Mobile land drilling apparatus and method

Information

  • Patent Grant
  • 6634436
  • Patent Number
    6,634,436
  • Date Filed
    Thursday, April 6, 2000
    24 years ago
  • Date Issued
    Tuesday, October 21, 2003
    20 years ago
Abstract
A mobile land rig and method are disclosed, for the transport, assembly, and disassembly of oil drilling equipment. A mobile telescoping substructure box includes at least one axle and coupled wheels lockable and releasable for engaging the ground and being raised above the ground and for supporting a mobile drill mast. A lifting means selectively supports the mobile telescoping substructure box unit in a raised position and lowered position with respect to the ground. An extension cylinder further extends the mobile telescoping substructure box unit in telescopic extension. A stationary frame member and a telescoping frame member comprising the mobile telescoping substructure box unit have a plurality of cables attached thereto for supporting the telescoping frame member when extended. Limit switches attached between the cables and frame members sense when cable tension reaches predetermined limits and generate a stop signal. Telescopic extension of the telescoping frame member is stopped in response to the stop signal. Stop pins are further engaged in response to the stop signal to support the telescoping frame member in the extended position. Trolley winch allows completion of rig assembly without external crane.
Description




FIELD OF THE INVENTION




The present invention is in the field of oil exploration and drilling. In particular, the present invention is a mobile land rig and method for the rapid placement, assembly, disassembly, and repositioning of an oil drilling rig and associated drilling equipment.




BACKGROUND OF THE INVENTION




Conventional oil drilling and exploration in major land drilling operations require the rapid deployment, assembly and disassembly of drilling structures. Consequently, the transportability of components and the speed at which components can be assembled with the minimum amount of auxiliary equipment are paramount concerns. A transportable oil drilling rig typically includes, for example, a support base, a mast, pipe sections, and a drill floor. Often times however, auxiliary support equipment such as cranes are required to facilitate the setup and takedown of large components such as the base, the drill floor, the pipe racking board, and the like having the effect of increasing operational costs.




Drilling sites are often located in remote areas requiring truck transportation of the components of the rig accompanied by equipment used to assemble the rig. Further complicating the rig assembly process is the persistent need to change locations once a hole is sunk and it is determined whether the site will be sufficiently productive to merit a pumping installation, whether the site will be unproductive all together, or whether a more ideal location exists to sink a hole. Typically, site changes can occur once every several months, and, in response, prior art systems have attempted to increase the degree of mobility of rig components. Auxiliary equipment however is still necessary for performing steps such as placing the drill floor.




Since the variable costs associated with leased support equipment, such as cranes and the like, are calculated on a per hour or per day basis, expediting the takedown, transport, and setup operations is crucial for minimizing equipment leasing costs. Typical takedown and setup time is in the order of days. With equipment leasing costs ranging from several hundred dollars per day or more, many thousands of dollars in costs may be incurred for each end of a setup and takedown operation. For larger or more complex rigs, the cost may be even higher. In general, prior art drilling rigs are geared towards facilitating rapid setup, takedown and transport but still require external cranes, external winches, and the like which are most often leased increasing overall expense.




One such prior art system for erecting an oil well derrick is shown in U.S. Pat. No. 3,922,825 issued to Eddy's et al on Dec. 2, 1975. Eddy's system employs a stationary substructure base and a movable substructure base mounted thereon. Eddy's movable substructure base is coupled to the stationary base but swings upright into an elevated position on a series of struts that are connected to the stationary base with swivel connections at each end. Eddy's movable base is otherwise stationary given that neither the stationary base nor the “movable” base are mobile or repositionable without the use of an auxiliary crane or the like. Moreover, simply raising the movable substructure base and the drill mast requires the use of a winch mounted on an auxiliary winch truck.




Another prior art system for assembly of a drill rig is shown in U.S. Pat. No. 3,942,593 issued to Reeve, Jr., et al on Mar. 9, 1976. The mobile well drilling rig apparatus shown in Reeve comprises a trailerable telescoping mast and a separate sectionable substructure assembly further comprising a rig base, a working floor, and a rail means. The mast is conveyed to the top of the substructure by rollers and may be raised by hydraulic raising means to the upright position. Some of the disadvantages of such a system are the sheer length of the mast assembly when transporting and the instability of the mast while raising. A further disadvantage of the system of Reeve is the need for drawlines and winch means to raise the mast onto the working floor.




In addition to the need for auxiliary equipment such as winch trucks and the like, each of the above mentioned systems requires some stationary substructure that must be set down prior to the imposition of any additional structure thereupon. Further movement or repositioning of the base structure requires cranes or other heavy equipment to effect movement even in the case of the purported “movable” base structure of Eddy.




OBJECTS OF THE INVENTION




It would be desirable therefore for a mobile land rig that was self sufficient thus capable of being transported, erected, and disassembled without the need for auxiliary equipment. Such a system would save costs associated with leasing cranes and the like for periods of days during erection and disassembly of rigs.




It would further be desirable for a system with a self contained substructure base capable of being easily moved. Such a system would allow rapid placement and repositioning of the substructure base without the need for a crane or the like.




It would still further be desirable for a system having a substructure base that could be telescoped to a maximum operating height and automatically secured at such height yet possess structural rigidity sufficient to withstand winds and like forces incumbent on the mast structure. Further, the desirable system would be able to be collapsed to a minimum height to facilitate transport. Such a system would allow the substructure base to be easily transportable when collapsed yet sufficiently tall to support a drill mast when telescoped.




It would still further be desirable for a system capable of winching components into place with a self contained winching platform located on the drill mast. Such a system would allow rig components to be placed without the need for auxiliary equipment such as an external crane or winch.




It would be still further desirable for a system wherein all system components could be easily trailerable and transportable by truck. Such a system could be easily moved from one site to another with a minimum of setup and takedown time.




SUMMARY OF THE INVENTION




To meet the objects of the invention, a mobile land rig is provided for the transport assembly and disassembly of oil drilling equipment. The mobile land rig of the present invention comprises a mobile telescoping substructure box having wheel means integrated therein capable of supporting the mobile telescoping substructure box in rolling relation to the ground or drilling platform surface during transport. The mobile telescoping substructure box in the lowered position facilitates assembly of the mobile telescoping substructure box and the drill mast prior to and during mast erection. The mobile telescoping substructure box is typically raised into the fully extended position once the drill mast is fully erected as described hereinafter.




In the present invention, two such mobile telescoping substructure boxes are used to establish the base for the drill mast. The wheel means for allowing the mobile telescoping substructure box to roll may consist of one or more axle wheel assemblies preferably equipped with conventional heavy duty pneumatic rubber truck tires. The wheel means may further be provided with a selective raising and lowering means, such as a hydraulic lift, within the mobile telescoping substructure box to selectively engage and disengage the wheel assembly with a ground surface by lifting and lowering the substructure box in relation to the wheel means. When the mobile telescoping substructure box is correctly rolled into position, for example, the wheel assembly can be raised relative to the mobile telescoping substructure box and thereby establish direct contact between the ground and support footings or a support frame of the mobile telescoping substructure box. The support frame, in addition to bearing the load of the mobile telescoping substructure box and all structure attached thereto, may be equipped with load leveling means to ensure that the mobile telescoping substructure box is placed on the level.




The mobile telescoping substructure boxes comprise an inner and an outer frame section with the inner frame section nested inside the outer and coupled to the outer frame section by cables. The frame sections may be made from suitable structural, metal, such as steel, with sufficient strength to support the drillworks, racking board, drill floor, drill mast, and the like. To facilitate telescopic extension of the mobile telescoping substructure box while maintaining structural integrity thereof, the inner frame may be rigged with cables made from steel or suitably strong material.capable of withstanding loads generated during rig construction and erection, loads generated from lateral forces such as wind, or loads generated from objects suspended from the drill mast. Such cables may be coupled to the inner frame and the outer frame such that when the frame reaches maximum extension, the cables are drawn taught in a predetermined pattern that enhances the structural characteristic of the mobile telescoping substructure box. Such a pattern may, for example, be a simple crisscross pattern such that lateral forces impinging on one side of the structure are translated through the cable configuration to the opposite side of the structure. In addition to providing support, the cables may be provided with limit switches to signal that the inner frame has reached maximum excursion. Further, turnbuckles may be provided to adjust the cables for the proper tension.




Stop pins are provided on the outer frame section of the mobile telescoping substructure box to secure the inner frame section in the fully extended position. When the mobile telescoping substructure box reaches maximum extension, the stop pins are engaged with stop pin activating means, preferably being hydraulically activated, through the supporting structure of the extended inner frame section to lock the extended inner frame section in place. Stop pins are engaged in response to tension limiters coupled to the cables and capable of sensing when the tension on the cables reaches a predetermined tension value. Such a predetermined tension value is indicative of the full extension of the extended inner frame section. Tension limiters coupled to the cables then signal the hydraulically activated stop pin activating means. The stop pins and activation means may be attached to the outer frame section and may be extended through openings in the outer frame section when engaged. The stop pins support the inner frame in the fully extended position thus facilitating load bearing and preventing retraction of the inner frame into the outer frame section.




To facilitate telescoping and provide guidance and structural support during telescoping, the inner frame may further be located within an enclosed frame rail, guide rail, or like structure. Rollers located either on the inner or outer frame may be used to facilitate smooth telescoping action and reduce friction between the inner and outer frames of the mobile telescoping substructure box. In the preferred embodiment, the mobile telescoping substructure box is telescoped after assembly and erection of the drill mast.




The drill mast forms another part of the claimed invention, typically comprising, in one embodiment, a bottom mast section and a top mast section both being transportable to the drilling site on separate trailers. The bottom mast section may be placed in proximity to the mobile telescoping substructure box trailers. Drawworks for the rig may be located on a separate trailer and placed on the side of the drill cellar opposite the mast trailer. Hydraulic cylinders are provided on the trailer for raising the bottom mast section into position and pinning the bottom mast section to the two respective mobile telescoping substructure boxes. The bottom mast section may be unlinked from the trailer by unpinning the mast from the trailer. The bottom mast section may then be linked to the mobile telescoping substructure box and raised into an erect position by a telescoping hydraulic mast raising cylinder. The bottom mast section is further provided with an A-leg that can lower the profile during transport yet be opened upon erection to provide key support for the erected mast.




The top mast section may be coupled to a separate trailer means. During mast assembly, the top mast trailer means may be backed into position in proximity to the bottom mast section and a protruding end section thereof. The top mast section is joined with the bottom mast section to form the complete drill mast. The bottom mast section is equipped with guides at the protruding end section for facilitating alignment of the top and bottom mast sections. The guides are placed on the bottom mast section in the preferred embodiment since the position of the bottom mast section is adjustable and thus can be moved into alignment using the guides to facilitate attachment of the top and bottom mast sections. The hydraulic mast raising cylinder, in addition to raising the mast, allows the bottom mast section to be adjusted in the vertical direction to facilitate aligning and coupling the top and bottom mast sections. Horizontal adjustment of the position of the bottom mast section may be accomplished with a hydraulically, mechanically, or electrically adjusted means such as a turn screw or a drive motor. Since hydraulic power is readily available on the mobile land rig of the present invention, it is the preferred operative means for working devices on and around the rig.




The drill mast may further be provided with a racking board for racking pipe sections, an operation known in the art. The racking board is folded during transport against the top mast section. To provide an advantageous alternative to an external crane, the racking board may further be provided with a winch on the underside thereof traveling via wheel movement along a rail secured to the racking board and provided with a rack gear thereunder. The winch frame is provided with a pinion gear drive powered by a hydraulic driven motor which engages the rack gear and moves the winch back and forth along the track. A cable reeved around a winch on the drawworks trailer runs up through a roller means and down through the winch trolley for raising and lowering loads. The trolley may be positioned inwardly and outwardly along a rail limited by the length of the racking board and any extension added thereto. In the preferred embodiment, the rail would be coextensive with the length of the racking board, but could be extended beyond the racking board length as limited only by the ability of the structure to support the maximum load calculated as a product of load weight and the rail length. Such a winch and trolley may be used, for example, to lift the drill floor into position. The top mast section aft trailer is also provided with hydraulic lift means to raise the top mast portion to a position where it is ready for erection once the top mast section is pinned to the bottom mast section and the top mast section is released from the top mast section forward trailer. The racking board may be extended outwardly from its retracted position along side the top mast section in preparation for mast erection when the top mast section is raised significantly to clear the ground using the lift means on the aft trailer.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a diagram illustrating portions of the present invention including the retracted mobile telescoping substructure box in the transport position, the drawworks and associated trailers.





FIG. 1A

is a partial side view of the substructure box of

FIG. 1

illustrating the raising of the substructure box by lifts to permit the disengagement of the wheel assembly.





FIG. 2

is a side view of the drawworks and the retracted mobile telescoping substructure box of the present invention in the stationary position.





FIG. 3

is a top view of the drawworks, one of two of the mobile telescoping substructure boxes and a partial view of the second mobile telescoping substructure box of the present invention on either side of a drilling cellar.





FIG. 4

is an end view of two mobile telescoping substructure boxes positioned on either side of a drilling cellar.





FIG. 5

is a side view of the assembled drill mast lifted into ready position and pinned to the mobile telescoping substructure box.





FIG. 6

is a side view of the drawworks, an extended mast raising cylinder and an erected drill mast with a racking board and winch trolley supported on retracted mobile telescoping substructure boxes.





FIG. 7

is a perspective view illustrating the components of the winch trolley of the present invention.





FIG. 8

is a perspective view of the stop pin of the present invention, including hydraulic actuating means, in the disengaged position.





FIG. 9

is a perspective view of the stop pin of the present invention, including hydraulic actuating means, in the engaged position.





FIG. 10

is a side view of a fully retracted mast raising cylinder, the drill mast and associated equipment supported on fully extended mobile telescoping substructure boxes.











DETAILED DESCRIPTION OF THE DRAWINGS




Referring now to the drawings, FIG.


1


and

FIGS. 5 and 6

best illustrate the mobile land rig of the present invention comprising an array of modular, transportable components that may be assembled into position to prepare for component placement and rig erection. Primary components of the rig shown in the Figures and described in detail hereinafter include, drawworks


18


, mobile telescoping substructure box


10


, drill mast


21


, racking board


32


, and winch trolley


30


. All components are transportable and can be assembled without the need for auxiliary equipment at a chosen site. Further, the components are configured to provide the most rapid setup, takedown, and transport possible saving time and costs associated with leased equipment.




As shown in

FIG. 1

, drawworks


18


carried on trailer


18




a


comprises winch


18




e


powered by a standard 1200 to 1500 horsepower hydraulic power pack


18




d


. Power pack


18




d


provides hydraulic pressure not only for winch


18


e but for the working components of the rig described hereinafter. Drawworks


18


, via trailer


18




a


, is detachably coupled to road rig


19


, a conventional highway truck, and can be drawn into position at the drilling site. Drawworks


18


, once placed in position, may be supported on levelers


18




b


, and


18




c


best shown in the load supporting position in FIG.


2


.

FIG. 1

shows load levelers


18




b


and


18




c


in the retracted position necessary when drawworks


18


is being towed to the drilling site.




Also shown in the transport position in

FIG. 1

is mobile telescoping substructure box


10


for supporting the rig of the present invention. Mobile telescoping substructure box


10


may be transported via tubular inner frame


11


and tubular outer frame


12


composed of a plurality of tubular steel members


11




m


and


12




m


respectively to which is connected towing hitch


17


and an additional road rig


19


. Mobile telescoping substructure box


10


is positioned adjacent to drawworks


18


at the drilling site. Inner frame


11


may be referred to as the telescoping frame member and outer frame


12


may be referred to as the stationary frame member. As shown in

FIG. 1

, mobile telescoping substructure box


10


may be transported with telescoping inner frame


11


fully retracted and may further be transported in a raised position on wheel assembly


15


having wheels


16


on axles


16




a


,


16




a


that are in contact with the ground. The weight of mobile telescoping substructure box


10


is supported on a pair of cross bow members


15




a


,


15




a


journaled at each end


16




c


thereof to axles


16




a


, as shown in

FIGS. 3 and 4

. Each cross bow member


15




a


is provided with a pair of notches


15




b


,


15




b


in its outer circumference to receive removable support bars


15




c


,


15




c


that pass through suitable openings


15




d


,


15




d


in diagonal steel members


15




e


,


15




e


that are supported on outer frame steel members


12




m


. When installed, as in

FIG. 1

, the support bars


15




c


support the box structure above the ground. When removed, as shown in

FIGS. 1A and 2

, the entire support feature of the wheel assembly is deactivated and the box structure rests directly on the ground G. To proceed from the mobile condition of

FIG. 1

to the stationary ground engaging position of

FIG. 2

, separate lifts


15




f


,


15




f


are utilized as shown in FIG.


1


A.




These lifts


15




f


having ground engaging feet


15




g


are each positioned on an opposite side of the outer frame


12


and secured to the vertical steel members


12




n


. When operated, to engage the feet


15




g


with the ground G, lifts


15




f


temporarily support the entire substructure


10


as in

FIG. 1A

at which time support bars


15




c


may be removed because they then support no weight and the wheel assembly


15


is disengaged. When the feet


15




g


are raised relative to substructure


10


from the position in

FIG. 1A

to that of

FIG. 2

, the entire substructure


10


is lowered to the ground G as shown in FIG.


2


. For best load support of rig structures, two mobile telescoping substructure boxes


10


may be used on either side of drilling cellar


20


as is best shown in FIG.


3


and FIG.


4


.




Mobile telescoping substructure box


10


is provided with linking mechanism


12




a


and may be pinned thereby to drawworks trailer


18




a


. In the fully retracted position, inner frame


11


is contained within outer frame


12


as best shown in

FIGS. 1

,


2


,


5


, and


6


.




The next step in rig assembly is for drill mast


21


, shown in

FIG. 5

, to be brought by trailer


25


into position for erection over drilling cellar


20


and between the substructure boxes on each side thereof and also on the opposite side from drawworks


18


. Mast trailer


25


is supported by levelers


25




a


,


25




b


, and


25




c


once drill mast


21


is in position for pinning front mast leg


21




b


at


21




c


to mobile telescoping substructure box


10


at pinning brackets


10




a


on each substructure box


10


, as best shown in FIG.


4


and FIG.


5


. Drill mast


21


may comprise two sections trailer transported by separately or, as shown in

FIG. 5

, may comprise a single unit and may be transported already assembled.




To lower the transport profile of drill mast


21


, collapsible A-leg


21




a


, provided for supporting drill mast


21


in the raised position but may be collapsed against the side of drill mast


21


during transport. Mast raising cylinders or lifts


22


and


26


support drill mast


21


for subsequent elevation and in a position of alignment with mobile telescoping substructure boxes


10


. With mobile telescoping substructure boxes


10


in the retracted position, the alignment operation is greatly simplified and the distance which mast raising lifts


22


and


26


must extend is greatly reduced. Further as shown in

FIG. 5

, conventional blow-out preventer (BOP)


23


is placed on mast trailer


25


in such a way as to facilitate positioning of BOP


23


over the well center


20


while being suspended from BOP trolleys


10




b


as best shown in FIG.


4


.




The mobile drill rig of the present invention is adapted to be erected using mast raising cylinder


22


and then mast raising cylinder


26


shown fully extended in FIG.


6


. Drill mast


21


is provided with additional accessories such as dog house


29


that may be put into position once drill mast


21


is erected. To provide additional support for drill mast


21


when erected, A-leg


21




a


may be pinned off to mobile telescoping substructure box


10


as shown in

FIGS. 6 and 8

. With drill mast secured via A-leg


21




a


and the base section


21




b


of drill mast


21


pinned off at


21




d


to mobile telescoping substructure box


10


as shown in

FIG. 6

, mobile telescoping substructure box


10


may then be extended to the position shown in FIG.


10


through the use of extension cylinder


16




b.






Inner frame


11


is disposed within the tubular outer frame


12


in the preferred embodiment, as shown in

FIGS. 8 and 9

. Outer frame


12


may be provided with rollers


38


positioned at the upper end of outer frame


12


and secured thereto by brackets


38




a


. These rollers facilitate low friction travel of inner frame


11


within the inner surface


12




p


of outer frame


12


. The inner frame


11


is therefore stabilized and guided during telescopic extension. Alternatively, rollers


38


may be provided on inner frame


11


for travel within the tubular outer frame


12


.




The raising of the substructure box


10


to drill floor height as shown in

FIG. 10

utilizes hydraulic cylinders


16




b


that urge cross member


11




p


and therefore the entire inner frame


11


to which it is secured upwardly. To control the extent of the upward movement, inner frame


11


and outer frame


12


are both provided with cables


14


shown in

FIGS. 1

,


2


,


5


,


6


and


10


for providing wind support, for instance, for the structure when extended as shown in FIG.


10


. Cables


14


are provided with a conventional limit switch


14




a


, of a kind well known in the art. Limit switch


14




a


is sensitive to the tension on cables


14


and can generate a limit stopping signal. Limit switch


14




a


may be a simple tension threshold switch that operates a contact or generates a level upon the occurrence of a predetermined tension level or may output a level corresponding to the tension sensed in cables


14


. The level may then be processed by a conventional level comparator circuit or programmed digital comparator. Alternatively, the level may be converted to a digital value then processed directly by a computer based controller.




The signal generated by the operation of limit switch


14




a


in response to a predetermined tension being reached in cables


14


, may serve a dual purpose. First the generated signal stops the further flow of hydraulic fluid to the cylinders


16




b


but second it may be used to operate stop pins


13


to positively hold the raised box structure.




Stop pin assembly


13


shown in detail in FIG.


8


and

FIG. 9

are for securing inner frame


11


when it is in the fully extended position.

FIG. 8

shows stop pin assembly


13


including stop pin activator


36


and stop pin


37


in the disengaged position while

FIG. 9

shows stop pin assembly


13


with stop pin activator


36


and stop pin


37


in the engaged position to secure inner frame and outer frame together. Stop pin assembly


13


further includes operating rocker arm


39


with stop pin engaging end


39




a


and ram engaging end


39




b


both operating about pivot


40


journaled within pivot bracket


40




a


secured to the side of outer frame


12


. Stop pin activator means


36


in the preferred embodiment is a hydraulic cylinder journaled in support bracket


36




a


with ram


36




b


for engaging operating arm end


39




b


of rocker arm


39


as best shown in FIG.


9


. When operated to disengage stop pin


37


from the operative position, pin activator


36


operates ram


36




b


to push against end


39




b


of rocker arm


39


to pull pin


37


out of opening


37




a


in outer frame


12


and a corresponding opening in inner frame


11


. Slight hydraulic pressure from extension cylinder


16




b


on inner frame


11


may if desired be applied in the direction of extension to relieve downward pressure on stop pin


37


caused by the weight of inner frame


11


thus allowing stop pin


37


to be more easily withdrawn through opening


37




a


. To engage pin


37


, pin activator


36


operates ram


36




b


in the opposite direction and pulls on arm end


39




a


to push pin


37


into opening


37




a


in both the inner frame


11


and outer frame


12


. Both insertion and removal operations of pin,


37


are best performed with a slight overextension of inner frame


11


as described.




In the fully extended position, mobile telescoping substructure box


10


may support drill mast


21


and, via racking board


32


and winch trolley


30


, the erected mobile land rig of the present invention can bear loads when acting in a crane capacity to complete rig assembly, and is further prepared for subsequent normal drilling operations.




As shown in FIG.


6


and

FIG. 7

, racking board


32


includes steel I-beam


32




a


therebelow for winch trolley


30


to travel upon. Bracket


32




b


, secured on one end to drill mast


21


and on the other end to beam


32




a


, provides additional structural support for lifting operations conducted with block


34


coupled to cable


28


reeved around pulley


33


and is shown in FIG.


6


and in greater detail in FIG.


7


. Winch trolley


30


comprises a hydraulic motor


31


driving pinion gear


31




b


on rack gear


31




a


to move winch trolley


30


along beam


32




a


on rollers


35


. Triangularly shaped clamp brackets


30




a


,


30




a


are located on either side of I-beam


32




a


for supporting winch trolley


30


using journaled rollers


35


at its base


30




b


. Pulley


33


is positioned between the apecies


30




c


,


30




c


of the triangularly shaped clamp brackets


30




a


. The rollers


35


are secured to clamp brackets


30




a


,


30




a


for rotation about axles


35




a


in order to ride on opposed flanges


32




b


,


32




b


forming I-beam


32




a


. This structure provides adequate structural support for loads lifted using winch trolley


30


.




Loads such as the drill floor and the like may be lifted into place or repositioned at any time during operation of the rig obviating the need for an external crane or lift. Moreover, winch trolley


30


may be used to haul pipe sections into place for use during drilling operations further simplifying the drilling operation and reducing the need for support equipment.




From the foregoing detailed description, it will be evident that there are a number of changes, adaptations and modifications of the present invention which come within the province of those persons having ordinary skill in the art to which the aforementioned invention pertains. However, it is intended that all such variations not departing from the spirit of the invention be considered as within the scope thereof as limited solely by the appended claims.



Claims
  • 1. A mobile land rig, for the erection, transport, and disassembly of oil drilling equipment along the ground, said mobile land rig comprising:a mobile telescoping substructure box for supporting said mobile land rig; said mobile telescoping substructure box having at least one axle coupled thereto with each axle having at least one set of wheels for supporting said mobile telescoping substructure box in rolling relation to a ground surface; and a mobile drill mast attachable to said mobile telescoping substructure box for supporting said mobile land rig and said mobile drill mast; wherein said mobile telescoping substructure box further comprises telescoping means secured to said substructure box for selectively moving said mobile telescoping substructure box between telescoping extension and telescopic retraction, a stationary frame member and a telescoping frame member having a plurality of cables attached thereto between said telescoping frame member and said stationary frame member in a predetermined configuration for supporting said telescoping frame member when said telescoping frame member reaches a maximum telescopic extension.
  • 2. The mobile land rig of claim 1 including, a telescoping frame member having a plurality of cables attached thereto between said telescoping frame member and said stationary frame member in a predetermined configuration for supporting said telescoping frame member when said telescoping frame member reaches a maximum telescopic extension.
  • 3. The mobile land rig of claim 1, wherein each of said plurality of cables comprises a limit switch coupled between an end of said each of said plurality of cables and a frame member responsive to tension imposed thereon for providing a stop signal for stopping the telescopic excursion of said mobile telescoping substructure box.
  • 4. A mobile land rig, for the erection, transport, and disassembly of oil drilling equipment along the ground, said mobile land rig comprising:a mobile telescoping substructure box for supporting said mobile land rig; said mobile telescoping substructure box having at least one axle coupled thereto with each axle having at least one set of wheels for supporting said mobile telescoping substructure box in rolling relation to a ground surface; and a mobile drill mast attachable to said mobile telescoping substructure box for supporting said mobile land rig and said mobile drill mast; wherein said mobile telescoping substructure box further comprises a stop pin controlled by a stop pin activator responsive to a stop signal upon telescopic extension of the substructure box for supporting said telescoping frame member in maximum telescopic extension.
  • 5. The mobile land rig of claim 4, including a racking board secured to said mobile drill mast for supporting loads in lifting relation to said mobile land rig and wherein said board further comprises a winch for hoisting said loads.
  • 6. The mobile land rig of claim 5, wherein said winch further includes a trolley for positioning said winch at a predetermined point along the length of said racking board.
  • 7. The mobile land rig of claim 6, wherein said trolley comprises a rack gear coupled to said racking board and extending a predetermined amount along the length of said racking board and a pinion gear coupled to said winch and engaged with said rack gear.
  • 8. The mobile land rig of claim 5, wherein said trolley further comprises a drive means coupled to said pinion gear for turning said pinion gear and allowing said pinion gear to progressively engage said rack gear along the length thereof.
  • 9. A method for erecting, transporting, and disassembling a drilling rig on the ground, said method comprising:rolling said drill rig components into proximity with said drilling site on ground engaging wheels, said drill rig components including a mobile telescoping substructure box and a drill mast raising said substructure box relative to said ground engaging wheels, disengaging said wheels from said substructure box lowering said substructure box toward the ground, connecting said drill mast to said mobile telescoping substructure box, raising said drill mast to an upright position, and telescoping said mobile telescoping substructure box into an extended position.
  • 10. The method of claim 9, further including a step of: hoisting said drill rig components into place using hoisting means coupled to said mast.
  • 11. The method of claim 10, further including the steps of:monitoring said mobile telescoping substructure box rise to an extended position using cables; sensing a tension value on said cables; generating a stop signal indicative of a predetermined tension being reached in said cables and said substructure box being in a desired extended position.
  • 12. The method of claim 11, further including the steps of:stopping said mobile telescoping substructure box unit from being extended in response to said stop signal, and locking said mobile telescoping substructure box unit in an extended position in response to said stop signal.
  • 13. A method for erecting, transporting, and disassembling a drilling rig, said method comprising:transporting drill rig components to a drilling site using trailer means coupled to said drill rig components, positioning said drill rig components into proximity with said drilling site, said drill rig components including a mobile telescoping substructure box and a drill mast; connecting said drill mast to said mobile telescoping substructure box; raising said drill mast to an upright position; telescoping said mobile telescoping substructure box unit toward an extended position; monitoring a limit value of said mobile telescoping substructure box rise to an extended limit position, sensing the substructure box rise to said limit value, and generating a stop signal indicative of reaching said limit value and said substructure box being in a desired extended position.
  • 14. A substructure box for supporting a drill mast of a mobile land rig comprising:mobile means; a first support structure mountable on said mobile means, displaceable between a first position supported on said mobile means and a second position resting on the ground; means for selectively displacing said first support structure between said first and second positions thereof; a second support structure mounted on said first support structure, displaceable between retracted and extended positions and having means for detachably, pivotally connecting a mast thereon angularly displaceable between a lower, transportable position and an erect, operative position, supported on said second support structure, when connected thereto; and means for selectively displacing said second support structure between said retracted and extended positions.
  • 15. A substructure box according to claim 14 wherein said displacing means comprise fluid actuated cylinder assemblies.
  • 16. A substructure box according to claim 14 including means for guiding said support structure along a line of travel when displaced relative to each other.
  • 17. A substructure box according to claim 14 including means for releaseably locking said second support structure relative to said first structure when said second support structure is in said extended position.
  • 18. A substructure box according to claim 14 when said support structures are telescopically connected.
  • 19. A mobile land rig comprising:a first mobile means including a first support structure mountable on said mobile means, displaceable between a first position supported on said mobile means and a second position resting on the ground, means for selectively displacing said first support structure between said first and second positions thereof, a second support structure mounted on said first support structure, displaceable between retracted and extended positions and means for selectively displacing said second support structure between said retracted and extended positions; and a second mobile means positionable adjacent said first mobile means, having a drill mast mountable thereon including a base portion pivotally connectable to said second support structure of said first mobile means when said second mobile means is positioned adjacent said first mobile means, means for pivoting said drill mast into an upright position supported on said second support structure when said mast is pivotally connected to said second support structure and means for securing said mast on said second support structure when said mast is pivoted into said upright position.
  • 20. A mobile land rig according to claim 19 when said displacing means of said first mobile means comprises fluid actuated cylinder assemblies.
  • 21. A mobile land rig according to claim 19 wherein said substructure box includes means for guiding said second support structure relative to said first support structure along a line of travel when displaced relative to each other.
  • 22. A mobile land rig according to claim 19 wherein said substructure box includes means for releaseably locking said second support structure relative to a said first support structure when said second support structure is in said extended position.
  • 23. A mobile land rig according to claim 19 wherein said support structures of said substructure box are telescopically connected.
  • 24. A mobile land rig according to claim 19 wherein said second mobile means is detachably connectable to said first mobile means.
  • 25. A mobile land rig according to claim 19 wherein said base portion of said mast is provided with a pair of spaced leg sections, one of said leg sections is rigidly connected to a main body portion of said mast and has an end portion detachably, pivotally connectable to said second support structure of said substructure box, and the other of said leg sections is pivotally connected at one end thereof to said main body portion of said mast, allowing said other leg section to collapse when said mast is in a horizontal, transport position, and connectable to said second support structure of said substructure box when said mast is in said upright.
  • 26. A mobile land rig according to claim 19 including a third mobile means supporting a drawworks operatively connectable to said mast.
  • 27. A mobile land rig according to claim 26 wherein said third mobile means is detachably connectable to said first mobile means.
  • 28. A mobile land rig according to claim 19 including a pair of said first mobile means and wherein said mast is pivotally connectable to said second support structures of said pair of said first mobile means, for supporting said mast in an upright position supported on said second support structures, and including means for securing said mast to said second support structures when said mast is disposed in said upright position.
  • 29. A mobile land rig, for the erection, transport, and disassembly of oil drilling equipment along the ground, said mobile land rig comprising:a mobile telescoping substructure box for supporting said mobile land rig; said mobile telescoping substructure box having at least one axle coupled thereto with each axle having at least one set of wheels for supporting said mobile telescoping substructure box in rolling relation to a ground surface; and a mobile drill mast attachable to said mobile telescoping substructure box for supporting said mobile land rig and said mobile drill mast; wherein said mobile telescoping substructure box further comprises a ground engageable lifting means coupled thereto for selectively supporting said mobile telescoping substructure box unit in raised relation to said ground surface and for selectively lowering said mobile telescoping substructure box into contact with said ground surface.
  • 30. A mobile land rig, for the erection, transport, and disassembly of oil drilling equipment along the ground, said mobile land rig comprising:a mobile telescoping substructure box for supporting said mobile land rig; said mobile telescoping substructure box having at least one axle coupled thereto with each axle having at least one set of wheels for supporting said mobile telescoping substructure box in rolling relation to a ground surface; and a mobile drill mast attachable to said mobile telescoping substructure box for supporting said mobile land rig and said mobile drill mast; wherein said mobile telescoping substructure box further includes a support means for locking each axle and each set of wheels to said substructure box when said substructure box is in rolling relation to the ground and for releasing said locking when said substructure box is supported by the ground.
  • 31. The mobile land rig of claim 1, wherein said support means for locking includes a member journaled to each axle and removable means connected to said substructure box and said member.
US Referenced Citations (8)
Number Name Date Kind
3922825 Eddy et al. Dec 1975 A
3942593 Reeve, Jr. et al. Mar 1976 A
4138805 Patterson Feb 1979 A
4258796 Horning et al. Mar 1981 A
4269395 Newman et al. May 1981 A
4290495 Elliston Sep 1981 A
4368602 Manten Jan 1983 A
4899832 Bierscheid, Jr. Feb 1990 A