The present disclosure relates to robotic assembly, and more specifically to mobile parts tables and techniques for robotic assembly using mobile parts tables.
Generally, vehicles, such as automobiles, trucks, aircrafts, and the like are assembled using a large number of individual structural components. These structural components are joined together to form the body, frame, interior and exterior surfaces, etc., of the vehicles. The various structural components of the vehicles provide form and support to the vehicles, and respond appropriately to different types of forces that are generated or that result from various actions of the vehicles. These structural components are of varying sizes and geometries and are joined with another part to assemble the vehicle or a part of the vehicle.
To assemble the vehicles, modern vehicle factories rely heavily on robotic assembly of structural components and may use fixtures to hold the parts used for the assembly of the vehicle. Existing fixtures used in automobile factories are configured to engage with specific parts. Therefore, each part of the vehicle that will be robotically assembled uses a unique fixture that is specific to that part, and given the large number of individual parts in a vehicle that are robotically assembled, an equally large number of fixtures are required. In fact, a modern automobile chassis can consist of thousands of assembled parts, each part requiring a specially-designed fixture for assembly. However, fixtures can be extremely expensive. In fact, it is not unusual for a single fixture for an automobile part to cost $300,000 to $500,000. The cost of the fixtures used in an automobile factory is a large portion of the cost of the entire factory. As a result, building a modern automobile factory requires a massive capital investment, making it necessary to build and sell hundreds of thousands of cars just to recapture the initial investment and break even, let alone make a profit.
In addition to their enormous cost, since fixtures can only be used for the specific part for which they are designed, if a part is changed in some way (e.g., updated design of the car's model), an entirely new fixture must be designed and built. This adds significant cost and time to the process of changing or updating car models. As a result, automobiles models are updated infrequently, for example, every five or six years or more. Furthermore, existing fixtures holding or engaged with the parts used in assembly of the vehicle are fixed to particular locations, such as near assembly stations, of the assembly factory. Therefore, once all of the parts on a fixture are used, then the parts cannot be loaded back on to that fixture until the assembly of that part of the vehicle is completed. As a result, significant amount of time is lost before the fixture is reloaded with parts for another component of the vehicle to be assembled.
Additionally, since different fixtures are fixed to different locations at the assembly factory, any changes to the assembly process of a vehicle can result in removal of the fixtures from their corresponding locations in the assembly factory and reinstalling those fixtures at new locations in the assembly factory. For example, if it is determined that a change in the sequence of the assembly process can reduce the assembly time of a vehicle or even structural component of a vehicle, then to implement the new assembly process, one or more fixtures installed in the factory may have to be removed and reinstalled in a new location of the assembly factory. Such removal and/or reinstallation of fixtures in the factory can result in significant financial costs. As a result, implementation of the improved assembly process will be delayed and the assembly factories will be continue to operate inefficiently.
In contrast to conventional vehicle assembly operations, the present disclosure envisions eliminating use of fixtures to hold and/or stage parts to be used in assembly of a vehicle and/or a part of a vehicle. As described above, the fixtures used in conventional vehicle assembly operations are designed to hold only a unique part used in the assembly of the vehicle, and each fixture is fixed to particular location in the assembly factory.
In the present disclosure, techniques and approaches are described for parts tables that are configured to engage with multiple parts used in assembly of a vehicle to allow for changes in vehicle design to be implemented without requiring new parts tables or holding structures to hold any new parts. Furthermore, the techniques and approaches described in the present disclosure allow for the parts tables to engage with autonomous guided vehicles (AGVs) to enable the parts tables to be moved from one location of the assembly factory to another location of the assembly factory to allow for the parts tables to be reloaded once empty and without waiting, and to further allow one or more parts tables to be moved to different locations of the factory to implement any changes in the assembly process of the vehicle. Such techniques and approaches may be enabled through various apparatuses, systems, methods, and/or computer-readable media described herein.
A parts table in accordance with an aspect of the present disclosure may comprise a structure including a first surface, a base including a platform affixed to the structure, and kinematic couplers secured to the base and configured to dock with complementary kinematic couplers of an alignment structure, the alignment structure being secured to a floor of an assembly cell, the first surface including a parts interface configured to hold a plurality of parts for assembly in the assembly cell, such that each part of the plurality of parts can be picked up by a robot of the assembly cell when the parts table is docked with the alignment structure, and the parts table is movable to a new location when the kinematic couplers are undocked from the alignment structure.
Such a parts table further optionally includes a frame coupled to the structure and to the base, the frame configured to stabilize the structure, the base including spaced-apart elongated members to which the kinematic couplers are secured, the base including an interior region configured to accommodate entry of an autonomous guided vehicle (AGV) inside the interior region, at least one edge of the platform including a latch for engaging with the AGV when the AGV is inside the interior region of the base, a lower surface of the platform including a part retention device for mating with a complementary retention device on the AGV when the upper surface of the AGV is raised upward toward the platform, and a utility coupler interface connected to the base and configured to engage with a utility system interface connected to the alignment structure, to receive any one or more of power, data communications, or pneumatics for use at the parts table.
Such a parts table further optionally includes the AGV, when engaged with the table, using a detector to locate at least one docking target extending upward from a base plate of the alignment structure, the base plate connected to a floor surface, the AGV entering the alignment structure between two prong-like members extending laterally outward from the base plate of the alignment structure, such that the two prong-like members form a gap for the AGV to enter, the AGV being further movably guided by a plurality of guide rollers coupled along an inner edge of each prong-like member to position and engage the kinematic couplers with the complementary kinematic couplers.
Such a parts table further optionally includes a plurality of universal part interfaces connected to the parts interface, each of the universal part interfaces being configured to hold one of a plurality of differently-shaped parts, each of the universal part interfaces including a lever configured to tilt on a first axis to a second position at which the part being held is at a different orientation, the parts interface comprising a mating feature configured to engage with a complementary mating feature of each of the plurality of different parts, the mating feature including at least a pin or a ball bearing, and the parts interface comprising a compliance interface.
A parts table in accordance with an aspect of the present disclosure may comprise a structure, the structure configured with a plurality of sides for holding parts, a plurality of universal part interfaces connected with each side of the plurality of sides of the structure, each of the universal part interfaces being configured to hold a plurality of differently-shaped parts for assembly in an assembly cell, and a base connected with the structure, the base configured to rotate the structure to a first position at which a first side of the plurality of sides is accessible to a robot of the assembly cell and to rotate the structure to a second position at which a second side of the plurality of sides is accessible to the robot.
Such a parts table further optionally includes the plurality of sides of the first structure comprising three sides, the three sides facing different directions, each of the universal part interfaces being connected with the respective side of the plurality of sides via a support configured to rotate the universal part interface to a second position at which the first part is at a first orientation, each of the universal part interfaces being connected to a lever configured to tilt on a first axis to a third position at which the first part is at a second orientation, each of the universal part interfaces comprising one or more mating features configured to engage with one or more complementary mating features of each of the plurality of different parts, the one or more mating features including at least a pin or a ball bearing, a table post connected to the base, the table post being connected to a kinematic coupler, and the kinematic coupler being configured to couple with a fixture on a floor proximate to the assembly cell via kinematic coupling, and one or more latches connected to a frame, the frame connected to the base, the one or more latches configured to engage with an autonomous guided vehicle (AGV) in response to the AGV contacting the parts table.
Such a parts table further optionally includes a structure configured with a plurality of sides, and a plurality of posts located on the structure and including a first post located on a first side of the plurality of sides of the structure, and a second post located on a second side of the plurality of sides of the first structure, the first post comprising a first universal part interface, the second post comprising a second universal part interface, and each of the first and second universal part interfaces being configured to engage with multiple types of parts and being further configured to provide access to at least one of the multiple types of parts for a set of robots when positioned toward an assembly cell that includes the set of robots.
Such a parts table further optionally includes a base connected with the structure, the base being configured to rotate the structure to a first position at which the first universal part interface is positioned toward the assembly cell at a first angle to provide access to one of the multiple types of parts for at least one robot of the set of robots, the second universal part interface being positioned toward the assembly cell at a second angle to provide access to another of the multiple types of parts for at least one other robot of the set of robots, the first post comprising a first support, and a first lever, the first lever connected with the first support, the first lever connected with the first universal part interface, the first support configured to rotate the first universal part interface to a first position at which the first part is at a first orientation, the first lever configured to tilt the first universal part interface to a second position at which the first part is at a second orientation.
Such a parts table further optionally includes the second post comprising a second support, and a second lever, the second lever connected with the second support, the second lever connected with the second universal part interface, the second support configured to rotate the second universal part interface to a third position at which the second part is at a third orientation, the second lever configured to tilt the second universal part interface to a fourth position at which the second part is at a fourth orientation, and wherein at least the third orientation is different from the first orientation or the fourth orientation is different from a second orientation, the first universal part interface and the second universal part interface comprising mating features configured to engage with complementary mating features of the first part and the second part, one or more table posts being connected to a frame, the frame connected to a base, the base connected to the first structure, each of the one or more table posts being connected to a kinematic coupler, and the kinematic coupler is configured to couple with a fixture via kinematic coupling to secure the parts table proximate to the assembly cell, one or more latches being connected to the frame, the one or more latches configured to engage with an autonomous guided vehicle (AGV) in response to upward pressure applied by the AGV, the first structure being a triangular structure, each side of the plurality of sides being a vertical surface, each side of the plurality of sides intersecting at least two other plurality of sides at respective angles of between 80 and 110 degrees on top of a base connected to the first structure.
A parts table in accordance with an aspect of the present disclosure may comprise a plurality of vertical surfaces rotatable about a vertical axis, each vertical surface being adjacent to two other vertical surfaces at respective angles of at least 45 degrees, a plurality of universal part interfaces connected to the plurality of vertical surfaces, each of the plurality of universal part interfaces having a respective set of mating features configured to accept a corresponding set of features of each of a set of parts, and a base connected with the plurality of vertical surfaces, the base configured to rotate the plurality of vertical surfaces about the vertical axis to each of a plurality of positions at which a respective subset of the set of parts is accessible at one of the plurality of universal part interfaces by at least one robot associated with vehicular assembly using the set of parts.
Such a parts table further optionally includes at least one of the plurality of universal part interfaces being connected to a lever, the lever configured to tilt the corresponding mated part on a first axis.
It will be understood that other aspects of parts table for engaging with multiple parts and configured to be moved to different locations of an assembly factory will become readily apparent to those skilled in the art from the following detailed description, wherein it is shown and described in several embodiments by way of illustration. As will be realized by those skilled in the art, the disclosed subject matter is capable of other and different embodiments and its several details are capable of modification in various other respects, all without departing from the present disclosure. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
The detailed description set forth below in connection with the appended drawings is intended to provide a description of various example embodiments and is not intended to represent the only embodiments in which the present disclosure may be practiced. The terms “exemplary,” “illustrative,” and the like used throughout the present disclosure mean “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments presented in the present disclosure. The detailed description includes specific details for the purpose of providing a thorough and complete disclosure that fully conveys the scope of the present disclosure to those skilled in the art. However, the present disclosure may be practiced without these specific details. In some instances, well-known structures and components may be shown in block diagram form, or omitted entirely, in order to avoid obscuring the various concepts presented throughout the present disclosure. In addition, the figures may not be drawn to scale and instead may be drawn in a way that attempts to most effectively highlight various features relevant to the subject matter described. In addition, it should be understood that some elements that are described in the singular can also be implemented as more than one element, and some elements described in the plural can also be implemented as a single element. For example, description of “a processor,” “a memory,” etc., should be understood to include implementations that have multiple processors, memories, etc., performing the task(s) described. Likewise, description of “multiple processors,” “multiple memories,” etc., should be understood to include implementations that have a single processor, a single memory, etc.
In this regard,
The present disclosure describes various techniques and approaches for parts tables that are configured to engage with multiple parts used in assembly of a vehicle and allow for the parts tables to engage with autonomous guided vehicles (AGVs) to enable the parts tables to be moved from one location of the assembly factory to another location of the assembly factory.
The various parts of the fixture 100 such as the positioning brackets 105, 107, 109, mating parts surfaces 111, 115, locating pin 117, toggle clamp 119, tool support structure 121, and the hoist ring 123 are designed to hold only the sheet metal panel 102. Furthermore, such various parts of the fixture 100 are positioned in their respective locations on the fixture 100 to hold the sheet metal panel 102 in a predetermined orientation. The predetermined orientation of the fixture 100 is selected based on some assumptions and/or estimations of how far a robotic arm would be able to travel to engage with the sheet metal panel 102 on the fixture 100. Such assumptions and/or estimations are prone to errors. For example, if the robot is positioned in a different location than an expected location when the predetermined orientation of the fixture 100 is selected, then the robotic arm may not be able to fully engage with the sheet metal panel 102 held by the fixture 100. Similarly, if the sheet metal panel 102 moves in an unintended manner and/or unintentionally deflects, then the robotic arm may not be able to sufficiently engage with the sheet metal panel 102. These errors can accumulate over the assembly process, therefore, relatively large design tolerances and redundancies may be desired when designing the fixtures, which can increase the complexity of designing such fixtures and increase the cost to build such fixtures. particularly when multiple other parts are joined with panel 102, because precision may be difficult to achieve.
Conventional fixture 170 is configured to engage with and retain a panel 172 (e.g., a door panel, a floor panel, and the like). For example, the fixture includes multiple fixture blocks 173 to secure panel 172 to the fixture to prevent unintended movement and/or deflection of the panel during various assembly operations. Fixture 170 also includes a locating arm 175, locating pins 177, a positioning bracket 179, and a production part mating jig 181 to locate panel 172 during a mounting operation. Fixture 170 also includes a base plate 183.
Fixtures 130, 150, 170 of
Turning now to
First, with reference to
An assembly cell 205 may be configured at the location of assembly system 200. Assembly cell 205 may be a vertical assembly cell. Within assembly cell 205, assembly system 200 may include one or more parts tables 221, 222, 226, and sets of robots 207, 209, 211, 213, 215, 217. Each of the parts tables 221, 222, 226 may be configured to engage with multiple different types of parts and each parts table may be configured to engage with an AGV (e.g., AGV 343 as shown in
Each of the parts tables 221, 222, 226 may include a holding structure (e.g., holding structure 301 as shown in
Each of the parts tables 221, 222, 226 may include a holding structure (e.g., holding structure 301 as shown in
Each of the parts tables 221, 222, 226 may include multiple table posts (e.g., table posts 311 as shown in
In some implementations, the parts tables 221, 222, 226 may be coupled with a floor fixture on the factory floor by moving the parts table laterally near the floor fixtures until the kinematically couplers on the parts table couple with the floor fixtures. While these parts tables 221, 222, 226 can be kinematically coupled to a location on the factory floor, they are not permanently fixed to those locations. The parts tables 221, 222, 226 may be moved by decoupling the parts tables from the floor fixtures of the factory. In some implementations, the parts tables 221, 222, 226 may be decoupled from the floor fixtures by moving the parts tables laterally. Additional details on kinematic couplers are described below with reference to
In some implementations, each of the parts tables 221, 222, and 226 may be configured with controller, other communication units, interfaces, and/or protocols. The parts tables 221, 222, and 226 may be configured to communicate with one or more computing systems including, but not limited to, AGVs, metrology system 231, computing system 229, and the like.
The parts tables 221, 222, 226 may be configured to engage and securely connect with the AGVs in response to an upward pressure applied by the AGVs. For example, the parts table 221, 222, 226 may be configured to engage and securely connect with the AGVs in response to the AGVs applying upward pressure on the parts table from underneath the parts table. In some implementations, the AGVs may be configured to roll underneath the parts tables and apply upward pressure on the parts tables. In some implementations, the parts tables 221, 222, 226 may include one or more latch mechanisms (e.g., latch 307 as shown in
Once the AGV is successfully engaged with the parts table, the AGV may decouple the parts table from the floor fixtures and autonomously move the parts table to a desired location. For example, the AGV may autonomously move the parts table into the assembly cell 205 once the parts table is loaded with parts. Similarly, the AGV may autonomously move the parts table out of the assembly cell 205 and to a part loading stage and/or station. Therefore, such engagement with AGVs allows the parts tables 221, 222, 226, as described in the present disclosure, to become mobile when necessary and moved around an assembly factory. Such ease of mobility by each of the parts tables 221, 222, 226 along with being configured to engage with numerous types of the parts allow for a new assembly process, changes to an assembly process, a new design of the vehicle, changes to a design of a vehicle, and the like, to be implemented without significant financial costs and while significantly reducing the amount time used to implement such changes.
In some implementations, assembly system 200 may also include a computing system 229 to issue commands to the various controllers of the parts tables and robots in the assembly cell 205. In this example, computing system 229 is communicatively connected to the parts tables and robots of assembly cell 205 through wireless communication. Assembly system 200 may also include a metrology system 231 that can accurately measure the positions of the robotic arms of the robots and/or the parts held by the robots. The computing system 229 and the metrology system 231 may be in communication with each other. In some implementations, the metrology system 231 may be configured to provide measurements of the robotic arm movements and positions to the computing system 229, and based on the robotic arm movement and position data, the computing system 229 may be configured to determine whether any adjustments can be made to the location of a parts table or to a component (e.g., holding structure) of the parts table. For example, based on the distance a robotic arm is traveling to engage with a part on a parts table, the computing system may determine whether the traveled distance breaches a threshold, and if so, then determine whether a parts table can be moved closer to that robotic arm or if a holding structure of a parts table can be rotated to cause the parts to be a position relative to the robotic arm that the travel distance of the robotic arm is reduced and/or within the threshold.
In some implementations, the computing system 229 can be configured to receive data indicating changes with reference to assembly of a vehicle (e.g., vehicle assembly process changes, vehicle design changes, and the like), and, based on the received data, the computing system 229 may be configured to cause the AGVs, parts tables, robots, and/or other computing systems in the assembly factory to implement the indicated changes. For example, the computing system 229 may receive data (e.g., computer-aided design (CAD) data) indicating a new assembly process, and in response, the computing system 229 may transmit messages to the parts tables indicating the changes to the new assembly process, and/or instructions to the parts tables and/or the AGVs to cause the parts tables to be rearranged to implement the changes to the assembly process. Similarly, the computing system 229 may receive data indicating a new vehicle design, and in response, the computing system 229 may transmit messages to the parts tables indicating the changes to the new assembly process, and/or instructions to the parts tables and/or the AGVs to cause the parts tables to be moved to parts stations to be loaded with new parts compatible with new vehicle design as desired.
Turning now to
Parts table 300 includes a holding structure 301, a rotatable base 303 with a platform 304, a frame 313, a compressor 305, one or more latches 307, one or more table posts 311a, 311b, 311c, 311d, collectively referred to as table posts 311, one or more kinematic couplers 309a, 309b, 309c, 309d, collectively referred to as kinematic couplers 309. The holding structure 301 can be a multi-sided holding structure. Each side of the holding structure 301 may be a vertical surface. The sides/surfaces of the holding structure may face different directions. The sides/surfaces of the holding structure may be adjacent and/or intersect with other sides at an angle. In some implementations, a side of the holding structure may be adjacent to another side at an angle less than 90 degrees (e.g., 45 degrees). In some implementations, a side/surface of the holding structure may mate and/or intersect with another side of the holding structure at an angle between 70 and 120 degrees, between 80 and 110 degrees, or other ranges of angles as desired. In some implementations, the holding structure 301 can be a three-sided structure. Each side of the holding structure 301 may have multiple surfaces as desired. In some implementations, the holding structure 301 can be triangular, box-like, or other shapes as desired. Holding structure is shown as being in the shape of a triangle in
The holding structure 301 can be connected to a rotatable base 303 on platform 304 as shown in
In some implementations, a controller of the parts table 300 may cause the rotation of the rotatable base 303. In some implementations, the parts table 300 may receive an instruction and/or a message from a computing device (e.g., computing system 229, metrology system 231, a robot, an AGV (e.g., AGV 343 as shown in
Any side of the holding structure 301 may be configured to engage with different parts used in an assembly. For example, a single side of the holding structure 301 may be configured to engage with parts used in the assembly of different portions of the vehicle. Similarly, each side of the holding structure 301 may be configured to engage with different parts used in an assembly. Any side of the holding structure 301 may be connected to one or more universal part interfaces configured to engage with any part and/or a large number of different parts that are used in an assembly of a vehicle. A universal or common part interface may be connected to a side of the holding structure 301 via a post attached to that side of the holding structure 301. The holding structure 301 may be stiff, e.g., have a frame to stabilize the holding structure 301, or may be flexible to allow for handling of delicate parts, as desired.
Parts table 300 may also have a utility coupler 350 that allows for coupling with a utility system interface to provide power, data communications, pneumatics, and/or other external inputs to rotatable base 303, compressor 305, AGVs coupled to parts table 300, or other portions of parts table 300. A utility system interface may also be coupled to posts 311, alignment structures such as posts 321, or other connections to parts table 300 as desired.
An example of a universal part interface is shown in
Each post 321 may include a support 323, a bracket 325, a lever 327, a universal part interface 329, as shown in
The bracket 325 may be connected with the lever 327 as shown in
The lever 327 may be connected to the universal part interface 329 as shown in
In some implementations, through the rotation of the rotatable base 303, a first universal part interface 329 on one side of the holding structure 301 may be positioned toward the assembly cell (e.g., assembly cell 205) at a first angle, to provide access to at least one robot of the set of robots in the assembly cell, a part with which the first universal part interface 329 is engaged. A second universal part interface 329 on another side of the holding structure 301 may be positioned at a second angle, to provide access to at least one other robot in the assembly cell, a part with which the second universal part interface 329 is engaged. In some implementations, the first and second angles may be different. In some implementations, the respective parts with which the first and the second universal part interfaces 329 are engaged may be different. In some implementations, the respective parts with which the first and the second universal part interfaces 329 are engaged may be same.
The post 321 may be configured to include one or more compliance fittings (not shown separately), which may be referred to as a compliance interface herein. In some implementations, the one or more compliance fittings/compliance interfaces may be positioned adjacent to the universal part interface 329. In some implementations, the one or more compliance fittings may be included within the universal part interface 329. In some implementations, one or more of the compliance fittings may include two plates that are connected with each other via a spring assembly, and with an air gap between the two plates. In such implementations, when compressed, the compliance fittings are configured to allow six degrees of freedom of movement of the part engaged by the universal part interface 329.
In some implementations, the spring of the one or more compliance fittings may be a non-linear spring. The spring rate of the spring of the one or more compliance fittings on post 321 may be selected such that the spring can compress more when a heavier part is loaded and less when a lighter part is loaded. In some implementations, a compliance fitting may be configured from any compressible material and/or a combination of compressible materials. The one or more compliance fittings may be configured to be compliant enough to support parts of various different weights, sizes, and/or geometries. For example, the one or more compliance fittings may be compliant enough to support a lightweight part with a first set of dimensions and support a heavy part with a different set of dimensions.
In some implementations, the amount of compliance of the compliance fittings may be predetermined and passive. In some implementations, the amount of compliance of the compliance fittings may be configured to be actively controlled. In some implementations, the compliance fittings may be actively controlled using pneumatics, and the compliance fittings may be connected to a source of pressurized air, such as the compressor 305 shown in
For example, if a heavier or a larger part is loaded on to the post 321 and it is desired to reduce the movement of such part while loaded on to the parts table 300, then the amount of compliance of the compliance fittings of the post 321 can be reduced by injecting air to increase the stiffness of the post 321. In some implementations, a controller of the parts table 300 and/or another computing device in communication with the parts table 300 may control the amount of compliance of the compliance fittings by causing air to be injected into the compliance fittings to increase the stiffness of the post 321 or by causing air to be released from the compliance fittings to reduce the stiffness of the post 321. The controller of the parts table 300 and/or another computing device may be configured to control the amount of compliance of the compliance fittings of the parts table 300 based on size, weight, dimensions, and/or other geometries of the part. The controller of the parts table 300 and/or another computing device may determine and/or receive data related to size, weight, dimensions, and/or other geometries of a part based on data from a CAD file and/or other configuration data related to the assembly of that vehicle. For example, if a first part of a first set of dimensions and weight is loaded on a first post 321, and a second part of different set of dimensions and weight is loaded on a second post 321, then the controller of the parts table 300 and/or another computing device may set the amount of compliance of the first post 321 to be different from the amount of compliance of the second post 321. Therefore, the compliance of the compliance fittings of each post 321 of the parts table 300 can be controlled independently and set to a different compliance.
Such compliance fittings may provide an interface for a given part, and may allow a part to be engaged by the post 321 without holding the part in a rigid fixed position. Furthermore, the compliance fittings described herein allow a robot to engage with the part being held by the post 321 without applying excessive force on the part. Therefore, such compliance fittings can reduce damages to a part. Additionally, since such compliance fittings allow for the part to be securely engaged by the post 321 without holding the part in a rigid fixed position, they increase the probability that a robot successfully engages with the part. Thus, they allow for error tolerances in a robotic assembly system and/or cell (e.g., assembly system 200, assembly cell 205).
Returning to
A detailed view of the latch 307 is shown in
AGV 343 may engage with parts table 300 through use of one or more detectors to locate at least one docking target of parts table 300, e.g., latch 307, clamp 341, etc., such that AGV 343 can engage with and/or enter into parts table 300. AGV 343 may enter into an alignment structure portion of parts table 300, which may be defined by one or more parts of parts table 300, e.g., latches 307, clamps 341, posts 311, kinematic couplers 309, floor fixtures 315, or other features on parts table 300 or in assembly cell 205. Latch 307 and/or clamp 341 may extend in any direction, e.g., upward from a base plate of an alignment structure (posts 311, etc.) of parts table 300, downward, laterally, etc. Further, AGV 343 may be guided in moving into contact with parts table 300 in various ways, e.g., through guide rollers coupled along latch 307, slots in AGV 43 having tapers, etc., to more precisely engage with parts table 300. Many possible guiding connectors may be used without departing from the scope of the present disclosure. Guide rollers may be coupled along any edge of latch 307, clamp 341, or other parts of parts table 300 or assembly cell 205, e.g., inner edges, outer edges, multiple edges, etc., without departing from the scope of the present disclosure.
AGV 343 may interact with parts table 300 as parts are delivered and/or removed from assembly cell 205. Parts table 300 may accommodate entry of AGV 343 underneath parts table 300, inside an interior region of parts table 300, i.e., between posts 311, or may be coupled to latch 307 while a portion of AGV 343 remains external or alongside parts table 300. Many possible interactions, contacting points, and couplings between AGV 343 and parts table 300 are possible within the scope of the present disclosure. AGV 353 may be raised toward and/or lowered away from parts table 300 and/or one or more parts of parts table 300, e.g., platform 304.
As described above, unlocking of the latch 307 from the AGV 343 may be actively controlled. For example, a controller of the parts table 300 and/or another computing device in communication with parts table 300 may be configured to control the unlocking of the latch 307 from the AGV 343. In some implementations, the controller of the parts table 300 and/or another computing device in communication with the parts table 300 may be based on the location of the parts table 300. For example, the controller of the parts table 300 and/or another computing device in communication with the parts table 300 may be configured to cause the latch 307 to unlock from the AGV 343 when the parts table 300 is in an assembly cell, at a parts loading area, and the like. In some implementations, locations where the latch 307 can be caused to be unlocked from the AGV 343 may be based on CAD data related to the assembly of the vehicle, the assembly system, assembly factory, and the like. In some implementations, CAD data related to the assembly of the vehicle, the assembly system, assembly factory may update a previously determined set of locations where the latch 307 can be caused to be unlocked by adding and/or removing one or more locations of the assembly factory to the set. Latch 307 may be prong shaped, conical, trapezoidal, or other geometrical shape, and may extend laterally outward, downward, or in other directions, to enable AGV 343 to repeatably and reliably mate with latch 307 and/or parts table 300.
Returning back to
The kinematic couplers 309 may repeatedly couple and decouple, or dock and undock, from the floor features 315. A more detailed view of the kinematic couplers 309 coupled with floor fixtures 315 is shown in
With respect to
The system 400 may include various types of machine-readable media and interfaces. As illustrated, the system 400 includes at least one interconnect 420 (e.g., at least one bus), a permanent storage device 422, random-access memory (RAM) 424, at least one controller interface(s) 426, read-only memory (ROM) 428, at least one processor(s) 430, and a network component 432.
The interconnect 420 may communicatively connect components and/or devices that are collocated with the system 400, such as internal components and/or internal devices within a housing of the system 400. For example, the interconnect 420 may communicatively connect the processor(s) 430 with the permanent storage device 422, RAM 424, and/or ROM 428. The processor(s) 430 may be configured to access and load computer-executable instructions from at least one of the permanent storage device 422, RAM 424, and/or ROM 428.
The permanent storage device 422 may be non-volatile memory that stores instructions and data, independent of the power state (e.g., on or off) of the system 400. For example, the permanent storage device 422 may be a hard disk, flash drive, or another read/write memory device.
ROM 428 may store static instructions enabling basic functionality of the system 400, as well as the components therein. For example, ROM 428 may store instructions for the processor(s) 430 to execute a set of processes associated with a robot of at least a portion of a vehicle, for example, as described with respect to one or more of the robots, above. Examples of ROM 428 may include erasable programmable ROM (EPROM) or electrically EPROM (EEPROM), compact disc ROM (CD-ROM) or other optical disk storage, magnetic disk storage or other magnetic storage devices, and/or another computer-accessible and computer-readable medium that may store program code as instructions and/or data structures.
RAM 424 may include volatile read/write memory. RAM 424 may store computer-executable instructions associated with runtime operation(s) by the processor(s) 430. In addition, RAM 424 may store real-time data captured during assembly of at least a portion of a vehicle, for example, as described with respect to one or more of
The processor(s) 430 may be implemented with one or more general-purpose and/or special-purpose processors. Examples of general-purpose and/or special-purpose processors may include microprocessors, microcontrollers, DSP processors, and/or any other suitable circuitry configured to execute instructions loaded from at least one of the permanent storage device 422, RAM 424, and/or ROM 428. Alternatively or additionally, the processor(s) 430 may be implemented as dedicated hardware, such as at least one field programmable gate array (FPGA), at least one programmable logic device (PLD), at least one controller, at least one state machine, a set of logic gates, at least one discrete hardware component, or any other suitable circuitry and/or combination thereof.
The interconnect 420 may further communicatively connect the system 400 with one or more controller interface(s) 426. The controller interface(s) 426 may communicatively connect the system 400 with various circuitry associated with one or more parts table, AGV, robots, and/or other computing devices, for example, during assembly of at least a portion of a vehicle. Instructions executed by the processor(s) 430 may cause instructions to be communicated with a parts table through the controller interface(s) 426, which may cause movement and/or other actions of the part table in association with assembly of at least a portion of a vehicle. For example, instructions executed by the processor(s) 430 may cause signals to be sent through the controller interface(s) 426 to circuitry and/or other machinery of a parts table in order to determine which parts on the universal part interfaces of the parts table is being accessed by robots in association with assembly of at least a portion of a vehicle, to determine whether one or more sides of the parts table are empty, to determine a next side of the parts table to be positioned toward the assembly cell, transmit instructions causing the parts table to be rotated to a position at which the determined next side is positioned toward the assembly cell. Similarly, the instructions executed by the processor(s) 430 may cause signals to be sent through the controller interface(s) 426 to circuitry and/or other machinery of a parts table in order to determine whether a parts table is empty.
Instructions executed by the processor(s) 430 may cause instructions to be communicated with an AGV through the controller interface(s) 426, which may cause movement and/or other actions of the AGV in association with assembly of at least a portion of a vehicle. For example, instructions executed by the processor(s) 430 may cause signals to be sent through the controller interface(s) 426 to circuitry and/or other machinery of an AGV in order to cause an AGV to move towards and contact an empty parts table in an assembly cell, cause the AGV to move the empty parts table to an parts loading and/or staging area to be refilled, determine a set of parts to be loaded on the parts table, and cause the AGV to return the reloaded parts table to the assembly cell.
In some embodiments, the system 400 may include a network component 432. The network component 432 may be configured to communicate over a network, for example, in order to transmit and/or receive instructions associated with assembly of at least a portion of a vehicle. Instructions communicated over a network through the network component 432 may include instructions associated with assembly of at least a portion of a vehicle, and may be communicated before, during, and/or after assembly of at least a portion of a vehicle. Examples of a network through which the network component 432 may communicate may include a local area network (LAN), a wide area network (WAN), the Internet, an intranet, or another wired or wireless network.
Various aspects described herein may be implemented at least partially as software processes of a computer-programming product. Such processes may be specified as a set of instructions recorded on a machine-readable storage medium. When a set of instructions is executed by the processor(s) 430, the set of instructions may cause the processor(s) to perform operations indicated and recorded in the set of instructions.
The present disclosure is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these example embodiments presented throughout the present disclosure will be readily apparent to those skilled in the art, and the concepts disclosed herein may be applied to other techniques for printing nodes and interconnects. Thus, the claims are not intended to be limited to the example embodiments presented throughout the disclosure, but are to be accorded the full scope consistent with the language claims. All structural and functional equivalents to the elements of the example embodiments described throughout the present disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f), or analogous law in applicable jurisdictions, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”
The present disclosure claims the benefit under 35 U.S.C. 119 of U.S. Provisional Patent Application No. 63/182,672, filed Apr. 30, 2021 and entitled “MOBILE PARTS TABLE”, which application is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5203226 | Hongou et al. | Apr 1993 | A |
5742385 | Champa | Apr 1998 | A |
5990444 | Costin | Nov 1999 | A |
6010155 | Rinehart | Jan 2000 | A |
6096249 | Yamaguchi | Aug 2000 | A |
6140602 | Costin | Oct 2000 | A |
6145180 | Kogai et al. | Nov 2000 | A |
6250533 | Otterbein et al. | Jun 2001 | B1 |
6252196 | Costin et al. | Jun 2001 | B1 |
6318642 | Goenka et al. | Nov 2001 | B1 |
6365057 | Whitehurst et al. | Apr 2002 | B1 |
6391251 | Keicher et al. | May 2002 | B1 |
6409930 | Whitehurst et al. | Jun 2002 | B1 |
6468439 | Whitehurst et al. | Oct 2002 | B1 |
6554345 | Jonsson | Apr 2003 | B2 |
6585151 | Ghosh | Jul 2003 | B1 |
6644721 | Miskech et al. | Nov 2003 | B1 |
6811744 | Keicher et al. | Nov 2004 | B2 |
6866497 | Saiki | Mar 2005 | B2 |
6919035 | Clough | Jul 2005 | B1 |
6926970 | James et al. | Aug 2005 | B2 |
7152292 | Hohmann et al. | Dec 2006 | B2 |
7178227 | Ghuman | Feb 2007 | B2 |
7344186 | Hausler et al. | Mar 2008 | B1 |
7500373 | Quell | Mar 2009 | B2 |
7586062 | Heberer | Sep 2009 | B2 |
7637134 | Burzlaff et al. | Dec 2009 | B2 |
7710347 | Gentilman et al. | May 2010 | B2 |
7716802 | Stern et al. | May 2010 | B2 |
7745293 | Yamazaki et al. | Jun 2010 | B2 |
7766123 | Sakurai et al. | Aug 2010 | B2 |
7852388 | Shimizu et al. | Dec 2010 | B2 |
7908922 | Zarabadi et al. | Mar 2011 | B2 |
7951324 | Naruse et al. | May 2011 | B2 |
8094036 | Heberer | Jan 2012 | B2 |
8163077 | Eron et al. | Apr 2012 | B2 |
8286236 | Jung et al. | Oct 2012 | B2 |
8289352 | Vartanian et al. | Oct 2012 | B2 |
8297096 | Mizumura et al. | Oct 2012 | B2 |
8354170 | Henry et al. | Jan 2013 | B1 |
8383028 | Lyons | Feb 2013 | B2 |
8408036 | Reith et al. | Apr 2013 | B2 |
8429754 | Jung et al. | Apr 2013 | B2 |
8437513 | Derakhshani et al. | May 2013 | B1 |
8444903 | Lyons et al. | May 2013 | B2 |
8452073 | Taminger et al. | May 2013 | B2 |
8599301 | Dowski, Jr. et al. | Dec 2013 | B2 |
8606540 | Haisty et al. | Dec 2013 | B2 |
8610761 | Haisty et al. | Dec 2013 | B2 |
8631996 | Quell et al. | Jan 2014 | B2 |
8675925 | Derakhshani et al. | Mar 2014 | B2 |
8678060 | Dietz et al. | Mar 2014 | B2 |
8686314 | Schneegans et al. | Apr 2014 | B2 |
8686997 | Radet et al. | Apr 2014 | B2 |
8694284 | Berard | Apr 2014 | B2 |
8720876 | Reith et al. | May 2014 | B2 |
8752166 | Jung et al. | Jun 2014 | B2 |
8755923 | Farahani et al. | Jun 2014 | B2 |
8787628 | Derakhshani et al. | Jul 2014 | B1 |
8818771 | Gielis et al. | Aug 2014 | B2 |
8873238 | Wilkins | Oct 2014 | B2 |
8978535 | Ortiz et al. | Mar 2015 | B2 |
9006605 | Schneegans et al. | Apr 2015 | B2 |
9071436 | Jung et al. | Jun 2015 | B2 |
9101979 | Hofmann et al. | Aug 2015 | B2 |
9104921 | Derakhshani et al. | Aug 2015 | B2 |
9126365 | Mark et al. | Sep 2015 | B1 |
9128476 | Jung et al. | Sep 2015 | B2 |
9138924 | Yen | Sep 2015 | B2 |
9149988 | Mark et al. | Oct 2015 | B2 |
9156205 | Mark et al. | Oct 2015 | B2 |
9186848 | Mark et al. | Nov 2015 | B2 |
9244986 | Karmarkar | Jan 2016 | B2 |
9248611 | Divine et al. | Feb 2016 | B2 |
9254535 | Buller et al. | Feb 2016 | B2 |
9266566 | Kim | Feb 2016 | B2 |
9269022 | Rhoads et al. | Feb 2016 | B2 |
9327452 | Mark et al. | May 2016 | B2 |
9329020 | Napoletano | May 2016 | B1 |
9332251 | Haisty et al. | May 2016 | B2 |
9346127 | Buller et al. | May 2016 | B2 |
9389315 | Bruder et al. | Jul 2016 | B2 |
9399256 | Buller et al. | Jul 2016 | B2 |
9403235 | Buller et al. | Aug 2016 | B2 |
9418193 | Dowski, Jr. et al. | Aug 2016 | B2 |
9457514 | Schwärzler | Oct 2016 | B2 |
9469057 | Johnson et al. | Oct 2016 | B2 |
9478063 | Rhoads et al. | Oct 2016 | B2 |
9481402 | Muto et al. | Nov 2016 | B1 |
9486878 | Buller et al. | Nov 2016 | B2 |
9486960 | Paschkewitz et al. | Nov 2016 | B2 |
9502993 | Deng | Nov 2016 | B2 |
9525262 | Stuart et al. | Dec 2016 | B2 |
9533526 | Nevins | Jan 2017 | B1 |
9555315 | Aders | Jan 2017 | B2 |
9555580 | Dykstra et al. | Jan 2017 | B1 |
9557856 | Send et al. | Jan 2017 | B2 |
9566742 | Keating et al. | Feb 2017 | B2 |
9566758 | Cheung et al. | Feb 2017 | B2 |
9573193 | Buller et al. | Feb 2017 | B2 |
9573225 | Buller et al. | Feb 2017 | B2 |
9586290 | Buller et al. | Mar 2017 | B2 |
9595795 | Lane et al. | Mar 2017 | B2 |
9597843 | Stauffer et al. | Mar 2017 | B2 |
9600929 | Young et al. | Mar 2017 | B1 |
9609755 | Coull et al. | Mar 2017 | B2 |
9610675 | Southwell | Apr 2017 | B2 |
9610737 | Johnson et al. | Apr 2017 | B2 |
9611667 | GangaRao et al. | Apr 2017 | B2 |
9616623 | Johnson et al. | Apr 2017 | B2 |
9626487 | Jung et al. | Apr 2017 | B2 |
9626489 | Nilsson | Apr 2017 | B2 |
9643361 | Liu | May 2017 | B2 |
9662840 | Buller et al. | May 2017 | B1 |
9665182 | Send et al. | May 2017 | B2 |
9672389 | Mosterman et al. | Jun 2017 | B1 |
9672550 | Apsley et al. | Jun 2017 | B2 |
9676145 | Buller et al. | Jun 2017 | B2 |
9684919 | Apsley et al. | Jun 2017 | B2 |
9688032 | Kia et al. | Jun 2017 | B2 |
9690286 | Hovsepian et al. | Jun 2017 | B2 |
9700966 | Kraft et al. | Jul 2017 | B2 |
9703896 | Zhang et al. | Jul 2017 | B2 |
9713903 | Paschkewitz et al. | Jul 2017 | B2 |
9718302 | Young et al. | Aug 2017 | B2 |
9718434 | Hector, Jr. et al. | Aug 2017 | B2 |
9724877 | Flitsch et al. | Aug 2017 | B2 |
9724881 | Johnson et al. | Aug 2017 | B2 |
9725178 | Wang | Aug 2017 | B2 |
9731730 | Stiles | Aug 2017 | B2 |
9731773 | Gami et al. | Aug 2017 | B2 |
9741954 | Bruder et al. | Aug 2017 | B2 |
9747352 | Karmarkar | Aug 2017 | B2 |
9764415 | Seufzer et al. | Sep 2017 | B2 |
9764520 | Johnson et al. | Sep 2017 | B2 |
9765226 | Dain | Sep 2017 | B2 |
9770760 | Liu | Sep 2017 | B2 |
9773393 | Velez | Sep 2017 | B2 |
9776234 | Schaafhausen et al. | Oct 2017 | B2 |
9782936 | Glunz et al. | Oct 2017 | B2 |
9783324 | Embler et al. | Oct 2017 | B2 |
9783977 | Alqasimi et al. | Oct 2017 | B2 |
9789548 | Golshany et al. | Oct 2017 | B2 |
9789922 | Dosenbach et al. | Oct 2017 | B2 |
9796137 | Zhang et al. | Oct 2017 | B2 |
9802108 | Aders | Oct 2017 | B2 |
9809977 | Carney et al. | Nov 2017 | B2 |
9817922 | Glunz et al. | Nov 2017 | B2 |
9818071 | Jung et al. | Nov 2017 | B2 |
9821339 | Paschkewitz et al. | Nov 2017 | B2 |
9821411 | Buller et al. | Nov 2017 | B2 |
9823143 | Twelves, Jr. et al. | Nov 2017 | B2 |
9829564 | Bruder et al. | Nov 2017 | B2 |
9846933 | Yuksel | Dec 2017 | B2 |
9854828 | Langeland | Jan 2018 | B2 |
9858604 | Apsley et al. | Jan 2018 | B2 |
9862833 | Hasegawa et al. | Jan 2018 | B2 |
9862834 | Hasegawa et al. | Jan 2018 | B2 |
9863885 | Zaretski et al. | Jan 2018 | B2 |
9870629 | Cardno et al. | Jan 2018 | B2 |
9879981 | Dehghan Niri et al. | Jan 2018 | B1 |
9884663 | Czinger et al. | Feb 2018 | B2 |
9898776 | Apsley et al. | Feb 2018 | B2 |
9914150 | Pettersson et al. | Mar 2018 | B2 |
9919360 | Buller et al. | Mar 2018 | B2 |
9931697 | Levin et al. | Apr 2018 | B2 |
9933031 | Bracamonte et al. | Apr 2018 | B2 |
9933092 | Sindelar | Apr 2018 | B2 |
9957031 | Golshany et al. | May 2018 | B2 |
9958535 | Send et al. | May 2018 | B2 |
9962767 | Buller et al. | May 2018 | B2 |
9963978 | Johnson et al. | May 2018 | B2 |
9971920 | Derakhshani et al. | May 2018 | B2 |
9976063 | Childers et al. | May 2018 | B2 |
9987792 | Flitsch et al. | Jun 2018 | B2 |
9988136 | Tiryaki et al. | Jun 2018 | B2 |
9989623 | Send et al. | Jun 2018 | B2 |
9990565 | Rhoads et al. | Jun 2018 | B2 |
9994339 | Colson et al. | Jun 2018 | B2 |
9996890 | Cinnamon et al. | Jun 2018 | B1 |
9996945 | Holzer et al. | Jun 2018 | B1 |
10002215 | Dowski et al. | Jun 2018 | B2 |
10006156 | Kirkpatrick | Jun 2018 | B2 |
10011089 | Lyons et al. | Jul 2018 | B2 |
10011685 | Childers et al. | Jul 2018 | B2 |
10012532 | Send et al. | Jul 2018 | B2 |
10013777 | Mariampillai et al. | Jul 2018 | B2 |
10015908 | Williams et al. | Jul 2018 | B2 |
10016852 | Broda | Jul 2018 | B2 |
10016942 | Mark et al. | Jul 2018 | B2 |
10017384 | Greer et al. | Jul 2018 | B1 |
10018576 | Herbsommer et al. | Jul 2018 | B2 |
10022792 | Srivas et al. | Jul 2018 | B2 |
10022912 | Kia et al. | Jul 2018 | B2 |
10027376 | Sankaran et al. | Jul 2018 | B2 |
10029415 | Swanson et al. | Jul 2018 | B2 |
10040239 | Brown, Jr. | Aug 2018 | B2 |
10046412 | Blackmore | Aug 2018 | B2 |
10048769 | Selker et al. | Aug 2018 | B2 |
10052712 | Blackmore | Aug 2018 | B2 |
10052820 | Kemmer et al. | Aug 2018 | B2 |
10055536 | Maes et al. | Aug 2018 | B2 |
10058764 | Aders | Aug 2018 | B2 |
10058920 | Buller et al. | Aug 2018 | B2 |
10061906 | Nilsson | Aug 2018 | B2 |
10065270 | Buller et al. | Sep 2018 | B2 |
10065361 | Susnjara et al. | Sep 2018 | B2 |
10065367 | Brown, Jr. | Sep 2018 | B2 |
10068316 | Holzer et al. | Sep 2018 | B1 |
10071422 | Buller et al. | Sep 2018 | B2 |
10071525 | Susnjara et al. | Sep 2018 | B2 |
10072179 | Drijfhout | Sep 2018 | B2 |
10074128 | Colson et al. | Sep 2018 | B2 |
10076875 | Mark et al. | Sep 2018 | B2 |
10076876 | Mark et al. | Sep 2018 | B2 |
10081140 | Paesano et al. | Sep 2018 | B2 |
10081431 | Seack et al. | Sep 2018 | B2 |
10086568 | Snyder et al. | Oct 2018 | B2 |
10087320 | Simmons et al. | Oct 2018 | B2 |
10087556 | Gallucci et al. | Oct 2018 | B2 |
10099427 | Mark et al. | Oct 2018 | B2 |
10100542 | GangaRao et al. | Oct 2018 | B2 |
10100890 | Bracamonte et al. | Oct 2018 | B2 |
10107344 | Bracamonte et al. | Oct 2018 | B2 |
10108766 | Druckman et al. | Oct 2018 | B2 |
10113600 | Bracamonte et al. | Oct 2018 | B2 |
10118347 | Stauffer et al. | Nov 2018 | B2 |
10118579 | Lakic | Nov 2018 | B2 |
10120078 | Bruder et al. | Nov 2018 | B2 |
10124546 | Johnson et al. | Nov 2018 | B2 |
10124570 | Evans et al. | Nov 2018 | B2 |
10137500 | Blackmore | Nov 2018 | B2 |
10138354 | Groos et al. | Nov 2018 | B2 |
10144126 | Krohne et al. | Dec 2018 | B2 |
10145110 | Carney et al. | Dec 2018 | B2 |
10151363 | Bracamonte et al. | Dec 2018 | B2 |
10152661 | Kieser | Dec 2018 | B2 |
10160278 | Coombs et al. | Dec 2018 | B2 |
10161021 | Lin et al. | Dec 2018 | B2 |
10166752 | Evans et al. | Jan 2019 | B2 |
10166753 | Evans et al. | Jan 2019 | B2 |
10171578 | Cook et al. | Jan 2019 | B1 |
10173255 | TenHouten et al. | Jan 2019 | B2 |
10173327 | Kraft et al. | Jan 2019 | B2 |
10178800 | Mahalingam et al. | Jan 2019 | B2 |
10179640 | Wilkerson | Jan 2019 | B2 |
10183330 | Buller et al. | Jan 2019 | B2 |
10183478 | Evans et al. | Jan 2019 | B2 |
10189187 | Keating et al. | Jan 2019 | B2 |
10189240 | Evans et al. | Jan 2019 | B2 |
10189241 | Evans et al. | Jan 2019 | B2 |
10189242 | Evans et al. | Jan 2019 | B2 |
10190424 | Johnson et al. | Jan 2019 | B2 |
10195693 | Buller et al. | Feb 2019 | B2 |
10196539 | Boonen et al. | Feb 2019 | B2 |
10197338 | Melsheimer | Feb 2019 | B2 |
10200677 | Trevor et al. | Feb 2019 | B2 |
10201932 | Flitsch et al. | Feb 2019 | B2 |
10201941 | Evans et al. | Feb 2019 | B2 |
10202673 | Lin et al. | Feb 2019 | B2 |
10204216 | Nejati et al. | Feb 2019 | B2 |
10207454 | Buller et al. | Feb 2019 | B2 |
10209065 | Estevo, Jr. et al. | Feb 2019 | B2 |
10210662 | Holzer et al. | Feb 2019 | B2 |
10213837 | Kondoh | Feb 2019 | B2 |
10214248 | Hall et al. | Feb 2019 | B2 |
10214252 | Schellekens et al. | Feb 2019 | B2 |
10214275 | Goehlich | Feb 2019 | B2 |
10220575 | Reznar | Mar 2019 | B2 |
10220881 | Tyan et al. | Mar 2019 | B2 |
10221530 | Driskell et al. | Mar 2019 | B2 |
10226900 | Nevins | Mar 2019 | B1 |
10232550 | Evans et al. | Mar 2019 | B2 |
10234342 | Moorlag et al. | Mar 2019 | B2 |
10237477 | Trevor et al. | Mar 2019 | B2 |
10252335 | Buller et al. | Apr 2019 | B2 |
10252336 | Buller et al. | Apr 2019 | B2 |
10254499 | Cohen et al. | Apr 2019 | B1 |
10257499 | Hintz et al. | Apr 2019 | B2 |
10259044 | Buller et al. | Apr 2019 | B2 |
10268181 | Nevins | Apr 2019 | B1 |
10269225 | Velez | Apr 2019 | B2 |
10272860 | Mohapatra et al. | Apr 2019 | B2 |
10272862 | Whitehead | Apr 2019 | B2 |
10275564 | Ridgeway et al. | Apr 2019 | B2 |
10279580 | Evans et al. | May 2019 | B2 |
10285219 | Fetfatsidis et al. | May 2019 | B2 |
10286452 | Buller et al. | May 2019 | B2 |
10286603 | Buller et al. | May 2019 | B2 |
10286961 | Hillebrecht et al. | May 2019 | B2 |
10289263 | Troy et al. | May 2019 | B2 |
10289875 | Singh et al. | May 2019 | B2 |
10291193 | Dandu et al. | May 2019 | B2 |
10294552 | Liu et al. | May 2019 | B2 |
10294982 | Gabrys et al. | May 2019 | B2 |
10295989 | Nevins | May 2019 | B1 |
10303159 | Czinger et al. | May 2019 | B2 |
10307824 | Kondoh | Jun 2019 | B2 |
10310197 | Droz et al. | Jun 2019 | B1 |
10313651 | Trevor et al. | Jun 2019 | B2 |
10315252 | Mendelsberg et al. | Jun 2019 | B2 |
10336050 | Susnjara | Jul 2019 | B2 |
10337542 | Hesslewood et al. | Jul 2019 | B2 |
10337952 | Bosetti et al. | Jul 2019 | B2 |
10339266 | Urick et al. | Jul 2019 | B2 |
10343330 | Evans et al. | Jul 2019 | B2 |
10343331 | McCall et al. | Jul 2019 | B2 |
10343355 | Evans et al. | Jul 2019 | B2 |
10343724 | Polewarczyk et al. | Jul 2019 | B2 |
10343725 | Martin et al. | Jul 2019 | B2 |
10350823 | Rolland et al. | Jul 2019 | B2 |
10356341 | Holzer et al. | Jul 2019 | B2 |
10356395 | Holzer et al. | Jul 2019 | B2 |
10357829 | Spink et al. | Jul 2019 | B2 |
10357957 | Buller et al. | Jul 2019 | B2 |
10359756 | Newell et al. | Jul 2019 | B2 |
10369629 | Mendelsberg et al. | Aug 2019 | B2 |
10382739 | Rusu et al. | Aug 2019 | B1 |
10384393 | Xu et al. | Aug 2019 | B2 |
10384416 | Cheung et al. | Aug 2019 | B2 |
10389410 | Brooks et al. | Aug 2019 | B2 |
10391710 | Mondesir | Aug 2019 | B2 |
10392097 | Pham et al. | Aug 2019 | B2 |
10392131 | Deck et al. | Aug 2019 | B2 |
10393315 | Tyan | Aug 2019 | B2 |
10400080 | Ramakrishnan et al. | Sep 2019 | B2 |
10401832 | Snyder et al. | Sep 2019 | B2 |
10403009 | Mariampillai et al. | Sep 2019 | B2 |
10406750 | Barton et al. | Sep 2019 | B2 |
10412283 | Send et al. | Sep 2019 | B2 |
10416095 | Herbsommer et al. | Sep 2019 | B2 |
10421496 | Swayne et al. | Sep 2019 | B2 |
10421863 | Hasegawa et al. | Sep 2019 | B2 |
10422478 | Leachman et al. | Sep 2019 | B2 |
10425793 | Sankaran et al. | Sep 2019 | B2 |
10427364 | Alves | Oct 2019 | B2 |
10429006 | Tyan et al. | Oct 2019 | B2 |
10434573 | Buller et al. | Oct 2019 | B2 |
10435185 | Divine et al. | Oct 2019 | B2 |
10435773 | Liu et al. | Oct 2019 | B2 |
10436038 | Buhler et al. | Oct 2019 | B2 |
10438407 | Pavanaskar et al. | Oct 2019 | B2 |
10440351 | Holzer et al. | Oct 2019 | B2 |
10442002 | Benthien et al. | Oct 2019 | B2 |
10442003 | Symeonidis et al. | Oct 2019 | B2 |
10449696 | Elgar et al. | Oct 2019 | B2 |
10449737 | Johnson et al. | Oct 2019 | B2 |
10461810 | Cook et al. | Oct 2019 | B2 |
20060108783 | Ni et al. | May 2006 | A1 |
20110099788 | Kilibarda | May 2011 | A1 |
20140015186 | Wessel | Jan 2014 | A1 |
20140277669 | Nardi et al. | Sep 2014 | A1 |
20150314892 | DesJardien | Nov 2015 | A1 |
20170113344 | Schönberg | Apr 2017 | A1 |
20170341309 | Piepenbrock et al. | Nov 2017 | A1 |
20180068879 | Wong et al. | Mar 2018 | A1 |
20180215541 | Belardinelli et al. | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
1996036455 | Nov 1996 | WO |
1996036525 | Nov 1996 | WO |
1996038260 | Dec 1996 | WO |
2003024641 | Mar 2003 | WO |
2004108343 | Dec 2004 | WO |
2005093773 | Oct 2005 | WO |
2007003375 | Jan 2007 | WO |
2007110235 | Oct 2007 | WO |
2007110236 | Oct 2007 | WO |
2008019847 | Feb 2008 | WO |
2007128586 | Jun 2008 | WO |
2008068314 | Jun 2008 | WO |
2008086994 | Jul 2008 | WO |
2008087024 | Jul 2008 | WO |
2008107130 | Sep 2008 | WO |
2008138503 | Nov 2008 | WO |
2008145396 | Dec 2008 | WO |
2009083609 | Jul 2009 | WO |
2009098285 | Aug 2009 | WO |
2009112520 | Sep 2009 | WO |
2009135938 | Nov 2009 | WO |
2009140977 | Nov 2009 | WO |
2010125057 | Nov 2010 | WO |
2010125058 | Nov 2010 | WO |
2010142703 | Dec 2010 | WO |
2011032533 | Mar 2011 | WO |
2014016437 | Jan 2014 | WO |
2014187720 | Nov 2014 | WO |
2014195340 | Dec 2014 | WO |
2015193331 | Dec 2015 | WO |
2016116414 | Jul 2016 | WO |
2017036461 | Mar 2017 | WO |
2019030248 | Feb 2019 | WO |
2019042504 | Mar 2019 | WO |
2019048010 | Mar 2019 | WO |
2019048498 | Mar 2019 | WO |
2019048680 | Mar 2019 | WO |
2019048682 | Mar 2019 | WO |
Entry |
---|
US 9,202,136 B2, 12/2015, Schmidt et al. (withdrawn) |
US 9,809,265 B2, 11/2017, Kinjo (withdrawn) |
US 10,449,880 B2, 10/2019, Mizobata et al. (withdrawn) |
International Search Report and Written Opinion in PCT/US2022/071995, mailed Sep. 1, 2022, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20220347831 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
63182672 | Apr 2021 | US |