Mobile device power state

Information

  • Patent Grant
  • 9047207
  • Patent Number
    9,047,207
  • Date Filed
    Monday, October 15, 2012
    11 years ago
  • Date Issued
    Tuesday, June 2, 2015
    9 years ago
Abstract
Techniques for mobile device power state are described. In one or more implementations, a mobile device includes a computing device that is flexibly coupled to an input device via a flexible hinge. Accordingly, the mobile device can operate in a variety of different power states based on a positional orientation of the computing device to an associated input device. In one or more implementations, an application that resides on a computing device can operate in different application states based on a positional orientation of the computing device to an associated input device. In one or more implementations, techniques discussed herein can differentiate between vibrations caused by touch input to a touch functionality, and other types of vibrations. Based on this differentiation, techniques can determine whether to transition between device power states.
Description
BACKGROUND

Mobile computing devices have been developed to increase the functionality that is made available to users in a mobile setting. For example, a user may interact with a mobile phone, tablet computer, or other mobile computing device to check email, surf the web, compose texts, interact with applications, and so on.


Because mobile computing devices are configured to be mobile, the devices typically include some type of battery that serves as a mobile source of power for the devices. A limitation associated with utilizing battery power is that a battery has a limited effective charge life. When a battery charge for a mobile computing device is depleted, the battery is recharged or replaced in order to maintain operability of the device. Thus, to extend battery usage life, managing power consumption of mobile computing devices is an important consideration.


SUMMARY

This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.


Techniques for mobile device power state are described. In one or more implementations, a mobile device includes a computing device that is flexibly coupled to an input device via a flexible hinge. Accordingly, the mobile device can operate in a variety of different power states based on a positional orientation of the computing device to an associated input device. For example, the computing device and the input device can be positioned at different respective tilt angles. Techniques can determine a tilt angle between the computing device and the input device, and can determine a particular power state for the computing device and/or the input device based on the tilt angle. For example, different tilt angle ranges can correspond to different power states.


In one or more implementations, an application that resides on a computing device can operate in different application states based on a positional orientation of the computing device to an associated input device. For example, a particular functionality of an application can be enabled or disabled based on a tilt angle between the computing device and the input device. Thus, different tilt angle ranges can correspond to different application states.


In one or more implementations, techniques can cause a computing device to transition between power states in response to detected vibrations. For example, a vibration detection mechanism (e.g., an accelerometer) associated with a computing device in a low power mode can detect vibration of the computing device and/or of an input device coupled to the computing device. The vibration, for instance, may be caused by user input to a touch functionality of the computing device, such as a touch screen of the computing device, a track pad of a coupled input device, and so on. Alternatively, the vibration can be caused by some other contact with the computing device, such as a result of inadvertent bumping of the computing device by a user, vibration of a table or other surface on which the computing device is resting, and so on. Thus, techniques discussed herein can differentiate between vibrations caused by touch input to a touch functionality, and other types of vibrations. Based on this differentiation, techniques can determine whether to transition between device power states.





BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items. Entities represented in the figures may be indicative of one or more entities and thus reference may be made interchangeably to single or plural forms of the entities in the discussion.



FIG. 1 is an illustration of an environment in an example implementation that is operable to employ the techniques described herein.



FIG. 2 depicts an example implementation of an input device of FIG. 1 as showing a flexible hinge in greater detail.



FIG. 3 depicts an example orientation of the input device in relation to the computing device in accordance with one or more embodiments.



FIG. 4 depicts an example orientation of the input device in relation to the computing device in accordance with one or more embodiments.



FIG. 5 depicts an example orientation of the input device in relation to the computing device in accordance with one or more embodiments.



FIG. 6 depicts an example orientation of the input device in relation to the computing device in accordance with one or more embodiments.



FIG. 7 depicts an example orientation of the input device in relation to the computing device in accordance with one or more embodiments.



FIG. 8 depicts an example orientation of the input device in relation to the computing device in accordance with one or more embodiments.



FIG. 9 depicts some example rotational orientations of the computing device in relation to the input device in accordance with one or more embodiments.



FIG. 10 is a flow diagram that describes steps in a method in accordance with one or more embodiments.



FIG. 11 is a flow diagram that describes steps in a method in accordance with one or more embodiments.



FIG. 12 is a flow diagram that describes steps in a method in accordance with one or more embodiments.



FIG. 13 illustrates an example system including various components of an example device that can be implemented as any type of computing device as described with reference to FIGS. 1-12 to implement embodiments of the techniques described herein.





DETAILED DESCRIPTION

Overview


Techniques for mobile device power state are described. In one or more implementations, a mobile device includes a computing device that is flexibly coupled to an input device via a flexible hinge. Examples of an input device include a keyboard, a touch pad, combinations of a keyboard and touch pad, and so on. The computing device includes a display device (e.g., a display surface) and has independent operability separate from the input device, such as for outputting content, receiving touch input, and so on. The input device thus provides a mechanism for providing input to the computing device, but the computing device is also operable to provide functionality independent of the input device.


In one or more implementations, a computing device can operate in a variety of different power states based on a positional orientation of the computing device to an associated input device. For example, the computing device and the input device can be positioned at different respective tilt angles. Techniques can determine a tilt angle between the computing device and the input device, and can determine a particular power state for the computing device and/or the input device based on the tilt angle. For example, different tilt angle ranges can correspond to different device power states.


In one or more implementations, an application that resides on a computing device can operate in different application states based on a positional orientation of the computing device to an associated input device. For example, a particular functionality of an application can be enabled or disabled based on a tilt angle between the computing device and the input device. Thus, different tilt angle ranges can correspond to different application states.


In one or more implementations, techniques can cause a computing device to transition between power states in response to detected vibrations. For example, a vibration detection mechanism (e.g., an accelerometer) associated with a computing device in a low power mode can detect vibration of the computing device and/or of an input device coupled to the computing device. The vibration, for instance, may be caused by user input to a touch functionality associated with the computing device, such as a touch screen of the computing device, a track pad of a coupled input device, and so on. Alternatively, the vibration can be caused by some other contact with the computing device, such as a result of inadvertent bumping of the computing device by a user, vibration of a table or other surface on which the computing device is resting, and so on.


In response to the detected vibration, techniques can query a functionality of the computing device to determine whether the vibration was caused by touch input from a user. For example, a capacitive touch input mechanism (e.g., a track pad, a touch screen, and so forth) can be powered on and queried to determine whether the mechanism is receiving touch input from a user. Touch input, for instance, can indicate intent from a user to cause the computing device to transition from a low power (e.g., sleep) mode, to a functional mode.


If the mechanism indicates that it is receiving touch input, the computing device can wake from the low power mode. Absent an indication of touch input, the computing device can remain in a low power state. Thus, techniques can utilize a sensing mechanism that consumes less power to detect vibration of a computing device, and can utilize a mechanism that consumes more power (e.g., a capacitive touch sensor) to ascertain whether the vibration resulted from touch input. This can enable a sensing mechanism that consumes more power to remain in a low power state (e.g., an off state) unless queried to confirm the presence of touch input, thus reducing power consumption by a computing device.


In the following discussion, an example environment is first described that may employ techniques described herein. Next, a section entitled “Example Device Orientations” describes some example mobile device orientations in accordance with one or more embodiments. Following this, example procedures are described which may be performed in the example environment as well as other environments. Consequently, performance of the example procedures is not limited to the example environment and the example environment is not limited to performance of the example procedures. Next, a section entitled “Touch Initiated Power State Transition” describes example embodiments for transitioning between power states based on touch input. Finally, an example system and device are described in which embodiments may be implemented in accordance with one or more embodiments. Further, although an input device is described, other devices are also contemplated that do not include input functionality, such as covers.


Example Environment



FIG. 1 is an illustration of an environment 100 in an example implementation that is operable to employ techniques described herein. The illustrated environment 100 includes an example of a computing device 102 that is physically and communicatively coupled to an input device 104 via a flexible hinge 106. The computing device 102 may be configured in a variety of ways. For example, the computing device 102 may be configured for mobile use, such as a mobile phone, a tablet computer as illustrated, and so on. Thus, the computing device 102 may range from full resource devices with substantial memory and processor resources to a low-resource device with limited memory and/or processing resources. The computing device 102 may also relate to software that causes the computing device 102 to perform one or more operations.


The computing device 102, for instance, is illustrated as including an input/output module 108. The input/output module 108 is representative of functionality relating to processing of inputs and rendering outputs of the computing device 102. A variety of different inputs may be processed by the input/output module 108, such as inputs relating to functions that correspond to keys of the input device 104, keys of a virtual keyboard displayed by a display device 110 to identify gestures and cause operations to be performed that correspond to the gestures that may be recognized through the input device 104 and/or touchscreen functionality of the display device 110, and so forth. Thus, the input/output module 108 may support a variety of different input techniques by recognizing and leveraging a division between types of inputs including key presses, gestures, and so on.


In the illustrated example, the input device 104 is configured as having an input portion that includes a keyboard having a QWERTY arrangement of keys and track pad although other arrangements of keys are also contemplated. Further, other non-conventional configurations are also contemplated, such as a game controller, configuration to mimic a musical instrument, and so forth. Thus, the input device 104 and keys incorporated by the input device 104 may assume a variety of different configurations to support a variety of different functionality.


As previously described, the input device 104 is physically and communicatively coupled to the computing device 102 in this example through use of a flexible hinge 106. The flexible hinge 106 is flexible in that rotational movement supported by the hinge is achieved through flexing (e.g., bending) of the material forming the hinge as opposed to mechanical rotation as supported by a pin, although that embodiment is also contemplated. Further, this flexible rotation may be configured to support movement in one or more directions (e.g., vertically in the figure) yet restrict movement in other directions, such as lateral movement of the input device 104 in relation to the computing device 102. This may be used to support consistent alignment of the input device 104 in relation to the computing device 102, such as to align sensors used to change power states, application states, and so on.


The flexible hinge 106, for instance, may be formed using one or more layers of fabric and include conductors formed as flexible traces to communicatively couple the input device 104 to the computing device 102 and vice versa. This communication, for instance, may be used to communicate a result of a key press to the computing device 102, receive power from the computing device, perform authentication, provide supplemental power to the computing device 102, and so on. The flexible hinge 106 may be configured in a variety of ways, further discussion of which may be found in relation to the figures discussed below.


The computing device 102 further includes an orientation module 112, which is representative of functionality to determine a positional orientation of the computing device 102 relative to the input device 104. For example, the orientation module 112 can receive orientation information from a computing device accelerometer 114, and from an input device accelerometer 116. The orientation module 112 can utilize the orientation information from the respective accelerometers to determine a relative orientation of the devices. The relative orientation, for instance, can indicate an angle at which the computing device 102 (e.g., the display device 110) is tilted with reference to the input device 104. Orientation information can be leveraged to perform various tasks, such as determining an appropriate power state for the computing device 102 and/or the input device 104, determining application states for various applications, and so on.


A power state module 118 is included, which is representative of functionality to cause the computing device 102 and/or the input device 104 to operate in various power states. For example, based on different device orientations determined by the orientation module 112, the power state module 118 can power on, power off, and hibernate the computing device 102 and/or the input device 104. A variety of other power states are contemplated as well. Different tilt angle ranges, for instance, can be associated with different power states for the computing device 102 and/or the input device 104.


The power state module 118 may also be employed to cause the computing device 102 and/or the input device 104 to transition between power states based on detected vibration, such as detected via the computing device accelerometer 114 and/or the input device accelerometer 116. Such vibration can be caused by user contact with the computing device 102 and/or the input device 104. For example, a user can touch the display device 110 and/or a track pad 120 to initiate waking the computing device 102 and/or the input device 104 from a sleep mode. Vibration may also be caused by other forms of contact, such as a user bumping the device and/or a surface on which the device is situated. As discussed in detail below, techniques can be implemented to differentiate between wake events (e.g., a user touching a key and/or the track pad 120), and non-wake events, such as incidental contact with a device.


As referenced above, the computing device 102 can be rotated to assume different orientations with respect to the input device 104. For instance, the computing device 102 can be rotated to a closed position, where the input device 104 covers the display device 110. An example technique for detecting when the computing device is in a closed position utilizes a first sensing portion 122 and a second sensing portion 124. The first sensing portion 122 is positioned on a region of the computing device 102, such as underneath an external surface near the edge of the computing device 102. Similarly, the second sensing portion 124 can be positioned underneath an external surface near an edge of the input device 104. Together, the first sensing portion 122 and the second sensing portion 124 form a sensing mechanism that can detect when the computing device 102 is in a closed position.


The sensing mechanism, for instance, can leverage the Hall effect to utilize magnetic force to detect proximity between the computing device 102 and the input device 104. For example, the first sensing portion 122 can include a Hall effect sensor and the second sensing portion 124 can include a magnet. When the computing device 102 is rotated to a closed position, the first sensing portion 122 can align with the second sensing portion 124 such that the Hall effect sensor in the first sensing portion 122 detects the magnet in the second sensing portion 124. The first sensing portion 122 can indicate to various functionalities that the computing device 102 is in a closed position, such as to the orientation module 112, the power state module 118, and so forth. When the computing device 102 is positioned away from the input device 104, the first sensing portion 122 does not detect the second sensing portion 124. Thus, the first sensing portion 122 can indicate to various functionalities that the computing device 102 is in an open position.



FIG. 2 depicts an example implementation 200 of the input device 104 of FIG. 1 as showing the flexible hinge 106 in greater detail. In this example, a connection portion 202 of the input device is shown that is configured to provide a communicative and physical connection between the input device 104 and the computing device 102. The connection portion 202 as illustrated has a height and cross section configured to be received in a channel in the housing of the computing device 102, although this arrangement may also be reversed without departing from the spirit and scope thereof.


The connection portion 202 is flexibly connected to a portion of the input device 104 that includes the keys through use of the flexible hinge 106. Thus, when the connection portion 202 is physically connected to the computing device the combination of the connection portion 202 and the flexible hinge 106 supports movement of the input device 104 in relation to the computing device 102 that is similar to a hinge of a book.


The connection portion 202 is illustrated in this example as including magnetic coupling devices 204, 206, mechanical coupling protrusions 208, 210, and communication contacts 212. The magnetic coupling devices 204, 206 are configured to magnetically couple to complementary magnetic coupling devices of the computing device 102 through use of one or more magnets. In this way, the input device 104 may be physically secured to the computing device 102 through use of magnetic attraction.


The connection portion 202 also includes mechanical coupling protrusions 208, 210 to form a mechanical physical connection between the input device 104 and the computing device 102. The communication contacts 212 are configured to contact corresponding communication contacts of the computing device 102 to form a communicative coupling between the devices as shown.


Having discussed an example environment in which embodiments may operate, consider now some example device orientations in accordance with one or more embodiments.


Example Device Orientations


The following discussion presents some example device orientations. As detailed, different device orientations can be associated with different device power states, different application states, and so forth.



FIG. 3 illustrates that the input device 104 may be rotated such that the input device 104 is placed against the display device 110 of the computing device 102 to assume an orientation 300. In the orientation 300, the input device 104 may act as a cover such that the input device 104 can protect the display device 110 from harm. In implementations, the orientation 300 can correspond to a closed position of the computing device 102.


As referenced above, in a closed position the first sensing portion 122 can detect the proximity of the second sensing portion 124. Thus, the first sensing portion 122 can indicate to various functionalities that the computing device 102 is in a closed position. For example, the power state module 118 can determine that the computing device 102 is in a closed position, and can cause the computing device 102 to transition to a closed power state. In the closed power state, various functionalities can be powered off and/or hibernated, such as the input device 104, the display device 110, and so on.



FIG. 4 illustrates that the input device 104 has rotated away from the computing device 102 such that the computing device assumes an orientation 400. The orientation 400 includes a gap 402 that is introduced between the computing device 102 and the input device 104. In implementations, the orientation 400 can be caused unintentionally by a user, such as by inadvertent contact with the computing device 102 and/or the input device 104 that causes the computing device 102 to sag slightly away from the input device 104 such that the gap 402 is introduced.


In at least some embodiments, in the orientation 400 the first sensing portion 122 may not detect the proximity of the second sensing portion 124. For example, the distance between the first sensing portion 122 and the second sensing portion 124 introduced by the gap 402 may be such that the first sensing portion 122 does not detect the second sensing portion 124.


When the computing device 102 is oriented at an angle relative to the input device 104, such as in the orientation 400, techniques can determine the angle. For example, the computing device accelerometer 114 can determine an angle at which the computing device 102 is oriented relative to earth's surface. Further, the input device accelerometer 116 can determine an angle at which the input device 104 is oriented relative to earth's surface. As detailed below, these two angles can be compared to determine an angle of orientation of the computing device 102 relative to the input device 104.


In the example illustrated in FIG. 4, the computing device 102 is oriented at an angle 404 relative to the input device 104. For example, the angle 404 can be determined to be approximately 4 degrees. While in the orientation 400 the computing device 102 has rotated slightly to the angle 404, the computing device 102 may nonetheless be considered to be in a closed position for purposes of determining an appropriate power state. The angle 404, for instance, may be considered to be within an angle range that corresponds to a closed position for the computing device 102. For example, an angle range of 0 degrees-30 degrees can correspond to a closed position. As mentioned above, a closed position can correspond to a closed power state in which various functionalities can be powered off and/or hibernated.



FIG. 5 illustrates an example orientation 500 of the computing device 102. In the orientation 500, the input device 104 is laid flat against a surface and the computing device 102 is disposed at an angle to permit viewing of the display device 110, e.g., such as through use of a kickstand 502 disposed on a rear surface of the computing device 102. The orientation 500 can correspond to a typing arrangement whereby input can be received via the input device 104, such as using keys of the keyboard, the track pad 120, and so forth.


Further to the example illustrated in FIG. 5, the computing device 102 is oriented at an angle 504 relative to the input device 104. For example, the angle 504 can be determined to be approximately 115 degrees. The angle 504 may be considered to be within an angle range that corresponds to a typing position for the computing device 102. For example, an angle range of 31 degrees-180 degrees can correspond to a typing position. Within this angle range, the computing device 102 and/or the input device 104 can placed in a typing power state. In the typing power state, the input device 104 and the computing device 102 can be powered on, such that input can be provided to the computing device 102 via the input device 104.



FIG. 6 illustrates a further example orientation of the computing device 102, generally at 600. In the orientation 600, the computing device 102 is oriented such that the display device 110 faces away from the input device 104. In this example, the kickstand 502 can support the computing device 102, such as via contact with a back surface of the input device 104. Although not expressly illustrated here, a cover can be employed to cover and protect a front surface of the input device 104.


Further to the example illustrated in FIG. 6, the display device 110 of the computing device 102 is determined to be oriented at an angle 602 relative to the input device 104. For example, the angle 602 can be determined to be approximately 295 degrees. The angle 602 may be considered to be within an angle range that corresponds to a viewing position for the computing device 102. For example, an angle range of 200 degrees-360 degrees can correspond to a viewing position. The orientation 600 can enable easy access to and/or viewing of the display device 110, such as for viewing content, providing touch input to the computing device 102, and so forth.


Within this angle range, the computing device 102 and/or the input device 104 can placed in a viewing power state. In the viewing power state, the computing device 102 can be powered on, and the input device 104 can be powered off or hibernated. Thus, battery power that would be used to power the input device 104 can be conserved, while enabling interaction and/or viewing of the display device 110 of the computing device 102.



FIG. 7 illustrates an example orientation 700, in which the input device 104 may also be rotated so as to be disposed against a back of the computing device 102, e.g., against a rear housing of the computing device 102 that is disposed opposite the display device 110 on the computing device 102. In this example, through orientation of the connection portion 202 to the computing device 102, the flexible hinge 106 is caused to “wrap around” the connection portion 202 to position the input device 104 at the rear of the computing device 102.


This wrapping causes a portion of a rear of the computing device 102 to remain exposed. This may be leveraged for a variety of functionality, such as to permit a camera 702 positioned on the rear of the computing device 102 to be used even though a significant portion of the rear of the computing device 102 is covered by the input device 104 in the example orientation 700.


Further to the example illustrated in FIG. 7, the display device 110 of the computing device 102 is determined to be oriented at an angle 704 relative to the input device 104. For example, the angle 704 can be determined to be approximately 360 degrees. The angle 704, for instance, may be considered to be within the angle range (referenced above) that corresponds to a viewing position such that the computing device 102 is in a viewing power state. As referenced above, a viewing power state can enable viewing of and/or interaction with the display device 110, while powering off or hibernating the input device 104. In the viewing power state, the camera 702 can be powered on such that photos can be captured while the computing device is in the viewing power state.



FIG. 8 illustrates a further example orientation of the computing device 102, generally at 800. In the orientation 800, the computing device 102 is rotated sideways, e.g., in a portrait orientation relative to a surface 802 on which the computing device 102 is disposed. The display device 110 is visible, with the input device 104 rotated away from the display device 110. In at least some implementations, a width of the input device 104 can be narrower than a width of the computing device 102. Additionally or alternatively, the width of the input device 104 can be tapered such that the edge closest to the hinge 106 is wider than the outermost edge. This can enable the face of the display device 110 to recline back in the orientation 800, to provide for a suitable viewing angle.


Further to the example illustrated in FIG. 8, techniques discussed herein can determine that the computing device 102 is disposed in the orientation 800. For example, the computing device accelerometer 114 and/or the input device accelerometer 116 can determine that the computing device 102 and/or the input device 104 are rotated to the orientation 800. In the orientation 800, a screen orientation for the display device 110 can be rotated 90 degrees, e.g., to a portrait viewing mode. Further, the computing device 102 can be placed in a viewing power state. As referenced above, a viewing power state can enable viewing of and/or interaction with the display device 110, while powering off or hibernating the input device 104.



FIG. 9 illustrates that the computing device 102 may be rotated within a variety of different angle ranges with respect to the input device 104. As detailed herein, different angle ranges can be associated with different power states, different application states, and so on.


An angle range 900 is illustrated, which corresponds to a closed position for the computing device 102. Thus, if the computing device 102 is positioned at an angle within the angle range 900 relative to the input device 104, the computing device 102 can be determined to be in a closed position. As referenced above, a closed position can include an associated closed power state where various functionalities can be powered off and/or hibernated, such as the input device 104, the display device 110, and so on.


Further illustrated is an angle range 902, which corresponds to a typing orientation for the computing device 102. Thus, if the computing device 102 is positioned at an angle within the angle range 902 relative to the input device 104, the computing device 102 can be determined to be in a typing orientation. Within this orientation, the computing device 102 and/or the input device 104 can placed in a typing power state where the input device 104 and the computing device 102 can be powered on, such that input can be provided to the computing device 102 via the input device 104, touch input to the display device 100, and so forth.



FIG. 9 further illustrates an angle range 904, which corresponds to a viewing position for the computing device 102. Thus, if the computing device 102 is positioned at an angle within the angle range 904 relative to the input device 104, the computing device 102 can be determined to be in a viewing orientation. In this orientation, the computing device 102 and/or the input device 104 can placed in a viewing power state such that the computing device 102 can be powered on, and the input device 104 can be powered off or hibernated.


The orientations, angle ranges, power states, and so forth discussed above are presented for purposes of illustration only. It is contemplated that a wide variety of different orientations, power states, and angle ranges may be implemented within the spirit and scope of the claimed embodiments.


Having discussed some example device orientations, consider now some example procedures in accordance with one or more embodiments.


Example Procedures



FIG. 10 is a flow diagram that describes steps in a method in accordance with one or more embodiments. In at least some embodiments, the method can be employed to determine an orientation of a computing device with respect to an input device.


Step 1000 ascertains a gravitational orientation of a computing device. For example, an orientation of the computing device accelerometer 114 relative to earth's gravity (e.g., the gravitational vector) can be determined. In implementations, this can include determining an angle at which an axis of the computing device accelerometer 114 is oriented with reference to earth's gravity.


Step 1002 ascertains a gravitational orientation of an input device. For example, an orientation of the input device accelerometer 116 relative to earth's gravity can be determined. In implementations, this can include determining an angle at which an axis of the input device accelerometer 116 is oriented with reference to earth's gravity.


Step 1004 determines an orientation of the computing device relative to the input device by comparing the gravitational orientation of the computing device with the gravitational orientation of the input device. For example, an angle at which the computing device is oriented relative to gravity can be compared to angle at which the input device is oriented relative to gravity, to determine an angle at which the computing device is oriented relative to the input device.


One example way of determining the orientation is as an angle Θ (theta) between the computing device and the input device. Θ can be determined using the equation







Θ
=


cos

-
1





A
·
B




A





B






,





or the dot product divided by the product of the magnitudes, where A is the gravity vector of the computing device, and B is the gravity vector of the input device. This equation is presented for purpose of example only, and a wide variety of techniques can be employed to determine the orientation of the computing device relative to the input device within the spirit and scope of the claimed embodiments.


While techniques are discussed herein with respect to determining relative orientations using accelerometers, a variety of different techniques may be employed to determine orientations within the spirit and scope of the claimed embodiments.



FIG. 11 is a flow diagram that describes steps in a method in accordance with one or more embodiments. Step 1100 ascertains an orientation of a computing device relative to an input device. As discussed above, an orientation can include an angle at which a computing device is oriented with reference to an input device, and vice-versa.


Step 1102 determines a power state based on the orientation. For example, the power state can be determined for the computing device, the input device, and/or other devices that are operably associated with the computing device. Examples of different power states are discussed above.


Step 1104 determines an application state based on the orientation. For example, a particular functionality of an application can be enabled or disabled based on a particular orientation. In implementations, steps 1102 and 1104 can occur together, sequentially, alternatively, and so on.


The application state can be determined from a group of applications states that can be applied to the application while the application is running on the computing device. Thus, the application can include different operational states, at least some of which depend on device orientation. For example, consider a scenario including an application that enables a user to play a digital piano via a computing device. An input device that is operably attached to the computing device can include keys that can be pressed to play different musical notes of a piano. Thus, when the input device is disposed in an orientation in which input may be provided via the input device (e.g., the orientation 500 discussed above with reference to FIG. 5), the application can enable functionality to receive input from the input device to play musical notes.


When the input device is disposed in a different orientation, however, the application can disable functionality for receiving input from the input device. For instance, in the orientation 700 discussed above, the input device 104 is powered off or hibernated. Thus, in this orientation, the example application can disable functionality for receiving input via the input device 104. Further, the application can enable other functionality for receiving input, such as presenting visual piano keys that can be displayed via the display device 110 and that can receive touch input from a user for playing the digital piano.


As another example, the input device can be configured as a game controller. Thus, a game application can enable and disable particular game-related functionalities based on an orientation of the computing device and/or the input device.


Touch Initiated Power State Transition


In at least some implementations, techniques enable transitions between power states in response to detected touch interactions. For example, vibrations that result from touch interaction can be detected to trigger certain events.



FIG. 12 is a flow diagram that describes steps in a method in accordance with one or more embodiments. Step 1200 monitors for vibrations in a device that is in a low power state. The monitoring, for instance, can occur in a low power state for the computing device 102 (e.g., a sleep mode) in which various functionalities are powered off and/or hibernated, such as the keyboard and track pad 120 of the input device 104, processors and/or the display device 110 of the computing device 102, and so forth. In the low power state, the computing device accelerometer 114 and/or the input device accelerometer 116 can be powered on to detect vibrations.


Step 1202 detects a vibration on the device. For example, the computing device accelerometer 114 and/or the input device accelerometer 116 can detect a vibration. As referenced above, a variety of different events can cause a device vibration. For instance, a user can provide touch input to a touch functionality to cause the device to wake from a low power mode. Alternatively, a vibration can be caused by other forms of contact with a device, such as a user bumping the device, a user bumping a surface on which the device is situated, and so on.


Step 1204 ascertains whether the vibration exceeds a vibration threshold. For example, a vibration threshold can be specified in terms of a suitable measurement, such as in meters per second squared (“g”), hertz (“Hz”), and so on. A vibration may be detected, for instance, as N number of zero-crossings and N+1 values greater than a threshold of the readings from an accelerometer within a certain amount of time T. For example, if the readings from the accelerometer are +1 g, then −1 g, and then +1 g within 5 ms, this may be considered a single bump or vibration event. These are examples only, and any specific value may be used according to the specific implementation.


If the vibration does not exceed the vibration threshold (“No”), the method returns to step 1200. If the vibration exceeds the vibration threshold (“Yes”), step 1206 powers on a touch functionality. A touch functionality, for instance, includes a functionality that is configured to receive touch input. Examples of a touch functionality include a track pad (e.g., the track pad 120), a touch screen (e.g., the display device 110), a capacitive touch device, a keyboard for the input device 104, and so on. In at least some implementations, an accelerometer that detects the vibration can notify a device processor, which can cause power to be supplied to the touch functionality. For example, prior to the vibration being detected, the touch functionality can be in a power off mode, such as a hibernation mode. Thus, in response to detecting the vibration, the touch functionality can be powered on.


Step 1208 determines whether touch input is received via the touch functionality. For example, the touch functionality can be queried to determine whether touch input is received. If touch input is not received (“No”), step 1210 powers off the touch functionality. For instance, if the touch functionality indicates that touch input is not received, the touch functionality can be powered off. As referenced above, a vibration can result from other forms of contact with a device besides touch input to an input functionality, such as a user accidentally bumping the device. In at least some implementations, the method can return to step 1200.


If touch input is received (“Yes”), step 1212 causes the device to transition to a different power state. For example, the device can transition from the low power state to a powered state. Examples of a powered state include the typing and viewing power states discussed above. Thus, the different power state can cause various functionalities to be powered on, such as processors of the computing device 102, the display device 110, the input device 104, and so on.


Thus, the method described in FIG. 12 can enable a touch functionality that consumes more power (e.g., a capacitive sensing functionality) to remain in a low power mode, while a functionality that consumes relatively less power can remain powered on to detect vibrations associated with a possible touch interaction. If a vibration is detected, the touch functionality can be powered on to determine whether the vibration was caused by touch input to the touch functionality, e.g., by a user that wishes to wake a device from a low power mode. Thus, a lower power functionality (e.g., an accelerometer) can be employed as a monitoring mechanism, and a functionality that consumes more power (e.g., a touch functionality) can be employed as a confirmation mechanism to determine whether a detected vibration is a result of touch input, or some other event.


Example System and Device



FIG. 13 illustrates an example system generally at 1300 that includes an example computing device 1302 that is representative of one or more computing systems and/or devices that may implement the various techniques described herein. The computing device 1302 may be, for example, be configured to assume a mobile configuration through use of a housing formed and size to be grasped and carried by one or more hands of a user, illustrated examples of which include a mobile phone, mobile game and music device, and tablet computer although other examples are also contemplated.


The example computing device 1302 as illustrated includes a processing system 1304, one or more computer-readable media 1306, and one or more I/O interface 1308 that are communicatively coupled, one to another. Although not shown, the computing device 1302 may further include a system bus or other data and command transfer system that couples the various components, one to another. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures. A variety of other examples are also contemplated, such as control and data lines.


The processing system 1304 is representative of functionality to perform one or more operations using hardware. Accordingly, the processing system 1304 is illustrated as including hardware element 1310 that may be configured as processors, functional blocks, and so forth. This may include implementation in hardware as an application specific integrated circuit or other logic device formed using one or more semiconductors. The hardware elements 1310 are not limited by the materials from which they are formed or the processing mechanisms employed therein. For example, processors may be comprised of semiconductor(s) and/or transistors (e.g., electronic integrated circuits (ICs)). In such a context, processor-executable instructions may be electronically-executable instructions.


The computer-readable storage media 1306 is illustrated as including memory/storage 1312. The memory/storage 1312 represents memory/storage capacity associated with one or more computer-readable media. The memory/storage component 1312 may include volatile media (such as random access memory (RAM)) and/or nonvolatile media (such as read only memory (ROM), Flash memory, optical disks, magnetic disks, and so forth). The memory/storage component 1312 may include fixed media (e.g., RAM, ROM, a fixed hard drive, and so on) as well as removable media (e.g., Flash memory, a removable hard drive, an optical disc, and so forth). The computer-readable media 1306 may be configured in a variety of other ways as further described below.


Input/output interface(s) 1308 are representative of functionality to allow a user to enter commands and information to computing device 1302, and also allow information to be presented to the user and/or other components or devices using various input/output devices. Examples of input devices include a keyboard, a cursor control device (e.g., a mouse), a microphone, a scanner, touch functionality (e.g., capacitive or other sensors that are configured to detect physical touch), a camera (e.g., which may employ visible or non-visible wavelengths such as infrared frequencies to recognize movement as gestures that do not involve touch), and so forth. Examples of output devices include a display device (e.g., a monitor or projector), speakers, a printer, a network card, tactile-response device, and so forth. Thus, the computing device 1302 may be configured in a variety of ways to support user interaction.


The computing device 1302 is further illustrated as being communicatively and physically coupled to an input device 1314 that is physically and communicatively removable from the computing device 1302. In this way, a variety of different input devices may be coupled to the computing device 1302 having a wide variety of configurations to support a wide variety of functionality. In this example, the input device 1314 includes one or more keys 1316, which may be configured as pressure sensitive keys, mechanically switched keys, and so forth.


The input device 1314 is further illustrated as include one or more modules 1318 that may be configured to support a variety of functionality. The one or more modules 1318, for instance, may be configured to process analog and/or digital signals received from the keys 1316 to determine whether a keystroke was intended, determine whether an input is indicative of resting pressure, support authentication of the input device 1314 for operation with the computing device 1302, and so on.


Various techniques may be described herein in the general context of software, hardware elements, or program modules. Generally, such modules include routines, programs, objects, elements, components, data structures, and so forth that perform particular tasks or implement particular abstract data types. The terms “module,” “functionality,” and “component” as used herein generally represent software, firmware, hardware, or a combination thereof. The features of the techniques described herein are platform-independent, meaning that the techniques may be implemented on a variety of commercial computing platforms having a variety of processors.


Techniques may further be implemented in a network environment, such as utilizing various cloud-based resources. For instance, methods, procedures, and so forth discussed above may leverage network resources to enable various functionalities.


An implementation of the described modules and techniques may be stored on or transmitted across some form of computer-readable media. The computer-readable media may include a variety of media that may be accessed by the computing device 1302. By way of example, and not limitation, computer-readable media may include “computer-readable storage media” and “computer-readable signal media.”


“Computer-readable storage media” may refer to media and/or devices that enable persistent and/or non-transitory storage of information in contrast to mere signal transmission, carrier waves, or signals per se. Thus, computer-readable storage media refers to non-signal bearing media. The computer-readable storage media includes hardware such as volatile and non-volatile, removable and non-removable media and/or storage devices implemented in a method or technology suitable for storage of information such as computer readable instructions, data structures, program modules, logic elements/circuits, or other data. Examples of computer-readable storage media may include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, hard disks, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other storage device, tangible media, or article of manufacture suitable to store the desired information and which may be accessed by a computer.


“Computer-readable signal media” may refer to a signal-bearing medium that is configured to transmit instructions to the hardware of the computing device 1302, such as via a network. Signal media typically may embody computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as carrier waves, data signals, or other transport mechanism. Signal media also include any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media.


As previously described, hardware elements 1310 and computer-readable media 1306 are representative of modules, programmable device logic and/or fixed device logic implemented in a hardware form that may be employed in some embodiments to implement at least some aspects of the techniques described herein, such as to perform one or more instructions. Hardware may include components of an integrated circuit or on-chip system, an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a complex programmable logic device (CPLD), and other implementations in silicon or other hardware. In this context, hardware may operate as a processing device that performs program tasks defined by instructions and/or logic embodied by the hardware as well as a hardware utilized to store instructions for execution, e.g., the computer-readable storage media described previously.


Combinations of the foregoing may also be employed to implement various techniques described herein. Accordingly, software, hardware, or executable modules may be implemented as one or more instructions and/or logic embodied on some form of computer-readable storage media and/or by one or more hardware elements 1310. The computing device 1302 may be configured to implement particular instructions and/or functions corresponding to the software and/or hardware modules. Accordingly, implementation of a module that is executable by the computing device 1302 as software may be achieved at least partially in hardware, e.g., through use of computer-readable storage media and/or hardware elements 1310 of the processing system 1304. The instructions and/or functions may be executable/operable by one or more articles of manufacture (for example, one or more computing devices 1302 and/or processing systems 1304) to implement techniques, modules, and examples described herein.


Discussed herein are a number of methods that may be implemented to perform techniques discussed herein. Aspects of the methods may be implemented in hardware, firmware, or software, or a combination thereof. The methods are shown as a set of blocks that specify operations performed by one or more devices and are not necessarily limited to the orders shown for performing the operations by the respective blocks. Further, an operation shown with respect to a particular method may be combined and/or interchanged with an operation of a different method in accordance with one or more implementations. Aspects of the methods can be implemented via interaction between various entities discussed above with reference to the environment 100.


Conclusion


Although the example implementations have been described in language specific to structural features and/or methodological acts, it is to be understood that the implementations defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the claimed features.

Claims
  • 1. A computer-implemented method comprising: monitoring for vibrations via a vibration sensing functionality in a device that is in a low power state;responsive to detecting a vibration, ascertaining, via a computing device, whether the vibration exceeds a vibration threshold;in an event that the vibration exceeds the vibration threshold: powering on a touch-sensing functionality of the device while maintaining the device in the low power state, the touch-sensing functionality being different than the vibration sensing functionality and having a power state that is controllable independent of a power state of the device;determining, while maintaining the device in the low power state, whether touch input is received via the touch-sensing functionality; andin an event that touch input is received via the touch-sensing functionality, causing the device to transition from the low power state to a different power state.
  • 2. A method as recited in claim 1, wherein the device comprises a computing device, or an input device communicatively associated with the computing device.
  • 3. A method as recited in claim 1, wherein the device comprises a computing device, and wherein said monitoring employs one or more accelerometers positioned on at least one of the computing device or an input device communicatively coupled to the computing device.
  • 4. A method as recited in claim 1, where the touch-sensing functionality comprises at least one of a track pad or a touch screen of the device.
  • 5. A method as recited in claim 1, wherein the low power state comprises a state in which one or more functionalities of the device are powered off, and wherein the different power state comprises a state in which the one or more functionalities are powered on.
  • 6. A method as recited in claim 1, further comprising, in an event that touch input is not received via the touch-sensing functionality: powering off the touch-sensing functionality; andcontinuing to monitor for vibrations in the device in the low power state.
  • 7. A method as recited in claim 1, wherein the touch-sensing functionality comprises a capacitive touch sensing device.
  • 8. A system comprising: one or more processors; andone or more computer-readable storage memory storing instructions that are executable by the one or more processors to perform operations including:monitoring for vibrations via a vibration sensing functionality in a device that is in a low power state;responsive to detecting a vibration, ascertaining, via a computing device, whether the vibration exceeds a vibration threshold;in an event that the vibration exceeds the vibration threshold:powering on a touch-sensing functionality of the device while maintaining the device in the low power state, the touch-sensing functionality being different than the vibration sensing functionality and having a power state that is controllable independent of a power state of the device;determining, while maintaining the device in the low power state, whether touch input is received via the touch-sensing functionality; andin an event that touch input is received via the touch-sensing functionality, causing the device to transition from the low power state to a different power state.
  • 9. A system as recited in claim 8, wherein the device comprises a computing device, or an input device communicatively associated with the computing device.
  • 10. A system as recited in claim 8, wherein the device comprises a computing device, and wherein said monitoring employs one or more accelerometers positioned on at least one of the computing device or an input device communicatively coupled to the computing device.
  • 11. A system as recited in claim 8, where the touch-sensing functionality comprises at least one of a track pad or a touch screen of the device.
  • 12. A system as recited in claim 8, wherein the touch-sensing functionality comprises a capacitive touch sensing device.
  • 13. A system as recited in claim 8, wherein the low power state comprises a state in which one or more functionalities of the device are powered off, and wherein the different power state comprises a state in which the one or more functionalities are powered on.
  • 14. A system as recited in claim 8, wherein the operations further include, in an event that touch input is not received via the touch-sensing functionality: powering off the touch-sensing functionality; andcontinuing to monitor for vibrations in the device in the low power state.
  • 15. One or more computer-readable storage memories storing instructions that are executable by one or more processors to perform operations comprising: monitoring for vibrations via a vibration sensing functionality in a device that is in a low power state;responsive to detecting a vibration, ascertaining, via a computing device, whether the vibration exceeds a vibration threshold;in an event that the vibration exceeds the vibration threshold:powering on a touch-sensing functionality of the device while maintaining the device in the low power state, the touch-sensing functionality being different than the vibration sensing functionality and having a power state that is controllable independent of a power state of the device;determining, while maintaining the device in the low power state, whether touch input is received via the touch-sensing functionality; andin an event that touch input is received via the touch-sensing functionality, causing the device to transition from the low power state to a different power state.
  • 16. One or more computer-readable storage memories as recited in claim 15, wherein the device comprises a computing device, or an input device communicatively associated with the computing device.
  • 17. One or more computer-readable storage memories as recited in claim 15, wherein the device comprises a computing device, and wherein said monitoring employs one or more accelerometers positioned on at least one of the computing device or an input device communicatively coupled to the computing device.
  • 18. One or more computer-readable storage memories as recited in claim 15, where the touch-sensing functionality comprises at least one of a track pad or a touch screen of the device.
  • 19. One or more computer-readable storage memories as recited in claim 15, wherein the low power state comprises a state in which one or more functionalities of the device are powered off, and wherein the different power state comprises a state in which the one or more functionalities are powered on.
  • 20. One or more computer-readable storage memories as recited in claim 15, wherein the operations further include, in an event that touch input is not received via the touch-sensing functionality: powering off the touch-sensing functionality; andcontinuing to monitor for vibrations in the device in the low power state.
RELATED APPLICATIONS

This application is a continuation of and claims priority to U.S. patent application Ser. No. 13/471,001, filed May 14, 2012, entitled “Mobile Device Power State” and further claims priority under 35 U.S.C. §119(e) to the following U.S. Provisional Patent Applications, the entire disclosures of each of these applications being incorporated by reference in their entirety: U.S. Provisional Patent Application No. 61/606,321, filed Mar. 2, 2012, and titled “Screen Edge;” U.S. Provisional Patent Application No. 61/606,301, filed Mar. 2, 2012, and titled “Input Device Functionality;” U.S. Provisional Patent Application No. 61/606,313, filed Mar. 2, 2012, and titled “Functional Hinge;” U.S. Provisional Patent Application No. 61/606,333, filed Mar. 2, 2012, and titled “Usage and Authentication;” U.S. Provisional Patent Application No. 61/613,745, filed Mar. 21, 2012, and titled “Usage and Authentication;” U.S. Provisional Patent Application No. 61/606,336, filed Mar. 2, 2012, and titled “Kickstand and Camera;” and U.S. Provisional Patent Application No. 61/607,451, filed Mar. 6, 2012, and titled “Spanaway Provisional.”

US Referenced Citations (706)
Number Name Date Kind
578325 Fleming Mar 1897 A
3600528 Leposavic Aug 1971 A
3777082 Hatley Dec 1973 A
3879586 DuRocher et al. Apr 1975 A
4046975 Seeger, Jr. Sep 1977 A
4065649 Carter et al. Dec 1977 A
4086451 Boulanger Apr 1978 A
4243861 Strandwitz Jan 1981 A
4302648 Sado et al. Nov 1981 A
4317013 Larson Feb 1982 A
4365130 Christensen Dec 1982 A
4492829 Rodrique Jan 1985 A
4503294 Matsumaru Mar 1985 A
4527021 Morikawa et al. Jul 1985 A
4559426 Van Zeeland et al. Dec 1985 A
4577822 Wilkerson Mar 1986 A
4588187 Dell May 1986 A
4607147 Ono et al. Aug 1986 A
4651133 Ganesan et al. Mar 1987 A
4735394 Facco Apr 1988 A
5008497 Asher Apr 1991 A
5021638 Nopper et al. Jun 1991 A
5107401 Youn Apr 1992 A
5128829 Loew Jul 1992 A
5220521 Kikinis Jun 1993 A
5235495 Blair et al. Aug 1993 A
5283559 Kalendra et al. Feb 1994 A
5331443 Stanisci Jul 1994 A
5363075 Fanucchi Nov 1994 A
5375076 Goodrich et al. Dec 1994 A
5404133 Moriike et al. Apr 1995 A
5480118 Cross Jan 1996 A
5491313 Bartley et al. Feb 1996 A
5546271 Gut et al. Aug 1996 A
5548477 Kumar et al. Aug 1996 A
5558577 Kato Sep 1996 A
5618232 Martin Apr 1997 A
5661279 Kenmochi Aug 1997 A
5666112 Crowley et al. Sep 1997 A
5681220 Bertram et al. Oct 1997 A
5737183 Kobayashi et al. Apr 1998 A
5745376 Barker et al. Apr 1998 A
5748114 Koehn May 1998 A
5781406 Hunte Jul 1998 A
5807175 Davis et al. Sep 1998 A
5818361 Acevedo Oct 1998 A
5828770 Leis et al. Oct 1998 A
5842027 Oprescu et al. Nov 1998 A
5874697 Selker et al. Feb 1999 A
5905485 Podoloff May 1999 A
5924555 Sadamori et al. Jul 1999 A
5926170 Oba Jul 1999 A
5971635 Wise Oct 1999 A
6002389 Kasser Dec 1999 A
6002581 Lindsey Dec 1999 A
6005209 Burleson et al. Dec 1999 A
6012714 Worley et al. Jan 2000 A
6040823 Seffernick et al. Mar 2000 A
6042075 Burch, Jr. Mar 2000 A
6044717 Biegelsen et al. Apr 2000 A
6061644 Leis May 2000 A
6108200 Fullerton Aug 2000 A
6112797 Colson et al. Sep 2000 A
6128007 Seybold Oct 2000 A
6141388 Servais et al. Oct 2000 A
6178085 Leung Jan 2001 B1
6178443 Lin Jan 2001 B1
6188391 Seely et al. Feb 2001 B1
6234820 Perino et al. May 2001 B1
6254105 Rinde et al. Jul 2001 B1
6279060 Luke et al. Aug 2001 B1
6329617 Burgess Dec 2001 B1
6344791 Armstrong Feb 2002 B1
6366440 Kung Apr 2002 B1
6380497 Hashimoto et al. Apr 2002 B1
6437682 Vance Aug 2002 B1
6450046 Maeda Sep 2002 B1
6506983 Babb et al. Jan 2003 B1
6511378 Bhatt et al. Jan 2003 B1
6532147 Christ, Jr. Mar 2003 B1
6543949 Ritchey et al. Apr 2003 B1
6565439 Shinohara et al. May 2003 B2
6585435 Fang Jul 2003 B2
6597347 Yasutake Jul 2003 B1
6600121 Olodort et al. Jul 2003 B1
6603408 Gaba Aug 2003 B1
6603461 Smith, Jr. et al. Aug 2003 B2
6608664 Hasegawa Aug 2003 B1
6617536 Kawaguchi Sep 2003 B2
6651943 Cho et al. Nov 2003 B2
6684166 Bellwood et al. Jan 2004 B2
6685369 Lien Feb 2004 B2
6687614 Ihara et al. Feb 2004 B2
6695273 Iguchi Feb 2004 B2
6704864 Philyaw Mar 2004 B1
6721019 Kono et al. Apr 2004 B2
6725318 Sherman et al. Apr 2004 B1
6774888 Genduso Aug 2004 B1
6776546 Kraus et al. Aug 2004 B2
6780019 Ghosh et al. Aug 2004 B1
6781819 Yang et al. Aug 2004 B2
6784869 Clark et al. Aug 2004 B1
6798887 Andre Sep 2004 B1
6813143 Makela Nov 2004 B2
6819316 Schulz et al. Nov 2004 B2
6856506 Doherty et al. Feb 2005 B2
6856789 Pattabiraman et al. Feb 2005 B2
6861961 Sandbach et al. Mar 2005 B2
6898315 Guha May 2005 B2
6909354 Baker et al. Jun 2005 B2
6914197 Doherty et al. Jul 2005 B2
6950950 Sawyers et al. Sep 2005 B2
6962454 Costello Nov 2005 B1
6970957 Oshins et al. Nov 2005 B1
6976799 Kim et al. Dec 2005 B2
7007238 Glaser Feb 2006 B2
7051149 Wang et al. May 2006 B2
7068496 Wong et al. Jun 2006 B2
7083295 Hanna Aug 2006 B1
7091436 Serban Aug 2006 B2
7095404 Vincent et al. Aug 2006 B2
7099149 Krieger et al. Aug 2006 B2
7106222 Ward et al. Sep 2006 B2
7116309 Kimura et al. Oct 2006 B1
7123292 Seeger et al. Oct 2006 B1
7136282 Rebeske Nov 2006 B1
D535292 Shi et al. Jan 2007 S
7194662 Do et al. Mar 2007 B2
7213323 Baker et al. May 2007 B2
7213991 Chapman et al. May 2007 B2
7224830 Nefian et al. May 2007 B2
7252512 Tai et al. Aug 2007 B2
7260221 Atsmon Aug 2007 B1
7277087 Hill et al. Oct 2007 B2
7301759 Hsiung Nov 2007 B2
7365967 Zheng Apr 2008 B2
7374312 Feng et al. May 2008 B2
7415676 Fujita Aug 2008 B2
7447934 Dasari et al. Nov 2008 B2
7457108 Ghosh Nov 2008 B2
7469386 Bear et al. Dec 2008 B2
7486165 Ligtenberg et al. Feb 2009 B2
7499037 Lube Mar 2009 B2
7502803 Culter et al. Mar 2009 B2
7542052 Solomon et al. Jun 2009 B2
7558594 Wilson Jul 2009 B2
7559834 York Jul 2009 B1
RE40891 Yasutake Sep 2009 E
7594638 Chan et al. Sep 2009 B2
7620244 Collier Nov 2009 B1
7636921 Louie Dec 2009 B2
7639329 Takeda et al. Dec 2009 B2
7639876 Clary et al. Dec 2009 B2
7656392 Bolender Feb 2010 B2
7728923 Kim et al. Jun 2010 B2
7729493 Krieger et al. Jun 2010 B2
7731147 Rha Jun 2010 B2
7733326 Adiseshan Jun 2010 B1
7761119 Patel Jul 2010 B2
7773076 Pittel et al. Aug 2010 B2
7773121 Huntsberger et al. Aug 2010 B1
7774155 Sato et al. Aug 2010 B2
7777972 Chen et al. Aug 2010 B1
7782342 Koh Aug 2010 B2
7813715 McKillop et al. Oct 2010 B2
7815358 Inditsky Oct 2010 B2
7822338 Wernersson Oct 2010 B2
7865639 McCoy et al. Jan 2011 B2
7884807 Hovden et al. Feb 2011 B2
7893921 Sato Feb 2011 B2
D636397 Green Apr 2011 S
7928964 Kolmykov-Zotov et al. Apr 2011 B2
7932890 Onikiri et al. Apr 2011 B2
7936501 Smith et al. May 2011 B2
7944520 Ichioka et al. May 2011 B2
7945717 Rivalsi May 2011 B2
7970246 Travis et al. Jun 2011 B2
7973771 Geaghan Jul 2011 B2
7978281 Vergith et al. Jul 2011 B2
8016255 Lin Sep 2011 B2
8018386 Qi et al. Sep 2011 B2
8018579 Krah Sep 2011 B1
8026904 Westerman Sep 2011 B2
8053688 Conzola et al. Nov 2011 B2
8059384 Park et al. Nov 2011 B2
8065624 Morin et al. Nov 2011 B2
8069356 Rathi et al. Nov 2011 B2
8077160 Land et al. Dec 2011 B2
8090885 Callaghan et al. Jan 2012 B2
8098233 Hotelling et al. Jan 2012 B2
8115499 Osoinach et al. Feb 2012 B2
8117362 Rodriguez et al. Feb 2012 B2
8118274 McClure et al. Feb 2012 B2
8120166 Koizumi et al. Feb 2012 B2
8130203 Westerman Mar 2012 B2
8149219 Lii et al. Apr 2012 B2
8154524 Wilson et al. Apr 2012 B2
8159372 Sherman Apr 2012 B2
8162282 Hu et al. Apr 2012 B2
D659139 Gengler May 2012 S
8169421 Wright et al. May 2012 B2
8189973 Travis et al. May 2012 B2
8229509 Paek et al. Jul 2012 B2
8229522 Kim et al. Jul 2012 B2
8231099 Chen Jul 2012 B2
8243432 Duan et al. Aug 2012 B2
8248791 Wang et al. Aug 2012 B2
8255708 Zhang Aug 2012 B1
8264310 Lauder et al. Sep 2012 B2
8267368 Torii et al. Sep 2012 B2
8269731 Molne Sep 2012 B2
8274784 Franz et al. Sep 2012 B2
8279589 Kim Oct 2012 B2
8322290 Mignano Dec 2012 B1
8346206 Andrus et al. Jan 2013 B1
8373664 Wright Feb 2013 B2
8384566 Bocirnea Feb 2013 B2
8387078 Memmott Feb 2013 B2
8387938 Lin Mar 2013 B2
8403576 Merz Mar 2013 B2
8416559 Agata et al. Apr 2013 B2
8424160 Chen Apr 2013 B2
8498100 Whitt, III et al. Jul 2013 B1
8514568 Qiao et al. Aug 2013 B2
8520371 Peng et al. Aug 2013 B2
8543227 Perek et al. Sep 2013 B1
8548608 Perek et al. Oct 2013 B2
8564944 Whitt, III et al. Oct 2013 B2
8570725 Whitt, III et al. Oct 2013 B2
8582280 Ryu Nov 2013 B2
8587701 Tatsuzawa Nov 2013 B2
8599542 Healey et al. Dec 2013 B1
8610015 Whitt et al. Dec 2013 B2
8614666 Whitman et al. Dec 2013 B2
8646999 Shaw et al. Feb 2014 B2
8674941 Casparian et al. Mar 2014 B2
8699215 Whitt, III et al. Apr 2014 B2
8719603 Belesiu May 2014 B2
8724302 Whitt, III et al. May 2014 B2
8744070 Zhang et al. Jun 2014 B2
8744391 Tenbrook et al. Jun 2014 B2
8762746 Lachwani et al. Jun 2014 B1
8767388 Ahn et al. Jul 2014 B2
8780540 Whitt, III et al. Jul 2014 B2
8780541 Whitt, III et al. Jul 2014 B2
8791382 Whitt, III et al. Jul 2014 B2
8797765 Lin et al. Aug 2014 B2
8825187 Hamrick et al. Sep 2014 B1
8830668 Whitt, III et al. Sep 2014 B2
8850241 Oler et al. Sep 2014 B2
8854799 Whitt, III et al. Oct 2014 B2
8873227 Whitt et al. Oct 2014 B2
8891232 Wang Nov 2014 B2
8896993 Belesiu et al. Nov 2014 B2
8903517 Perek et al. Dec 2014 B2
8908858 Chiu et al. Dec 2014 B2
8934221 Guo Jan 2015 B2
8935774 Belesiu et al. Jan 2015 B2
8939422 Liu et al. Jan 2015 B2
8947864 Whitt, III et al. Feb 2015 B2
8964376 Chen Feb 2015 B2
20010023818 Masaru et al. Sep 2001 A1
20020005108 Ludwig Jan 2002 A1
20020044216 Cha Apr 2002 A1
20020134828 Sandbach et al. Sep 2002 A1
20020135457 Sandbach et al. Sep 2002 A1
20030007648 Currell Jan 2003 A1
20030011576 Sandbach et al. Jan 2003 A1
20030016282 Koizumi Jan 2003 A1
20030051983 Lahr Mar 2003 A1
20030067450 Thursfield et al. Apr 2003 A1
20030108720 Kashino Jun 2003 A1
20030163611 Nagao Aug 2003 A1
20030173195 Federspiel Sep 2003 A1
20030197687 Shetter Oct 2003 A1
20030198008 Leapman et al. Oct 2003 A1
20030231243 Shibutani Dec 2003 A1
20040005184 Kim et al. Jan 2004 A1
20040046796 Fujita Mar 2004 A1
20040056843 Lin et al. Mar 2004 A1
20040113956 Bellwood et al. Jun 2004 A1
20040115994 Wulff et al. Jun 2004 A1
20040156168 LeVasseur et al. Aug 2004 A1
20040160734 Yim Aug 2004 A1
20040169641 Bean et al. Sep 2004 A1
20040212598 Kraus et al. Oct 2004 A1
20040212601 Cake et al. Oct 2004 A1
20040258924 Berger et al. Dec 2004 A1
20040268000 Barker et al. Dec 2004 A1
20050030728 Kawashima et al. Feb 2005 A1
20050047773 Satake et al. Mar 2005 A1
20050052831 Chen Mar 2005 A1
20050055498 Beckert et al. Mar 2005 A1
20050057515 Bathiche Mar 2005 A1
20050059489 Kim Mar 2005 A1
20050062715 Tsuji et al. Mar 2005 A1
20050099400 Lee May 2005 A1
20050134717 Misawa Jun 2005 A1
20050146512 Hill et al. Jul 2005 A1
20050236848 Kim et al. Oct 2005 A1
20050264653 Starkweather et al. Dec 2005 A1
20050264988 Nicolosi Dec 2005 A1
20050283731 Saint-Hilaire et al. Dec 2005 A1
20050285703 Wheeler et al. Dec 2005 A1
20060049920 Sadler et al. Mar 2006 A1
20060049993 Lin et al. Mar 2006 A1
20060061555 Mullen Mar 2006 A1
20060085658 Allen et al. Apr 2006 A1
20060092139 Sharma May 2006 A1
20060096392 Inkster et al. May 2006 A1
20060102914 Smits et al. May 2006 A1
20060125799 Hillis et al. Jun 2006 A1
20060132423 Travis Jun 2006 A1
20060154725 Glaser et al. Jul 2006 A1
20060155391 Pistemaa et al. Jul 2006 A1
20060156415 Rubinstein et al. Jul 2006 A1
20060174143 Sawyers et al. Aug 2006 A1
20060176377 Miyasaka Aug 2006 A1
20060181514 Newman Aug 2006 A1
20060187216 Trent, Jr. et al. Aug 2006 A1
20060192763 Ziemkowski Aug 2006 A1
20060195522 Miyazaki Aug 2006 A1
20060265617 Priborsky Nov 2006 A1
20060267931 Vainio et al. Nov 2006 A1
20060272429 Ganapathi et al. Dec 2006 A1
20070003267 Shibutani Jan 2007 A1
20070047221 Park Mar 2007 A1
20070056385 Lorenz Mar 2007 A1
20070062089 Homer et al. Mar 2007 A1
20070069153 Pai-Paranjape et al. Mar 2007 A1
20070072474 Beasley et al. Mar 2007 A1
20070117600 Robertson et al. May 2007 A1
20070121956 Bai et al. May 2007 A1
20070145945 McGinley et al. Jun 2007 A1
20070172229 Wernersson Jul 2007 A1
20070176902 Newman et al. Aug 2007 A1
20070178891 Louch et al. Aug 2007 A1
20070182663 Biech Aug 2007 A1
20070182722 Hotelling et al. Aug 2007 A1
20070185590 Reindel et al. Aug 2007 A1
20070200830 Yamamoto Aug 2007 A1
20070220708 Lewis Sep 2007 A1
20070230227 Palmer Oct 2007 A1
20070234420 Novotney et al. Oct 2007 A1
20070236408 Yamaguchi et al. Oct 2007 A1
20070236475 Wherry Oct 2007 A1
20070236873 Yukawa et al. Oct 2007 A1
20070247432 Oakley Oct 2007 A1
20070252674 Nelson et al. Nov 2007 A1
20070260892 Paul et al. Nov 2007 A1
20070274094 Schultz et al. Nov 2007 A1
20070274095 Destain Nov 2007 A1
20070283179 Burnett et al. Dec 2007 A1
20070296709 Guanghai Dec 2007 A1
20070297625 Hjort et al. Dec 2007 A1
20080005423 Jacobs et al. Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080053222 Ehrensvard et al. Mar 2008 A1
20080059888 Dunko Mar 2008 A1
20080074398 Wright Mar 2008 A1
20080104437 Lee May 2008 A1
20080129520 Lee Jun 2008 A1
20080151478 Chern Jun 2008 A1
20080158185 Westerman Jul 2008 A1
20080167832 Soss Jul 2008 A1
20080174570 Jobs et al. Jul 2008 A1
20080186660 Yang Aug 2008 A1
20080219025 Spitzer et al. Sep 2008 A1
20080228969 Cheah et al. Sep 2008 A1
20080238884 Harish Oct 2008 A1
20080253822 Matias Oct 2008 A1
20080297878 Brown et al. Dec 2008 A1
20080307242 Qu Dec 2008 A1
20080309636 Feng et al. Dec 2008 A1
20080316002 Brunet et al. Dec 2008 A1
20080316183 Westerman et al. Dec 2008 A1
20080320190 Lydon et al. Dec 2008 A1
20090009476 Daley, III Jan 2009 A1
20090073060 Shimasaki et al. Mar 2009 A1
20090073957 Newland et al. Mar 2009 A1
20090079639 Hotta et al. Mar 2009 A1
20090083562 Park et al. Mar 2009 A1
20090089600 Nousiainen Apr 2009 A1
20090096756 Lube Apr 2009 A1
20090102805 Meijer et al. Apr 2009 A1
20090127005 Zachut et al. May 2009 A1
20090140985 Liu Jun 2009 A1
20090163147 Steigerwald et al. Jun 2009 A1
20090174687 Ciesla et al. Jul 2009 A1
20090174759 Yeh et al. Jul 2009 A1
20090189873 Peterson Jul 2009 A1
20090195497 Fitzgerald et al. Aug 2009 A1
20090195518 Mattice et al. Aug 2009 A1
20090207144 Bridger Aug 2009 A1
20090231275 Odgers Sep 2009 A1
20090239586 Boeve et al. Sep 2009 A1
20090244832 Behar et al. Oct 2009 A1
20090244872 Yan Oct 2009 A1
20090251008 Sugaya Oct 2009 A1
20090259865 Sheynblat et al. Oct 2009 A1
20090262492 Whitchurch et al. Oct 2009 A1
20090265670 Kim et al. Oct 2009 A1
20090285491 Ravenscroft et al. Nov 2009 A1
20090296331 Choy Dec 2009 A1
20090303137 Kusaka et al. Dec 2009 A1
20090303204 Nasiri et al. Dec 2009 A1
20090315830 Westerman Dec 2009 A1
20090320244 Lin Dec 2009 A1
20090321490 Groene et al. Dec 2009 A1
20100001963 Doray et al. Jan 2010 A1
20100013319 Kamiyama et al. Jan 2010 A1
20100023869 Saint-Hilaire et al. Jan 2010 A1
20100026656 Hotelling et al. Feb 2010 A1
20100038821 Jenkins et al. Feb 2010 A1
20100039081 Sip Feb 2010 A1
20100039764 Locker et al. Feb 2010 A1
20100045609 Do et al. Feb 2010 A1
20100045633 Gettemy Feb 2010 A1
20100051356 Stern et al. Mar 2010 A1
20100051432 Lin et al. Mar 2010 A1
20100052880 Laitinen et al. Mar 2010 A1
20100053534 Hsieh et al. Mar 2010 A1
20100054435 Louch et al. Mar 2010 A1
20100056130 Louch et al. Mar 2010 A1
20100073329 Raman et al. Mar 2010 A1
20100077237 Sawyers Mar 2010 A1
20100079379 Demuynck et al. Apr 2010 A1
20100081377 Chatterjee et al. Apr 2010 A1
20100083108 Rider et al. Apr 2010 A1
20100085321 Pundsack Apr 2010 A1
20100102182 Lin Apr 2010 A1
20100103112 Yoo et al. Apr 2010 A1
20100105443 Vaisanen Apr 2010 A1
20100106983 Kasprzak et al. Apr 2010 A1
20100117993 Kent May 2010 A1
20100123686 Klinghult et al. May 2010 A1
20100133398 Chiu et al. Jun 2010 A1
20100142130 Wang et al. Jun 2010 A1
20100148995 Elias Jun 2010 A1
20100148999 Casparian et al. Jun 2010 A1
20100149104 Sim et al. Jun 2010 A1
20100149111 Olien Jun 2010 A1
20100149134 Westerman et al. Jun 2010 A1
20100149377 Shintani et al. Jun 2010 A1
20100156798 Archer Jun 2010 A1
20100156913 Ortega et al. Jun 2010 A1
20100161522 Tirpak et al. Jun 2010 A1
20100164857 Liu et al. Jul 2010 A1
20100164897 Morin et al. Jul 2010 A1
20100171891 Kaji et al. Jul 2010 A1
20100174421 Tsai et al. Jul 2010 A1
20100180063 Ananny et al. Jul 2010 A1
20100188299 Rinehart et al. Jul 2010 A1
20100205472 Tupman et al. Aug 2010 A1
20100206614 Park et al. Aug 2010 A1
20100206644 Yeh Aug 2010 A1
20100214257 Wussler et al. Aug 2010 A1
20100222110 Kim et al. Sep 2010 A1
20100231498 Large et al. Sep 2010 A1
20100231510 Sampsell et al. Sep 2010 A1
20100231556 Mines et al. Sep 2010 A1
20100235546 Terlizzi et al. Sep 2010 A1
20100238075 Pourseyed Sep 2010 A1
20100238138 Goertz et al. Sep 2010 A1
20100238620 Fish Sep 2010 A1
20100245221 Khan Sep 2010 A1
20100250988 Okuda et al. Sep 2010 A1
20100259482 Ball Oct 2010 A1
20100259876 Kim Oct 2010 A1
20100265182 Ball et al. Oct 2010 A1
20100271771 Wu et al. Oct 2010 A1
20100274932 Kose Oct 2010 A1
20100279768 Huang et al. Nov 2010 A1
20100289457 Onnerud et al. Nov 2010 A1
20100295812 Burns et al. Nov 2010 A1
20100302378 Marks et al. Dec 2010 A1
20100304793 Kim Dec 2010 A1
20100306538 Thomas et al. Dec 2010 A1
20100308778 Yamazaki et al. Dec 2010 A1
20100308844 Day et al. Dec 2010 A1
20100309617 Wang et al. Dec 2010 A1
20100313680 Joung et al. Dec 2010 A1
20100315348 Jellicoe et al. Dec 2010 A1
20100315373 Steinhauser et al. Dec 2010 A1
20100321339 Kimmel Dec 2010 A1
20100321877 Moser Dec 2010 A1
20100324457 Bean et al. Dec 2010 A1
20100325155 Skinner et al. Dec 2010 A1
20100331059 Apgar et al. Dec 2010 A1
20110012873 Prest et al. Jan 2011 A1
20110019123 Prest et al. Jan 2011 A1
20110031287 Le Gette et al. Feb 2011 A1
20110032127 Roush Feb 2011 A1
20110036965 Zhang et al. Feb 2011 A1
20110037721 Cranfill et al. Feb 2011 A1
20110043990 Mickey et al. Feb 2011 A1
20110050576 Forutanpour et al. Mar 2011 A1
20110050626 Porter et al. Mar 2011 A1
20110055407 Lydon et al. Mar 2011 A1
20110057724 Pabon Mar 2011 A1
20110060926 Brooks et al. Mar 2011 A1
20110069148 Jones et al. Mar 2011 A1
20110074688 Hull et al. Mar 2011 A1
20110102326 Casparian et al. May 2011 A1
20110102356 Kemppinen et al. May 2011 A1
20110102752 Chen et al. May 2011 A1
20110107958 Pance et al. May 2011 A1
20110113368 Carvajal et al. May 2011 A1
20110115738 Suzuki et al. May 2011 A1
20110115747 Powell et al. May 2011 A1
20110117970 Choi May 2011 A1
20110134032 Chiu et al. Jun 2011 A1
20110134043 Chen Jun 2011 A1
20110134112 Koh et al. Jun 2011 A1
20110157046 Lee et al. Jun 2011 A1
20110157087 Kanehira et al. Jun 2011 A1
20110163955 Nasiri et al. Jul 2011 A1
20110164370 McClure et al. Jul 2011 A1
20110167181 Minoo et al. Jul 2011 A1
20110167287 Walsh et al. Jul 2011 A1
20110167391 Momeyer et al. Jul 2011 A1
20110167992 Eventoff et al. Jul 2011 A1
20110169762 Weiss Jul 2011 A1
20110176035 Poulsen Jul 2011 A1
20110179864 Raasch et al. Jul 2011 A1
20110184646 Wong et al. Jul 2011 A1
20110184824 George et al. Jul 2011 A1
20110188199 Pan Aug 2011 A1
20110193787 Morishige et al. Aug 2011 A1
20110193938 Oderwald et al. Aug 2011 A1
20110202878 Park et al. Aug 2011 A1
20110205372 Miramontes Aug 2011 A1
20110216266 Travis Sep 2011 A1
20110221678 Davydov Sep 2011 A1
20110227913 Hyndman Sep 2011 A1
20110231682 Kakish et al. Sep 2011 A1
20110242138 Tribble Oct 2011 A1
20110248152 Svajda et al. Oct 2011 A1
20110248920 Larsen Oct 2011 A1
20110248941 Abdo et al. Oct 2011 A1
20110261001 Liu Oct 2011 A1
20110261083 Wilson Oct 2011 A1
20110265287 Li et al. Nov 2011 A1
20110266672 Sylvester Nov 2011 A1
20110267272 Meyer et al. Nov 2011 A1
20110273475 Herz et al. Nov 2011 A1
20110290686 Huang Dec 2011 A1
20110295697 Boston et al. Dec 2011 A1
20110297566 Gallagher et al. Dec 2011 A1
20110298919 Maglaque Dec 2011 A1
20110302518 Zhang Dec 2011 A1
20110304577 Brown Dec 2011 A1
20110305875 Sanford et al. Dec 2011 A1
20110316807 Corrion Dec 2011 A1
20110320204 Locker et al. Dec 2011 A1
20120002820 Leichter Jan 2012 A1
20120007821 Zaliva Jan 2012 A1
20120011462 Westerman et al. Jan 2012 A1
20120013519 Hakansson et al. Jan 2012 A1
20120020490 Leichter Jan 2012 A1
20120023401 Arscott et al. Jan 2012 A1
20120023459 Westerman Jan 2012 A1
20120024682 Huang et al. Feb 2012 A1
20120026048 Vazquez et al. Feb 2012 A1
20120026096 Ku Feb 2012 A1
20120032887 Chiu et al. Feb 2012 A1
20120032891 Parivar Feb 2012 A1
20120032901 Kwon Feb 2012 A1
20120038495 Ishikawa Feb 2012 A1
20120044179 Hudson Feb 2012 A1
20120047368 Chinn et al. Feb 2012 A1
20120050975 Garelli et al. Mar 2012 A1
20120062564 Miyashita Mar 2012 A1
20120068919 Lauder et al. Mar 2012 A1
20120069540 Lauder et al. Mar 2012 A1
20120075249 Hoch Mar 2012 A1
20120077384 Bar-Niv et al. Mar 2012 A1
20120081316 Sirpal et al. Apr 2012 A1
20120092279 Martin Apr 2012 A1
20120094257 Pillischer et al. Apr 2012 A1
20120099749 Rubin et al. Apr 2012 A1
20120103778 Obata et al. May 2012 A1
20120113137 Nomoto May 2012 A1
20120113579 Agata et al. May 2012 A1
20120115553 Mahe et al. May 2012 A1
20120117409 Lee et al. May 2012 A1
20120127118 Nolting et al. May 2012 A1
20120139727 Houvener et al. Jun 2012 A1
20120140396 Zeliff et al. Jun 2012 A1
20120145525 Ishikawa Jun 2012 A1
20120162693 Ito Jun 2012 A1
20120175487 Goto Jul 2012 A1
20120182242 Lindahl et al. Jul 2012 A1
20120182249 Endo et al. Jul 2012 A1
20120194393 Utterman et al. Aug 2012 A1
20120194448 Rothkopf Aug 2012 A1
20120200802 Large Aug 2012 A1
20120206937 Travis et al. Aug 2012 A1
20120212438 Vaisanen Aug 2012 A1
20120218194 Silverman Aug 2012 A1
20120223866 Ayala Vazquez et al. Sep 2012 A1
20120224073 Miyahara Sep 2012 A1
20120227259 Badaye et al. Sep 2012 A1
20120229634 Laett et al. Sep 2012 A1
20120235635 Sato Sep 2012 A1
20120242584 Tuli Sep 2012 A1
20120243165 Chang et al. Sep 2012 A1
20120246377 Bhesania Sep 2012 A1
20120249443 Anderson et al. Oct 2012 A1
20120250873 Bakalos et al. Oct 2012 A1
20120256959 Ye et al. Oct 2012 A1
20120260177 Sehrer Oct 2012 A1
20120274811 Bakin Nov 2012 A1
20120298491 Ozias et al. Nov 2012 A1
20120299872 Nishikawa et al. Nov 2012 A1
20120300275 Vilardell et al. Nov 2012 A1
20120312955 Randolph Dec 2012 A1
20130009413 Chiu et al. Jan 2013 A1
20130015311 Kim Jan 2013 A1
20130016468 Oh Jan 2013 A1
20130027867 Lauder et al. Jan 2013 A1
20130044059 Fu Feb 2013 A1
20130044074 Park et al. Feb 2013 A1
20130046397 Fadell et al. Feb 2013 A1
20130063873 Wodrich et al. Mar 2013 A1
20130067126 Casparian et al. Mar 2013 A1
20130073877 Radke Mar 2013 A1
20130076617 Csaszar et al. Mar 2013 A1
20130076635 Lin Mar 2013 A1
20130082824 Colley Apr 2013 A1
20130088431 Ballagas et al. Apr 2013 A1
20130106766 Yilmaz et al. May 2013 A1
20130107144 Marhefka et al. May 2013 A1
20130135214 Li et al. May 2013 A1
20130162554 Lauder et al. Jun 2013 A1
20130172906 Olson et al. Jul 2013 A1
20130191741 Dickinson et al. Jul 2013 A1
20130217451 Komiyama et al. Aug 2013 A1
20130227836 Whitt, III Sep 2013 A1
20130228023 Drasnin Sep 2013 A1
20130228433 Shaw Sep 2013 A1
20130228434 Whitt, III Sep 2013 A1
20130228435 Whitt, III Sep 2013 A1
20130228439 Whitt, III Sep 2013 A1
20130229100 Siddiqui Sep 2013 A1
20130229335 Whitman Sep 2013 A1
20130229347 Lutz, III Sep 2013 A1
20130229350 Shaw Sep 2013 A1
20130229351 Whitt, III Sep 2013 A1
20130229354 Whitt, III Sep 2013 A1
20130229356 Marwah Sep 2013 A1
20130229363 Whitman Sep 2013 A1
20130229366 Dighde Sep 2013 A1
20130229380 Lutz, III Sep 2013 A1
20130229386 Bathiche Sep 2013 A1
20130229534 Panay Sep 2013 A1
20130229570 Beck et al. Sep 2013 A1
20130229756 Whitt, III Sep 2013 A1
20130229757 Whitt, III Sep 2013 A1
20130229758 Belesiu Sep 2013 A1
20130229759 Whitt, III Sep 2013 A1
20130229760 Whitt, III Sep 2013 A1
20130229761 Shaw Sep 2013 A1
20130229762 Whitt, III Sep 2013 A1
20130229773 Siddiqui Sep 2013 A1
20130230346 Shaw Sep 2013 A1
20130231755 Perek Sep 2013 A1
20130232280 Perek Sep 2013 A1
20130232348 Oler Sep 2013 A1
20130232349 Oler Sep 2013 A1
20130232350 Belesiu et al. Sep 2013 A1
20130232353 Belesiu Sep 2013 A1
20130232571 Belesiu Sep 2013 A1
20130241860 Ciesla et al. Sep 2013 A1
20130242495 Bathiche et al. Sep 2013 A1
20130262886 Nishimura Oct 2013 A1
20130300590 Dietz Nov 2013 A1
20130300647 Drasnin Nov 2013 A1
20130301199 Whitt Nov 2013 A1
20130301206 Whitt Nov 2013 A1
20130304941 Drasnin Nov 2013 A1
20130321992 Liu et al. Dec 2013 A1
20130322000 Whitt Dec 2013 A1
20130322001 Whitt Dec 2013 A1
20130329360 Aldana Dec 2013 A1
20130332628 Panay Dec 2013 A1
20130339757 Reddy Dec 2013 A1
20130342976 Chung Dec 2013 A1
20140012401 Perek Jan 2014 A1
20140043275 Whitman Feb 2014 A1
20140048399 Whitt, III Feb 2014 A1
20140085814 Kielland Mar 2014 A1
20140119802 Shaw May 2014 A1
20140132550 McCracken et al. May 2014 A1
20140167585 Kuan et al. Jun 2014 A1
20140185215 Whitt Jul 2014 A1
20140185220 Whitt Jul 2014 A1
20140204514 Whitt Jul 2014 A1
20140204515 Whitt Jul 2014 A1
20140247546 Whitt Sep 2014 A1
20140291134 Whitt Oct 2014 A1
20140293534 Siddiqui Oct 2014 A1
20140362506 Whitt, III et al. Dec 2014 A1
20140379942 Perek et al. Dec 2014 A1
20150005953 Fadell et al. Jan 2015 A1
20150036274 Belesui et al. Feb 2015 A1
Foreign Referenced Citations (37)
Number Date Country
990023 Jun 1976 CA
103455149 Dec 2013 CN
1223722 Jul 2002 EP
1480029 Nov 2004 EP
1591891 Nov 2005 EP
2026178 Feb 2009 EP
2353978 Aug 2011 EP
2123213 Jan 1984 GB
56108127 Aug 1981 JP
10326124 Dec 1998 JP
1173239 Mar 1999 JP
11338575 Dec 1999 JP
2000010654 Jan 2000 JP
2001142564 May 2001 JP
2004038950 Feb 2004 JP
2006163459 Jun 2006 JP
2006294361 Oct 2006 JP
2010244514 Oct 2010 JP
20010107055 Dec 2001 KR
20040066647 Jul 2004 KR
20050014299 Feb 2005 KR
20060003093 Jan 2006 KR
20080006404 Jan 2008 KR
20090029411 Mar 2009 KR
20100022059 Feb 2010 KR
20100067366 Jun 2010 KR
20100115675 Oct 2010 KR
1020110087178 Aug 2011 KR
20110109791 Oct 2011 KR
20110120002 Nov 2011 KR
20110122333 Nov 2011 KR
101113530 Feb 2012 KR
WO9919995 Apr 1999 WO
WO-2006044818 Apr 2006 WO
WO 2007112172 Oct 2007 WO
WO 2009034484 Mar 2009 WO
WO 2011049609 Apr 2011 WO
Non-Patent Literature Citations (298)
Entry
“Accessing Device Sensors”, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012, 4 pages.
“ACPI Docking for Windows Operating Systems”, Retrieved from: <http://www.scritube.com/limba/engleza/software/ACPI-Docking-for-Windows-Opera331824193.php> on Jul. 6, 2012, 10 pages.
“First One Handed Fabric Keyboard with Bluetooth Wireless Technology”, Retrieved from: <http://press.xtvworld.com/article3817.html> on May 8, 2012,(Jan. 6, 2005), 2 pages.
“Force and Position Sensing Resistors: An Emerging Technology”, Interlink Electronics, Available at <http://staff.science.uva.nl/˜vlaander/docu/FSR/An—Exploring—Technology.pdf>,(Feb. 1990), pp. 1-6.
“Frogpad Introduces Weareable Fabric Keyboard with Bluetooth Technology”, Retrieved from: <http://www.geekzone.co.nz/content.asp?contentid=3898> on May 7, 2012,(Jan. 7, 2005), 3 pages.
“Incipio LG G-Slate Premium Kickstand Case—Black Nylon”, Retrieved from: <http://www.amazon.com/Incipio-G-Slate-Premium-Kickstand-Case/dp/B004ZKP916> on May 8, 2012, 4 pages.
“Membrane Keyboards & Membrane Keypads”, Retrieved from: <http://www.pannam.com/> on May 9, 2012,(Mar. 4, 2009), 2 pages.
“Motion Sensors”, Android Developers, retrieved from <http://developer.android.com/guide/topics/sensors/sensors—motion.html> on May 25, 2012, 7 pages.
“Position Sensors”, Android Developers, retrieved from <http://developer.android.com/guide/topics/sensors/sensors—position.html> on May 25, 2012, 5 pages.
“SolRxTM E-Series Multidirectional Phototherapy ExpandableTM 2-Bulb Full Body Panel System”, Retrieved from: <http://www.solarcsystems.com/us—multidirectional—uv—light—therapy—1—intro.html > on Jul. 25, 2012,(2011), 4 pages.
“Virtualization Getting Started Guide”, Red Hat Enterprise Linux 6, Edition 0.2, retrieved from <http://docs.redhat.com/docs/en-US/Red—Hat—Enterprise—Linux/6/html-single/Virtualization—Getting—Started—Guide/index.html> on Jun. 13, 2012, 24 pages.
Block, Steve et al., “DeviceOrientation Event Specification”, W3C, Editors Draft, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012,(Jul. 12, 2011), 14 pages.
Brown, Rich “Microsoft Shows Off Pressure-Sensitive Keyboard”, retrieved from <http://news.cnet.com/8301-17938—105-10304792-1.html> on May 7, 2012, (Aug. 6, 2009), 2 pages.
Butler, Alex et al., “SideSight: Multi-“touch” Interaction around Small Devices”, In the proceedings of the 21st annual ACM symposium on User interface software and technology., retrieved from <http://research.microsoft.com/pubs/132534/sidesight—crv3.pdf> on May 29, 2012,(Oct. 19, 2008), 4 pages.
Crider, Michael “Sony Slate Concept Tablet “Grows” a Kickstand”, Retrieved from: <http://androidcommunity.com/sony-slate-concept-tablet-grows-a-kickstand-20120116/> on May 4, 2012,(Jan. 16, 2012), 9 pages.
Dietz, Paul H., et al., “A Practical Pressure Sensitive Computer Keyboard”, In Proceedings of UIST 2009,(Oct. 2009), 4 pages.
Glatt, Jeff “Channel and Key Pressure (Aftertouch).”, Retrieved from: <http://home.roadrunnercom/˜jgglatt/tutr/touch.htm> on Jun. 11, 2012, 2 pages.
Hanlon, Mike “ElekTex Smart Fabric Keyboard Goes Wireless”, Retrieved from: <http://www.gizmag.com/go/5048/ > on May 7, 2012,(Jan. 15, 2006), 5 pages.
Kaur, Sukhmani “Vincent Liew's redesigned laptop satisfies ergonomic needs”, Retrieved from: <http://www.designbuzz.com/entry/vincent-liew-s-redesigned-laptop-satisfies-ergonomic-needs/> on Jul. 27, 2012,(Jun. 21, 2010), 4 pages.
Khuntontong, Puttachat et al., “Fabrication of Molded Interconnection Devices By Ultrasonic Hot Embossing on Thin Polymer Films”, IEEE Transactions on Electronics Packaging Manufacturing, vol. 32, No. 3,(Jul. 2009), pp. 152-156.
Linderholm, Owen “Logitech Shows Cloth Keyboard for PDAs”, Retrieved from: <http://www.pcworld.com/article/89084/logitech—shows—cloth—keyboard—for—pdas.html> on May 7, 2012,(Mar. 15, 2002), 5 pages.
McLellan, Charles “Eleksen Wireless Fabric Keyboard: a first look”, Retrieved from: <http://www.zdnetasia.com/eleksen-wireless-fabric-keyboard-a-first-look-40278954.htm> on May 7, 2012,(Jul. 17, 2006), 9 pages.
Post, E.R. et al., “E-Broidery: Design and Fabrication of Textile-Based Computing”, IBM Systems Journal, vol. 39, Issue 3 & 4,(Jul. 2000), pp. 840-860.
Purcher, Jack “Apple is Paving the Way for a New 3D GUI for IOS Devices”, Retrieved from: <http://www.patentlyapple.com/patently-apple/2012/01/apple-is-paving-the-way-for-a-new-3d-gui-for-ios-devices.html> on Jun. 4, 2012,(Jan. 12, 2012), 15 pages.
Takamatsu, Seiichi et al., “Flexible Fabric Keyboard with Conductive Polymer-Coated Fibers”, In Proceedings of Sensors 2011,(Oct. 28, 2011), 4 pages.
Zhang, et al., “Model-Based Development of Dynamically Adaptive Software”, In Proceedings of ICSE 2006, Available at <http://www.irisa.fr/lande/lande/icse-proceedings/icse/p371.pdf>, (May 20, 2006), pp. 371-380.
“Cholesteric Liquid Crystal”, Retrieved from: <http://en.wikipedia.org/wiki/Cholesteric—liquid—crystal> on Aug. 6, 2012,(Jun. 10, 2012), 2 pages.
“Cirago Slim Case®—Protective case with built-in kickstand for your iPhone 5®”, Retrieved from <http://cirago.com/wordpress/wp-content/uploads/2012/10/ipc1500brochure1.pdf> on Jan. 29, 2013, (Jan. 2013), 1 page.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/470,633, (Apr. 9, 2013), 2 pages.
“DR2PA”, retrieved from <http://www.architainment.co.uk/wp-content/uploads/2012/08/DR2PA-AU-US-size-Data-Sheet-Rev-H—Logo.pdf> on Sep. 17, 2012, 4 pages.
“Final Office Action”, U.S. Appl. No. 13/651,195, (Apr. 18, 2013), 13 pages.
“How to Use the iPad's Onscreen Keyboard”, Retrieved from <http://www.dummies.com/how-to/content/how-to-use-the-ipads-onscreen-keyboard.html> on Aug. 28, 2012, 3 pages.
“i-Interactor electronic pen”, Retrieved from: <http://www.alibaba.com/product-gs/331004878/i—Interactor—electronic—pen.html> on Jun. 19, 2012, 5 pages.
“MPG Fly Music Production Controller”, AKAI Professional, Retrieved from: <http://www.akaiprompc.com/mpc-fly> on Jul. 9, 2012, 4 pages.
“NI Releases New Maschine & Maschine Mikro”, Retrieved from <http://www.djbooth.net/index/dj-equipment/entry/ni-releases-new-maschine-mikro/> on Sep. 17, 2012, 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,001, (Feb. 19, 2013), 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,139, (Mar. 21, 2013), 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,202, (Feb. 11, 2013), 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,336, (Jan. 18, 2013), 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,195, (Jan. 2, 2013), 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,232, (Jan. 17, 2013), 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,272, (Feb. 12, 2013), 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,287, (Jan. 29, 2013), 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,304, (Mar. 22, 2013), 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,327, (Mar. 22, 2013), 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,726, (Apr. 15, 2013), 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,871, (Mar. 18, 2013), 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,321, (Feb. 1, 2013), 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, (Feb. 7, 2013), 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/656,055, (Apr. 23, 2013), 11 pages.
“Notice of Allowance”, U.S. Appl. No. 13/470,633, (Mar. 22, 2013), 7 pages.
“On-Screen Keyboard for Windows 7, Vista, XP with Touchscreen”, Retrieved from <www.comfort-software.com/on-screen-keyboard.html> on Aug. 28, 2012, (Feb. 2, 2011), 3 pages.
“Reflex LCD Writing Tablets”, retrieved from <http://www.kentdisplays.com/products/lcdwritingtablets.html> on Jun. 27, 2012, 3 pages.
“Restriction Requirement”, U.S. Appl. No. 13/471,139, (Jan. 17, 2013), 7 pages.
“Restriction Requirement”, U.S. Appl. No. 13/651,304, (Jan. 18, 2013), 7 pages.
“Restriction Requirement”, U.S. Appl. No. 13/651,726, (Feb. 22, 2013), 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/651,871, (Feb. 7, 2013), 6 pages.
“SMART Board™ Interactive Display Frame Pencil Pack”, Available at <http://downloads01.smarttech.com/media/sitecore/en/support/product/sbfpd/400series(interactivedisplayframes)/guides/smartboardinteractivedisplayframepencilpackv12mar09.pdf>,(2009), 2 pages.
“The Microsoft Surface Tablets Comes With Impressive Design and Specs”, Retrieved from <http://microsofttabletreview.com/the-microsoft-surface-tablets-comes-with-impressive-design-and-specs> on Jan. 30, 2013, (Jun. 2012), 2 pages.
“Tilt Shift Lenses: Perspective Control”, retrieved from http://www.cambridgeincolour.com/tutorials/tilt-shift-lenses1.htm, (Mar. 28, 2008), 11 Pages.
“What is Active Alignment?”, http://www.kasalis.com/active—alignment.html, retrieved on Nov. 22, 2012, 2 Pages.
Das, Apurba et al., “Study of Heat Transfer through Multilayer Clothing Assemblies: A Theoretical Prediction”, Retrieved from <http://www.autexrj.com/cms/zalaczone—pliki/5—013—11.pdf>, (Jun. 2011), 7 pages.
Piltch, Avram “ASUS Eee Pad Slider SL101 Review”, Retrieved from <http://www.laptopmag.com/review/tablets/asus-eee-pad-slider-sl101.aspx>, (Sep. 22, 2011), 5 pages.
Qin, Yongqiang et al., “pPen: Enabling Authenticated Pen and Touch Interaction on Tabletop Surfaces”, In Proceedings of ITS 2010, Available at <http://www.dfki.de/its2010/papers/pdf/po172.pdf>,(Nov. 2010), pp. 283-284.
Sumimoto, Mark “Touch & Write: Surface Computing With Touch and Pen Input”, Retrieved from: <http://www.gottabemobile.com/2009/08/07/touch-write-surface-computing-with-touch-and-pen-input/> on Jun. 19, 2012,(Aug. 7, 2009), 4 pages.
Valliath, G T., “Design of Hologram for Brightness Enhancement in Color LCDs”, Retrieved from <http://www.loreti.it/Download/PDF/LCD/44—05.pdf> on Sep. 17, 2012, 5 pages.
Williams, Jim “A Fourth Generation of LCD Backlight Technology”, Retrieved from <http://cds.linear.com/docs/Application%20Note/an65f.pdf>, (Nov. 1995), 124 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/063,912, Jan. 2, 2014, 10 pages.
“FingerWorks Installation and Operation Guide for the TouchStream ST and TouchStream LP”, FingerWorks, Inc. Retrieved from <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000049862.pdf>, 2002, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,232, Dec. 5, 2013, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/468,918, Dec. 26, 2013, 18 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/563,435, Jan. 14, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/563,435, Jan. 22, 2014, 2 pages.
“Notice of Allowance”, U.S. Appl. No. 13/653,321, Dec. 18, 2013, 4 pages.
“Foreign Office Action”, CN Application No. 201320097066.8, Oct. 24, 2013, 5 Pages.
“Non-Final Office Action”, U.S. Appl. No. 13/939,002, Dec. 20, 2013, 5 pages.
“Final Office Action”, U.S. Appl. No. 13/939,032, Dec. 20, 2013, 5 pages.
“Restriction Requirement”, U.S. Appl. No. 13/468,918, Nov. 29, 2013, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/565,124, Dec. 24, 2013, 6 pages.
“Final Office Action”, U.S. Appl. No. 13/564,520, Jan. 15, 2014, 7 pages.
“Advisory Action”, U.S. Appl. No. 13/939,032, Feb. 24, 2014, 2 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/599,635, Feb. 25, 2014, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,186, Feb. 27, 2014, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,405, Feb. 20, 2014, 37 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, Feb. 14, 2014, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, Feb. 26, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/656,055, Mar. 12, 2014, 17 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,139, Mar. 17, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/938,930, Feb. 20, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/939,002, Mar. 3, 2014, 4 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/470,633, (Jul. 2, 2013), 2 pages.
“Final Office Action”, U.S. Appl. No. 13/651,232, (May 21, 2013), 21 pages.
“Final Office Action”, U.S. Appl. No. 13/651,287, (May 03, 2013),16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/563,435, (Jun. 14, 2013), 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, (Jun. 19, 2013), 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/565,124, (Jun. 17, 2013), 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,871, (Jul. 1, 2013), 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, (Jun. 3, 2013),14 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,202, (May 28, 2013), 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,195, (Jul. 8, 2013), 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,272, (May 2, 2013), 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,304, (Jul. 1, 2013), 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,327, (Jun. 11, 2013), 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,726, (May 31, 2013), 5 pages.
“Final Office Action”, U.S. Appl. No. 13/471,001, (Jul. 25, 2013), 20 pages.
“Final Office Action”, U.S. Appl. No. 13/471,336, (Aug. 28, 2013),18 pages.
“Final Office Action”, U.S. Appl. No. 13/653,321, (Aug. 2, 2013),17 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/527,263, (Jul. 19, 2013), 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/656,520, (Jun. 5, 2013), 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/938,930, (Aug. 29, 2013), 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/939,002, (Aug. 28, 2013), 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/939,032, (Aug. 29, 2013), 7 pages.
“PCT Search Report and Written Opinion”, Application No. PCT/US2013/029461, (Jun. 21, 2013), 11 pages.
“PCT Search Report and Written Opinion”, Application No. PCT/US2013/028948, (Jun. 21, 2013), 11 pages.
“Advanced Configuration and Power Management Specification”, Intel Corporation, Microsoft Corporation, Toshiba Corp. Revision 1, (Dec. 22, 1996), 364 pages.
“Final Office Action”, U.S. Appl. No. 13/656,055, (Oct. 23, 2013), 14 pages.
“Final Office Action”, U.S. Appl. No. 13/938,930, (Nov. 8, 2013), 10 pages.
“Final Office Action”, U.S. Appl. No. 13/939,002, (Nov. 8, 2013), 7 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/040968, (Sep. 5, 2013), 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/045049, (Sep. 16, 2013), 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/042550, (Sep. 24, 2013), 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/780,228, (Oct. 30, 2013), 12 pages.
“Notice of Allowance”, U.S. Appl. No. 13/563,435, (Nov. 12, 2013), 5 pages.
“Notice to Grant”, CN Application No. 201320097124.7, (Oct. 8, 2013), 2 pages.
“Welcome to Windows 7”, Retrieved from: <http://www.microsoft.com/en-us/download/confirmation.aspx?id=4984> on Aug. 1, 2013, (Sep. 16, 2009), 3 pages.
Prospero, Michael “Samsung Outs Series 5 Hybrid PC Tablet”, Retrieved from: <http://blog.laptopmag.com/samsung-outs-series-5-hybrid-pc-tablet-running-windows-8> on Oct. 31, 2013, (Jun. 4, 2012), 7 pages.
Gaver, et al.,“A Virtual Window on Media Space”, retrieved from <http://www.gold.ac.uk/media/15gaver-smets-overbeeke.MediaSpaceWindow.chi95.pdf> on Jun. 1, 2012,retrieved from <http://www.gold.ac.uk/media/15gaver-smets-overbeeke.MediaSpaceWindow.chi95.pdf> on Jun. 1, 2012, May 7, 1995, 9 pages.
Li, et al.,“Characteristic Mode Based Tradeoff Analysis of Antenna-Chassis Interactions for Multiple Antenna Terminals”, In IEEE Transactions on Antennas and Propagation, Retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6060882>, Feb. 2012, 13 pages.
Hinckley, et al.,“Codex: A Dual Screen Tablet Computer”, Conference on Human Factors in Computing Systems, Apr. 9, 2009, 10 pages.
Adrian, et al.,“Collimated Light from a Waveguide for a Display Backlight”, Optics Express, 19714, vol. 17, No. 22,retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2- 70F9D4081007/OpticsExpressbacklightpaper.pdf> on Oct. 15, 2009, Oct. 15, 2009, 6 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,327, Sep. 12, 2013, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,726, Sep. 17, 2013, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,327, Sep. 23, 2013, 2 pages.
“Developing Next-Generation Human Interfaces using Capacitive and Infrared Proximity Sensing”, Silicon Laboratories, Inc., Available at <http://www.silabs.com/pages/DownloadDoc.aspx?FILEURL=support%20documents/technicaldocs/capacitive%20and%20proximity%20sensing—wp.pdf&src=SearchResults>, Aug. 30, 2010, pp. 1-10.
“Directional Backlighting for Display Panels”, U.S. Appl. No. 13/021,448, filed Feb. 4, 2011, 38 pages.
Reilink, et al.,“Endoscopic Camera Control by Head Movements for Thoracic Surgery”, In Proceedings of 3rd IEEE RAS & EMBS International Conference of Biomedical Robotics and Biomechatronics, retrieved from <http://doc.utwente.nl/74929/1/biorob—online.pdf> on Jun. 1, 2012, Sep. 26, 2010, pp. 510-515.
Manresa-Yee, et al.,“Experiences Using a Hands-Free Interface”, In Proceedings of the 10th International ACM SIGACESS Conference on Computers and Accessibility, retrieved from <http://dmi.uib.es/˜cmanresay/Research/%5BMan08%5DAssets08.pdf> on Jun. 1, 2012, Oct. 13, 2008, pp. 261-262.
“Final Office Action”, U.S. Appl. No. 13/471,139, Sep. 16, 2013, 13 pages.
“Final Office Action”, U.S. Appl. No. 13/653,682, Oct. 18, 2013, 16 pages.
Sundstedt, “Gazing at Games: Using Eye Tracking to Control Virtual Characters”, In ACM SIGGRAPH 2010 Courses, retrieved from <http://www.tobii.com/Global/Analysis/Training/EyeTrackAwards/veronica—sundstedt.pdf> on Jun. 1, 2012, Jul. 28, 2010, 85 pages.
Xu, et al.,“Hand Gesture Recognition and Virtual Game Control Based on 3D Accelerometer and EMG Sensors”, IUI'09, Feb. 8-11, 2009,retrieved from <http://sclab.yonsei.ac.kr/courses/10TPR/10TPR.files/Hand%20Gesture%20Recognition%20and%20Virtual%20Game%20Control%20based%20on%203d%20accelerometer%20and%20EMG%20sensors.pdf> on Jan. 5, 2012, Feb. 8, 2009, 5 pages.
Kaufmnn, et al.,“Hand Posture Recognition Using Real-time Artificial Evolution”, EvoApplications'09,retrieved from <http://evelyne.lutton.free.fr/Papers/KaufmannEvolASP2010.pdf> on Jan. 5, 2012, Apr. 3, 2010, 10 pages.
Zhu, et al.,“Keyboard before Head Tracking Depresses User Success in Remote Camera Control”, In Proceedings of 12th IFIP TC 13 International Conference on Human-Computer Interaction, Part II,retrieved from <http://csiro.academia.edu/Departments/CSIRO—ICT—Centre/Papers?page=5> on Jun. 1, 2012, Aug. 24, 2009, 14 pages.
Nakanishi, et al.,“Movable Cameras Enhance Social Telepresence in Media Spaces”, In Proceedings of the 27th International Conference on Human Factors in Computing Systems,retrieved from <http://smg.ams.eng.osaka-u.ac.jp/˜nakanishi/hnp—2009—chi.pdf> on Jun. 1, 2012, Apr. 6, 2009, 10 pages.
Iwase “Multistep Sequential Batch Assembly of Three-Dimensional Ferromagnetic Microstructures with Elastic Hinges”, Retrieved at <<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1549861>> Proceedings: Journal of Microelectromechanical Systems, Dec. 2005, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/656,520, Feb. 1, 2013, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/021,448, Dec. 13, 2012, 9 pages.
Valli “Notes on Natural Interaction”, retrieved from <http://www.idemployee.id.tue.nl/g.w.m.rauterberg/lecturenotes/valli-2004.pdf> on Jan. 5, 2012, Sep. 2005, 80 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,871, Oct. 2, 2013, 7 pages.
“Notice to Grant”, Chinese Application No. 201320097089.9, Sep. 29, 2013, 2 Pages.
“Optical Sensors in Smart Mobile Devices”, On Semiconductor, TND415/D,Available at <http://www.onsemi.jp/pub—link/Collateral/TND415-D.PDF>, Nov. 2010, pp. 1-13.
“Optics for Displays: Waveguide-based Wedge Creates Collimated Display Backlight”, OptoIQ, retrieved from <http://www.optoiq.com/index/photonics-technologies-applications/lfw-display/lfw-article-display.articles.laser-focus-world.volume-46.issue-1.world-news.optics-for—displays.html> on Nov. 2, 2010, Jan. 1, 2010, 3 pages.
Vaucelle “Scopemate, A Robotic Microscope!”, Architectradure, retrieved from <http://architectradure.blogspot.com/2011/10/at-uist-this-monday-scopemate-robotic.html> on Jun. 6, 2012, Oct. 17, 2011, 2 pages.
Travis, et al.,“The Design of Backlights for View-Sequential 3D”, retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2- 70F9D4081007/Backlightforviewsequentialautostereo.docx> on Nov. 1, 2010, 4 pages.
Xu, et al.,“Vision-based Detection of Dynamic Gesture”, ICTM'09, Dec. 5-6, 2009,retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5412956> on Jan. 5, 2012, Dec. 5, 2009, pp. 223-226.
Harada, et al.,“VoiceDraw: A Hands-Free Voice-Driven Drawing Application for People With Motor Impairments”, In Proceedings of Ninth International ACM SIGACCESS Conference on Computers and Accessibility, retrieved from <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.7211&rep=rep1&type=pdf> on Jun. 1, 2012, Oct. 15, 2007, 8 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/563,435, Mar. 20, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/565,124, Apr. 3, 2014, 4 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/565,124, Mar. 10, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/565,124, Apr. 14, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/938,930, May 6, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,002, May 5, 2014, 2 pages.
“Final Office Action”, U.S. Appl. No. 13/780,228, Mar. 28, 2014, 13 pages.
“Final Office Action”, U.S. Appl. No. 14/063,912, Apr. 29, 2014, 10 pages.
“Final Office Action”, U.S. Appl. No. 14/199,924, May 6, 2014, 5 pages.
“Foreign Office Action”, CN Application No. 201320328022.1, Feb. 17, 2014, 4 Pages.
“Foreign Office Action”, CN Application No. 201320328022.1, Oct. 18, 2013, 3 Pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,237, Mar. 24, 2014, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,336, May 7, 2014, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,376, Apr. 2, 2014, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/492,232, Apr. 30, 2014, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/527,263, Apr. 3, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/199,924, Apr. 10, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/200,595, Apr. 11, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,232, Apr. 25, 2014, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,287, May 2, 2014, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/939,032, Apr. 3, 2014, 4 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/653,321, Mar. 28, 2014, 4 pages.
“Final Office Action”, U.S. Appl. No. 13/471,412, Dec. 15, 2014, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/647,479, Dec. 12, 2014, 12 pages.
“Final Office Action”, U.S. Appl. No. 14/225,276, Dec. 17, 2014, 6 pages.
“Foreign Office Action”, CN Application No. 201320097079.5, Jul. 28, 2014, 4 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/471,405, Dec. 17, 2014, 5 pages.
“Advisory Action”, U.S. Appl. No. 14/199,924, May 28, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,232, Jul. 31, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,287, Aug. 21, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/938,930, Jun. 6, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,002, May 22, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,002, Jun. 19, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,032, Jun. 26, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,032, Jul. 15, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/199,924, Aug. 29, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/199,924, Sep. 5, 2014, 2 pages.
“Final Office Action”, U.S. Appl. No. 13/471,376, Aug. 18, 2014, 24 pages.
“Final Office Action”, U.S. Appl. No. 13/595,700, Aug. 15, 2014, 6 pages.
“Final Office Action”, U.S. Appl. No. 13/599,635, Aug. 8, 2014, 16 pages.
“Final Office Action”, U.S. Appl. No. 13/653,682, Jun. 11, 2014, 11 pages.
“Foreign Notice of Allowance”, CN Application No. 201320096755.7, Jan. 27, 2014, 2 pages.
“Foreign Notice of Allowance”, CN Application No. 201320097065.3, Nov. 21, 2013, 2 pages.
“Foreign Office Action”, CN Application No. 201320097065.3, Jun. 18, 2013, 2 pages.
“Foreign Office Action”, CN Application No. 201320097079.5, Sep. 26, 2013, 4 pages.
“Interlink Electronics FSR (TM) Force Sensing Resistors (TM)”, Retrieved at <<http://akizukidenshi.com/download/ds/interlinkelec/94-00004+Rev+B%20FSR%201ntegration%20Guide.pdf on Mar. 21, 2013, 36 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/031531, Jun. 20, 2014, 10 Pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028483, Jun. 24, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028484, Jun. 24, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028485, Jun. 25, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028769, Jun. 26, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028771, Jun. 19, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028486, Jun. 20, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/041017, Jul. 17, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028489, Jun. 20, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028488, Jun. 24, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028767, Jun. 24, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028481, Jun. 19, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028490, Jun. 24, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028766, Jun. 26, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028772, Jun. 30, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028768, Jun. 24, 2014, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028482, Jun. 20, 2014, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028487, May 27, 2014, 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028770, Jun. 26, 2014, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/468,882, Jul. 9, 2014, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/468,949, Jun. 20, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/470,951, Jul. 2, 2014, 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,001, Jun. 17, 2014, 23 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,030, May 15, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,054, Jun. 3, 2014, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,282, Sep. 3, 2014, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,412, Jul. 11, 2014, 22 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, Jun. 16, 2014, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/595,700, Jun. 18, 2014, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/647,479, Jul. 3, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/063,912, Sep. 2, 2014, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/225,250, Jun. 17, 2014, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/225,276, Jun. 13, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/277,240, Jun. 13, 2014, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/468,918, Jun. 17, 2014, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,030, Sep. 5, 2014, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,186, Jul. 3, 2014, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,237, May 12, 2014, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,405, Jun. 24, 2014, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 14/018,286, May 23, 2014, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 14/199,924, Jun. 10, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 14/277,240, Sep. 16, 2014, 4 pages.
“Restriction Requirement”, U.S. Appl. No. 13/595,700, May 28, 2014, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/653,184, Sep. 5, 2014, 6 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/471,405, Aug. 29, 2014, 5 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 14/018,286, Jun. 11, 2014, 5 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/471,030, Sep. 30, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/199,924, Sep. 19, 2014, 2 page.
“Final Office Action”, U.S. Appl. No. 13/468,949, Oct. 6, 2014, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/471,054, Oct. 23, 2014, 17 pages.
“Final Office Action”, U.S. Appl. No. 13/471,336, Oct. 6, 2014, 13 pages.
“Final Office Action”, U.S. Appl. No. 13/492,232, Nov. 17, 2014, 13 pages.
“Final Office Action”, U.S. Appl. No. 13/595,700, Oct. 9, 2014, 8 pages.
“Final Office Action”, U.S. Appl. No. 13/656,055, Sep. 17, 2014, 10 pages.
“Final Office Action”, U.S. Appl. No. 14/200,595, Nov. 19, 2014, 5 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/043546, Oct. 9, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,393, Oct. 20, 2014, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/525,614, Nov. 24, 2014, 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,184, Dec. 1, 2014, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/780,228, Sep. 15, 2014, 18 pages.
“Notice of Allowance”, U.S. Appl. No. 13/653,682, Sep. 24, 2014, 4 pages.
“Restriction Requirement”, U.S. Appl. No. 13/653,218, Nov. 7, 2014, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 14/147,252, Dec. 1, 2014, 6 pages.
Harrison, “UIST 2009 Student Innovation Contest—Demo Video”, Retrieved From: <https://www.youtube.com/watch?v=PD18eYIASf0> Sep. 16, 2014, Jul. 23, 2009, 1 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/227,240, Jan. 8, 2015, 2 pages.
“Final Office Action”, U.S. Appl. No. 13/468,882, Feb. 12, 2015, 9 pages.
“Final Office Action”, U.S. Appl. No. 13/470,951, Jan. 12, 2015, 20 pages.
“Final Office Action”, U.S. Appl. No. 14/063,912, Jan. 12, 2015, 12 pages.
“First Examination Report”, NZ Application No. 628690, Nov. 27, 2014, 2 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,030, Jan. 15, 2015, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/147,252, Feb. 23, 2015, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/492,232, Feb. 24, 2015, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, Jan. 26, 2015, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/599,635, Feb. 12, 2015, 16 pages.
“Notice of Allowance”, U.S. Appl. No. 13/595,700, Jan. 21, 2015, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 14/200,595, Feb. 17, 2015, 2 pages.
“Notice of Allowance”, U.S. Appl. No. 14/200,595, Feb. 25, 2015, 4 pages.
“Final Office Action”, U.S. Appl. No. 14/225,250, Mar. 13, 2015, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,054, Mar. 13, 2015, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,393, Mar. 26, 2015, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,218, Mar. 4, 2015, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/852,848, Mar. 26, 2015, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/059,280, Mar. 3, 2015, 18 pages.
“Notice of Allowance”, U.S. Appl. No. 13/653,184, Mar. 10, 2015, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/656,055, Mar. 4, 2015, 7 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/013928, Oct. 22, 2014, 13 Pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/013928, May 12, 2014, 17 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/656,055, Apr. 13, 2015, 2 pages.
“Final Office Action”, U.S. Appl. No. 13/780,228, Apr. 10, 2015, 19 pages.
“Foreign Notice on Reexamination”, CN Application No. 201320097066.8, Apr. 3, 2015, 7 Pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,376, Mar. 27, 2015, 28 pages.
“Notice of Allowance”, U.S. Appl. No. 13/468,918, Apr. 8, 2015, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,030, Apr. 6, 2015, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,232, Mar. 30, 2015, 7 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/595,700, Apr. 10, 2015, 2 pages.
“Using Interactive Maps for Navigation and Collaboration”, CHI '01 Extended Abstracts on Human Factors in Computing Systems, Mar. 31, 2001, 2 pages.
Related Publications (1)
Number Date Country
20130229568 A1 Sep 2013 US
Provisional Applications (7)
Number Date Country
61606321 Mar 2012 US
61606301 Mar 2012 US
61606313 Mar 2012 US
61606333 Mar 2012 US
61613745 Mar 2012 US
61606336 Mar 2012 US
61607451 Mar 2012 US
Continuations (1)
Number Date Country
Parent 13471001 May 2012 US
Child 13651976 US