wheels 63C are used to move the machine during scanning); or novel mobile CT imaging machine 105 may be the aforementioned mobile CT imaging machine 5D (i.e., where so-called “Liddiard” wheels 76 are used to move the machine both quickly between locations and during scanning); or novel mobile CT imaging machine 105 may be any other mobile CT imaging machine capable of moving between locations before and/or after scanning.
On-board motorized bed 110 is movably (e.g., pivotally) mounted to mobile CT imaging machine 105. More particularly, in a preferred form of the invention, on-board motorized bed 110 is pivotally mounted to mobile CT imaging machine 105 such that on-board motorized bed 110 is capable of assuming: (i) a first “folded” configuration (which also may be referred to herein as a “transport” configuration) (see
Furthermore, if desired, on-board motorized bed 110 may include powered systems for moving on-board motorized bed 110 between its first “folded” configuration and its second “unfolded” configuration, or on-board motorized bed 110 may include manual systems for moving on-board motorized bed 110 between its first “folded” configuration and its second “unfolded” configuration.
In one preferred form of the invention, on-board motorized bed 110 comprises two patient supports 115 which are pivotally connected to one another at a hinge 120. On-board motorized bed 110 is movably mounted to mobile CT imaging machine 105 by means of telescoping arms 125 which connect patient supports 115 to the base of mobile CT imaging machine 105, as will hereinafter be discussed in further detail. More particularly, telescoping arms 125 comprise a first end 130 pivotally mounted to a mount 135 attached to base 15 of mobile CT imaging machine 105, and a second end 140 which is pivotally mounted to hinge 120. In this way, retracting telescoping arms 125 causes on-board motorized bed 110 to assume its first “folded” configuration, and extending telescoping arms 125 causes on-board motorized bed 110 to assume its second “unfolded” configuration.
As seen in
Note that the two patient supports 115 of on-board motorized bed 110 comprise a material which is radiolucent to X-rays, so that when a patient (or object) is lying on on-board motorized bed 110 and the on-board motorized bed 110 advances the patient into the center opening 20 of mobile CT imaging machine 105 during scanning, on-board motorized bed 110 does not interfere with CT imaging of the patient.
Thus it will be seen that mobile CT imaging machine 105 differs from the mobile CT imaging systems 5B, 5C and 5D previously discussed, in the sense that with mobile CT imaging machine 105, relative movement between the patient and the CT imaging machine is not effected by movement of the mobile CT imaging machine relative to the patient, but rather, it is effected by movement of on-board motorized bed 110 relative to mobile CT imaging machine 105 (i.e., movement of on-board motorized bed 110 into or out of center opening 20).
If desired, and looking next at
It will be appreciated that when on-board motorized bed 110 is in its second “unfolded” configuration, on-board motorized bed 110 is cantilevered outwardly from mobile CT imaging machine 105. Where mobile CT imaging machine 105 is relatively light-weight, and where a heavy patient (or object) is positioned on on-board motorized bed 110, instability of mobile CT imaging system 100 might occur. In order to prevent this, and looking next at
Deployable feet 155 are movable between a first “folded” configuration in which deployable feet 155 sit close to the body of mobile CT imaging machine 105 (
Looking next at
It should be appreciated that the present invention is not limited to use in medical applications or, indeed, to use with CT machines. Thus, for example, the present invention may be used in connection with mobile CT machines used for non-medical applications, e.g., with mobile CT machines used to scan inanimate objects. Furthermore, the present invention may be used with non-CT-type mobile scanning systems. Thus, for example, the present invention may be used in conjunction with mobile SPECT machines, mobile MRI machines, mobile PET machines, mobile X-ray machines, etc., i.e., wherever the mobile scanning machine may require close tracking to a scan path.
It will be appreciated that still further embodiments of the present invention will be apparent to those skilled in the art in view of the present disclosure. It is to be understood that the present invention is by no means limited to the particular constructions herein disclosed and/or shown in the drawings, but also comprises any modifications or equivalents within the scope of the invention.
This patent application claims benefit of pending prior U.S. Provisional Patent Application Ser. No. 63/289,426, filed Dec. 14, 2021 by Neurologica Corporation, a subsidiary of Samsung Electronics Co., Ltd. and Michael Limoli et al. for MOBILE CT IMAGING SYSTEM COMPRISING A MOBILE CT IMAGING MACHINE WITH AN ON-BOARD MOTORIZED BED AND/OR AN ON-BOARD ULTRASOUND IMAGER (Attorney's Docket No. NEUROLOGICA-118 PROV). The above-identified patent application is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63289426 | Dec 2021 | US |