MOBILE MICROMECHANICAL ELEMENT WITH SHOCK CONTROLLED ROTATION

Information

  • Patent Application
  • 20080008051
  • Publication Number
    20080008051
  • Date Filed
    June 25, 2007
    17 years ago
  • Date Published
    January 10, 2008
    17 years ago
Abstract
The mobile element includes a central rigid zone (2) provided with arms (6) extending radially from the central zone (2) towards a peripheral zone including teeth (8). The arms (6) are flexible to allow a small tangential and/or radial movement of the teeth (8) in order to absorb shocks. The invention is characterized in that the arms (6) are curved and bend gradually towards an orientation tangential to the rotation of the mobile element, in that the thickness of the arms gradually decreases, and finally, in that the ends of the arms form the teeth.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

Other features and advantages of the present invention will appear from the following description of example embodiments of an escape wheel given by way of non-limiting illustration, with reference to the annexed drawings, in which:



FIG. 1 is a perspective diagram of a coaxial lever escapement of the prior art;



FIG. 2 is a top view of the escape wheel of FIG. 1;



FIG. 3 shows a first embodiment of an escape wheel according to the present invention;



FIG. 4 shows a second embodiment; and



FIGS. 5 and 6 are schematic diagrams of an escape wheel according to the present invention integrated in an escapement mechanism.





DETAILED DESCRIPTION OF THE INVENTION

The present invention will be more specifically illustrated by a coaxial lever escapement wherein the teeth of the escape wheel undergo the pallet-stone shocks.


This type of escapement is known from the prior art for example from EP Patent No. 018 796, an improvement to and the operation of which are also described in the work by G. Daniels entitled “La Montre: Principes et Methodes de Fabrication”, pages 249-252, editions Scriptar S. A., La Conversion, Lausanne, 1993. The improved version is illustrated in FIGS. 1 and 2.


Described briefly, this mechanism comprises a first escape wheel 1 and a second escape wheel 11, also called the impulse pinion, mounted on the same arbour 3. The two escape wheels are secured to each other in rotation and they possess the same number of teeth. The first escape wheel 1 has the shape shown in FIG. 2, i.e. the shape of a conventional Swiss lever escape wheel. In this improved version of the coaxial escapement, the impulse pinion 11 also acts as escape pinion 15 by meshing with an intermediate wheel 17, which has the advantage of reducing the height of the mechanism. The table roller 19 of the balance carries an impulse pin 21 and a direct impulse pallet stone 23 arranged for cooperating with the teeth 8 of the first escape wheel 1. The pallet stones 25, whose fork 27 cooperates with impulse pin 21, comprise an indirect impulse pallet 24 which cooperates with the teeth 13 of the second escape wheel 11 and two, respectively entry and exit, pallet stones 26, 28, which cooperate with the teeth 8 of the first escape wheel 1. The construction of this type of coaxial escapement demands restricted tolerances, such that this escapement is especially reserved for top of the range timepieces.


In normal operation, when the table roller 19 is being driven clockwise, as represented by the arrow in FIG. 5, locking occurs on entry pallet 26.


When the table roller 19 is being driven anti-clockwise, as represented by the arrow in FIG. 6, locking occurs on the exit pallet 28 and it can be seen that the direct impulse pallet 23 passes very close to one tooth 8 of the first escape wheel 1, which means that this escapement has to be constructed with very precise dimensions.


The present invention is innovative in that the teeth have certain radial and tangential flexibility so as to be able to absorb shocks.



FIG. 3 corresponds to the escape wheel 1 shown in FIGS. 5 and 6, for explaining the operation of a coaxial escapement, and shows a first embodiment.


As can be seen, arms 6 are curved and bent gradually towards a tangential orientation, in the direction of rotation of the mobile element. Arms 6 are relatively thin given the length thereof, which gives them flexibility. Moreover, wheel 1 does not have a felloe, teeth 8 being formed by the ends of arms 6. The absence of a felloe has the advantage of giving each arm 6 the possibility of bending independently of the other arms. As arms 6 are not simply orientated radially like the arms of the prior art, they have the possibility of bending both radially and tangentially. Moreover, the configuration of the arms which “wind” around the wheel, means the arms can be longer for a given wheel diameter.


It can also be seen that the ends 8 of the arms end in a flat portion. This flat portion is provided for cooperating with the pallet stones 23, 26, and 28 like the flank of the teeth of the escape wheel of the prior art shown in FIG. 2. The elasticity of arms 6 is provided for absorbing the shocks caused by collisions between teeth 8 and the pallet stones. Indeed, these shocks cause considerable stress and could break an arm made of brittle material.


According to the present invention, the curvature of arms 6 is progressive so as to distribute the stress caused by a shock over the entire length of the arms. Moreover, it can also be seen in FIG. 3 that the thickness of the arms decreases gradually towards the end thereof. Indeed, it will be understood that, in the configuration shown, the shear stress is greater at the start of the arms than at the end thereof. In such conditions, the gradual thinning of the arms reconciles the contradictory requirements of flexibility and strength.


In the example shown, escape wheel 1 comprises eight arms 6 and the same number of teeth 8. It is evident that the number of arms and teeth could be different than eight.



FIG. 4 shows a second embodiment. It differs from the preceding embodiment in that arms 6 “wind” around the wheel in the opposite direction to the direction of rotation of the wheel. It can be seen that, in this embodiment, each tooth is formed by a portion 8 of the end of an arm, which is bent in the direction of rotation of the wheel.


In FIGS. 3 and 4 it can also be seen that the central aperture 4 comprises an arrangement 5 allowing certain elasticity to be obtained. This arrangement 5 is particularly advantageous when the material used to make the escapement is a material that has some flexibility but is brittle, such as glass, quartz or silicon.


It can also be seen that arms 6 comprise bulges 7. These bulges are used for angularly positioning the impulse pinion 11 relative to escape wheel 1 when the escapement mechanism is assembled. Once the wheel and pinion are correctly orientated relative to each other, these two parts are secured to each other by bonding or any other suitable method. It will be observed that the escape pinion 11 could also have the features of one of the configurations that have just been described for escape wheel 1.


A mobile element of this type according to the invention can be made in accordance with techniques known in the field. If the material used is a metal or alloy, the mobile element could be cut in a plate by stamping, wire spark machining, etc. . . . or be shaped by the LIGA technique. If the material used is a fragile material, such as glass, quartz and silicon, the mobile element could be shaped by etching.

Claims
  • 1. A mobile micromechanical element whose rotation is controlled by shocks, including a central rigid zone and arms extending radially from the central zone towards a peripheral zone including teeth, the arms being flexible to allow a small tangential movement or radial movement, or tangential and radial movement, of the teeth in order to absorb shocks liable to damage said teeth, wherein the arms are curved and bend gradually towards an orientation tangential to the rotation of the mobile element, wherein the thickness of the arms gradually decreases, and wherein the teeth are formed by the ends of the arms.
  • 2. The mobile element according to claim 1, wherein the arms bend in the opposite direction to the direction of rotation of said mobile element, and wherein at the end of the arms, the teeth are bent in the direction of rotation of said mobile element.
  • 3. The mobile element according to claim 1, wherein the arms bend in the direction of rotation of said mobile element.
  • 4. The mobile element according to claim 1, wherein the central rigid zone is provided with an aperture for the fitting thereof to an arbour.
  • 5. The mobile element according to claim 4, wherein the central aperture includes an arrangement giving said aperture elasticity for fitting the mobile element onto the arbour.
  • 6. The mobile element according to claim 1, wherein said mobile element is made of metal or an alloy and machined in a plate or shaped by LIGA technology.
  • 7. The mobile element according to claim 1, wherein said mobile element is made of a fragile material such as glass, quartz or silicon and is shaped by etching.
  • 8. The mobile element according to claim 1, wherein the mobile element forms the escape wheel of the regulating system of a mechanical timepiece movement, which may include an impulse pinion mounted coaxially on the escape wheel.
  • 9. The mobile element according to claim 8, wherein the arms include bulges for indexing the angular position of the impulse pinion.
  • 10. A timepiece including a case closed by a crystal beneath which there is arranged a dial including at least one analogue display, said dial delimiting a housing, for a mechanical movement, wherein the regulating system of said movement includes an escape wheel according to claim 8.
  • 11. The timepiece including a case closed by a crystal beneath which there is arranged a dial including at least one analogue display, said dial delimiting a housing, for a mechanical movement, wherein the regulating system of said movement includes an escape wheel according to claim 9.
  • 12. The mobile element according to claim 2, wherein the mobile element forms the escape wheel of the regulating system of a mechanical timepiece movement, which may include an impulse pinion mounted coaxially on the escape wheel.
  • 13. The mobile element according to claim 3, wherein the mobile element forms the escape wheel of the regulating system of a mechanical timepiece movement, which may include an impulse pinion mounted coaxially on the escape wheel.
  • 14. The mobile element according to claim 4, wherein the mobile element forms the escape wheel of the regulating system of a mechanical timepiece movement, which may include an impulse pinion mounted coaxially on the escape wheel.
  • 15. The mobile element according to claim 5, wherein the mobile element forms the escape wheel of the regulating system of a mechanical timepiece movement, which may include an impulse pinion mounted coaxially on the escape wheel.
  • 16. The mobile element according to claim 6, wherein the mobile element forms the escape wheel of the regulating system of a mechanical timepiece movement, which may include an impulse pinion mounted coaxially on the escape wheel.
  • 17. The mobile element according to claim 7, wherein the mobile element forms the escape wheel of the regulating system of a mechanical timepiece movement, which may include an impulse pinion mounted coaxially on the escape wheel.
Priority Claims (1)
Number Date Country Kind
06012946.7 Jun 2006 EP regional