Hospitals, nursing homes, and other patient care facilities typically include patient monitoring devices at one or more bedsides in the facility. Patient monitoring devices generally include sensors, processing equipment, and displays for obtaining and analyzing a medical patient's physiological parameters. Physiological parameters include, for example, respiratory rate, SpO2 level, pulse, and blood pressure, among others. Clinicians, including doctors, nurses, physician's assistants, and other medical personnel use the physiological parameters obtained from the medical patient to diagnose illnesses and to prescribe treatments. Clinicians also use the physiological parameters to monitor a patient during various clinical situations to determine whether to increase the level of medical care given to the patient.
Patient monitors capable of measuring pulse oximetry parameters, such as SpO2 and pulse rate in addition to advanced parameters, such as HbCO, HbMet and total hemoglobin (Hbt, THb, or SpHb) and corresponding multiple wavelength optical sensors are described in at least U.S. patent application Ser. No. 11/367,013, filed Mar. 1, 2006 and entitled Multiple Wavelength Sensor Emitters and U.S. patent application Ser. No. 11/366,208, filed Mar. 1, 2006 and entitled Noninvasive Multi-Parameter Patient Monitor, both assigned to Masimo Laboratories, Irvine, Calif. (Masimo Labs) and both incorporated by reference herein. Further, noninvasive blood parameter monitors and corresponding multiple wavelength optical sensors, such as Rainbow™ adhesive and reusable sensors and RAD57™ and Radical-7™ monitors for measuring SpO2, pulse rate, perfusion index, signal quality, HbCO, and HbMet among other parameters are also available from Masimo Corporation, Irvine, Calif. (Masimo).
Advanced physiological monitoring systems may incorporate pulse oximetry in addition to advanced features for the calculation and display of other blood parameters, such as carboxyhemoglobin (HbCO), methemoglobin (HbMet) and total hemoglobin (Hbt or SpHb), as a few examples. Advanced physiological monitors and corresponding multiple wavelength optical sensors capable of measuring parameters in addition to SpO2, such as HbCO, HbMet and Hbt are described in at least U.S. patent application Ser. No. 11/367,013, filed Mar. 1, 2006, titled Multiple Wavelength Sensor Emitters and U.S. patent application Ser. No. 11/366,208, filed Mar. 1, 2006, titled Noninvasive Multi-Parameter Patient Monitor, which are each hereby incorporated by reference herein in their entirety. Further, noninvasive blood parameter monitors and corresponding multiple wavelength optical sensors, such as Rainbow™ adhesive and reusable sensors and RAD57™ and Radical-7™ monitors for measuring SpO2, pulse rate, perfusion index (PI), signal quality (SiQ), pulse variability index (PVI), HbCO and HbMet among other parameters are also available from Masimo.
This disclosure describes example alarm notification systems that can enable a clinician to respond to an alarm notification received via a computing device, which may have more advanced functionality than a pager. The clinician device may be a mobile device, such as a cellphone or smartphone, tablet, laptop, personal digital assistant (PDA), or the like. The clinician device may communicate with a remote server to obtain patient data generated by a patient device at the point-of-care (such as a bedside device or patient-worn monitor). This patient data may be continuous monitoring data for one or more patients. A mobile application (optionally a browser application) on the clinician device can enable the clinician to view continuous monitoring data for multiple patients, as well as view and respond to alarms and alerts, all from the clinician device, regardless of location. Many additional example features of the alarm notification systems are described in greater detail below.
For purposes of summarizing the disclosure, certain aspects, advantages and novel features of several embodiments have been described herein. It is to be understood that not necessarily all such advantages can be achieved in accordance with any particular embodiment of the embodiments disclosed herein. Thus, the embodiments disclosed herein can be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as can be taught or suggested herein.
Throughout the drawings, reference numbers are re-used to indicate correspondence between referenced elements. The drawings are provided to illustrate embodiments of the inventions described herein and not to limit the scope thereof.
Patient monitors typically monitor patients' physiological parameters to determine whether the parameters are within safe limits. If a physiological parameter exceeds a safety limit or threshold, or is otherwise trending toward a dangerous condition, a patient monitor can generate an alarm. The alarm may have audible and/or visual characteristics. Typically, the patient monitor sounds an alarm to attract the attention of nearby clinicians to alert the clinicians that the patient may need medical attention. In addition, some patient monitors send alarms over a network to a computer system at a nurse's station or over a network to a paging system, which pages clinicians. A typical pager system forwards a simple alarm message to one or more clinicians' pagers. The alarm message may include information about the patient's name or room number and possibly limited information about the alarm itself (such as “low SpO2”).
This disclosure describes embodiments of alarm notification systems that can enable a clinician to respond to an alarm notification received via a computing device, which may have more advanced functionality than a pager. The clinician device may be a mobile device, such as a cellphone or smartphone, tablet, laptop, personal digital assistant (PDA), or the like. As such, the clinician device can include one or more hardware processors, memory, and a display (which may be a touchscreen). Because the clinician device may have more capability than a pager, the clinician device can confirm receipt of messages and permit clinicians to accept or forward alarms. As a result, escalation can occur more rapidly and response times can decrease, improving patient safety and care.
The clinician device may communicate with a remote server to obtain patient data generated by a patient device at the point-of-care (such as a bedside device or patient-worn monitor). This patient data may be continuous monitoring data for one or more patients. A mobile application (optionally a browser application) on the clinician device can enable the clinician to view continuous monitoring data for multiple patients, as well as view and respond to alarms and alerts, all from the clinician device, regardless of location.
The mobile application can also display data relayed by the remote server from connected bedside devices, such as patient monitors, ventilators, infusion pumps, patient beds, and vital signs monitors. The mobile application can also display high fidelity data, such as waveforms and trend data, in real time. The mobile application can also access and display historical data (such as up to 96 hours or more), aiding assessment of potential deterioration over time. The collation of data from multiple disparate sources in a single location can provide clinicians with a more complete picture of patient status at a glance.
The mobile application can feature intelligent two-way alarm and alert notification technology that can offer significant advantages over systems which send out rudimentary, one-way notifications. The remote server can route and escalate detailed, color-coded alarm and alert notifications to active clinician devices, reaching on-duty and available clinicians. Clinicians can respond to notifications from the mobile application—choosing to accept or forward—and optionally see if other clinicians have already responded. By combining detailed monitoring data with intelligent notification, the mobile application can help to improve clinical collaboration, promoting informed, timely response and effective clinical coordination.
Given the high patient-to-clinician ratios common in many areas, such as the medical-surgical floor, there is an increasing need for continuous remote visibility into patient status. The mobile application can intelligently and reliably deliver valuable patient data and notifications to clinicians wherever they may be, thus helping them to respond and intervene as effectively and efficiently as possible.
Turning to
In the clinical computing environment 100, various patient devices 102, clinician devices 104, and nurse's station systems or kiosks 106 communicate over a network 109 with a multi-patient monitoring system (MMS) 110. The MMS 110 is an example of a remote server that can communicate with patient devices and clinician devices. The network 109 may include a local area network (LAN), a wide area network (WAN), a public network (such as the Internet), a private network, or any combination of the same. For instance, the network 109 can include a wireless and/or wired hospital network or a network that connects multiple clinical facilities. As another example, a patient device 102 can connect with the MMS 110 from a patient's home, over the network 109. In that situation, the network 109 may be a hospital network that exposes a virtual public network (VPN) connection to the patient devices 102. Further, the MMS 110 may be implemented in a cloud infrastructure that permits remote connection from patient devices 102 at home or in any other location. In some embodiments, applications running on connected devices utilize an encryption layer to provide additional security. For example, communications between the connected devices may encrypted by the sending device and decrypted by the receiving device. Using encryption at the application layer allows devices on different networks and using different network protocols to communicate securely.
The patient devices 102 may be any of the patient monitors or monitoring devices described herein and may include bedside monitors, ambulatory or mobile monitors, in-home monitors, and the like. The patient devices 102 can be point-of-care devices, such as bedside devices or patient-worn devices. The patient devices 102 can receive input from physiological sensors coupled with a patient and may measure parameters such as oxygen saturation or SpO2, respiratory rate, blood pressure, heart rate or pulse rate perfusion, other blood gas parameters, brain activity, brain oxygen saturation, any of the other parameters described herein, and the like. The patient devices 102 can provide information about a patient's status, including current values of physiological parameters, waveforms, trend values, and historical values of physiological parameters over the network 109 to the MMS 110. The MMS 110 can in turn store this data in an electronic medical records (EMR) system 120.
In addition, the MMS 110 can provide this data to the nurse's station systems 106. The nurse's station systems 106 can include any type of computing device including, but not limited to, a desktop, laptop, tablet, phone or the like. The nurse's station systems 106 may also include clinical facility kiosks such as computers on wheels (COWs) (which may use laptop or tablet computers), which may be dispersed throughout a clinical facility. The nurse's station systems 106 can communicate with a plurality of patient devices 102 to receive information of a plurality of patients so that the nurse's station systems 106 can provide clinicians with the ability to monitor physiological parameter data for a plurality of patients.
The clinician devices 104 can include any mobile device, such as a laptop, tablet, cell phone, smartphone, personal digital assistant (PDA), or any other device. In some cases, the clinician devices can include desktop systems. In the depicted example, the clinician devices 104 include a notification client 108 that can receive alarm notifications from the patient devices 102 through the MMS 110. In an example, when a patient device 102 detects that a parameter of a patient has exceeded a threshold set in the patient device 102 (or otherwise triggered an alarm condition), the patient device 102 can send an alarm over the network 109 to the MMS 110. In turn, the MMS 110 can send the alarm or a message representing the alarm to the nurse's station systems 106 and/or the clinician devices 104.
The patient devices 102 may have network capability that enables the patient devices 102 to send the alarm notifications directly over the network 109 to the nurse's station systems 106 and/or to the clinician devices 104. Further, the patient devices 102 may also send alarms to the MMS 110, the nurse's station systems 106, and/or the clinician devices 104. Some alarms can include nonclinical alarms that may not represent that a physiological parameter has exceeded a threshold but instead may include information about a sensor that has been disconnected or otherwise has fallen off (often referred to as a probe-off condition). Likewise, a brief power outage or surge can cause the patient device 102 to reset and send a nonclinical alarm to the other devices shown. Such nonclinical alarms are sometimes referred to herein as alerts to distinguish from alarms that may be clinically actionable.
The notification client 108 can enable two-way communication with the patient devices 102 and the MMS 110 (and/or the nurse's station systems 106) in the event of an alarm. For instance, an alarm sent from a patient device 102 through the network 109 to the MMS 110 could be routed to the clinician device 104. The notification client 108 can receive this alarm and respond back to the MMS 110 or any other component of the computing environment 100, replying that the message was received. This provision of a reply to the alarm made by the notification client 108 can enable the MMS 110 to determine whether to escalate the alarm or not. Since the MMS 110 has received the indication that the notification client 108 received the message, the MMS 110 may determine to wait a period of time before escalating the alarm to an escalated condition (which will be described in greater detail below).
If the notification client 108 does not respond indicating that the client device 104 has received the alarm message, the MMS 110 may determine that some error (whether of the network 109, the clinician device 104 or otherwise) has caused the clinician device 104 to not receive the message. As a result, the MMS 110 can immediately or otherwise rapidly escalate the alarm to one or more other clinicians without having to wait a set period of time. Thus, the two-way communication ability of the clinician device 104 can facilitate this rapid escalation because the MMS 110 can assume that if a response is not provided by the notification client 108, that the clinician device 104 likely did not receive the alarm.
For convenience, this specification primarily describes alarms as being routed through the MMS 110 to the notification client 108 and corresponding response messages being sent from the notification client 108 to the MMS 110 and optionally on to the patient devices 102. However, in other examples the notification client 108 can communicate directly with the patient devices 102 or nurse's station systems 106.
In the depicted example, the clinician device 104 also includes an optional admit module 112 and an optional vital signs verification component 114. These modules are described in detail in the '121 publication, incorporated by reference above.
Reliability of a hospital network may be key to enabling communications of patient data and alarms with clinician devices. Without reliability, an alarm may go unheeded, which could negatively affect patient outcomes. Although many aspects of network reliability may be out of the control of even the most careful medical device manufacturer or network provider, in a clinical network (such as in a hospital or doctor's office), it may be preferable to use the most reliable routers for wireless communication from the point-of-care devices to the MMS 110. Currently, routers or access points using the IEEE 802.11a WiFi standard tend to be more reliable and more secure (for example, due to encryption) than other 802.11x devices. Thus, 802.11a (or 802.11ac) routers or access points can advantageously be used in a clinical network to facilitate reliable delivery of the alarm notifications and escalations described herein. However, a cellular network can also be used, alone or together with a WiFi or other network, for any of the networking functionality described herein.
However, it may be counterintuitive to use 802.11a routers because other standards are more popular and because 802.11a devices tend to have a shorter range (about 25-75 feet unobstructed) than other 802.11x devices (about 150 feet or more unobstructed). Thus, if 802.11a routers are used, more routers are likely needed to be installed in a clinical network than other longer range 802.11x routers to adjust for the reduced range versus other 802.11x routers. The 802.11a routers may be more reliable when installed closer to the point-of-care devices. For example, more 802.11a routers can be installed closer together and/or closer to the point-of-care devices than other 802.11x routers. However, 802.11x routers other than 802.11a routers can be used in other implementations. Further, reliability of wireless routers can advantageously be tested to confirm reliability.
Turning to
Certain aspects of the MMS 210 are described as being implemented across multiple clinical facilities. However, the MMS 210 may be implemented in a single clinical facility in other examples, and thus, some of the features described herein may be less applicable or not applicable at all to a single-facility installation of the MMS 210. More detailed example features of the MMS 210, any of which may be combined with the features described herein, are disclosed in U.S. application Ser. No. 14/030,360, filed Sep. 18, 2013, titled “Intelligent Medical Network Edge Router” (“the '360 application”), the disclosure of which is hereby incorporated by reference in its entirety.
The MMS 210 includes, for example, a network management module 202. The network management module 202 can manage network communications with other networks, including networks in hospitals and other facilities as well as communications with mobile patient devices and clinician devices. The MMS 210 also includes an EMR system 204 that can generally store patient data from any facility, including data collected from patient monitoring devices in patients' homes or while patients are mobile outside of their homes or out of facilities.
A clinician portal 206 of the MMS 210 can provide a user interface or user interfaces that can be accessed by clinicians via their clinician devices to monitor the health status of their patients for whom they are responsible. The clinician portal 206 may, for example, be implemented in one or more web pages, mobile applications, or other network applications and may provide information about the wellness or relative wellness of each patient. In one example, a wellness score or index is computed for some or all patients by a risk analysis system 208 of the MMS 210, and the clinician portal 206 can depict these wellness indices among other parameter data, trend data and alarms for each patient.
The MMS 210 also includes a patient profile manager 211. The patient profile manager 211 can manage patient profiles, which can include information about patient demographics, patient alarm settings, including alarm settings from previous visits to potentially multiple different facilities, patient conditions and so forth, and example features of which are described in greater detail below with respect to
The MMS 210 also includes an early warning system 216. The early warning system 216 can issue early warning alarms based on parameter measurements, indices such as the wellness index or other indices. The early warning system 216 can look for patterns in patients to facilitate detecting never events, including events that should occur never or rarely, like a patient dying in bed without any intervention, particularly when a patient is home and would not ordinarily be under the care of a hospital or have access to a system like the risk analysis system 208 or the early warning system 216.
An information exchange system 220 of the MMS 210 can facilitate communicating information about patients to government or research institutions 118. One scenario where patient information may be submitted (anonymously) to government or research institutions is where a disease outbreak has occurred.
A journaling module 222 of the MMS 210 can capture clinician interactions with medical devices that are in the institutions and/or that are in patients' homes or that are body worn in mobile situations. A telemedicine module 224 of the MMS 210 can facilitate telecommunications between clinicians and patients, including telepresence communications where clinicians can diagnosis, treat, or otherwise attend to the needs of patients remotely using audio visual systems or the like. In some examples, the telemedicine module 224 can also be used in conjunction with features of the escalation module 218. The escalation module 218 can provide functionality for escalating alarms from a first or primary care provider to a second or subsequent care provider in case the primary care provider is unavailable.
The MMS 210 also includes an admit module 226. The admit module 226 may communicate with the admit module 112 optionally installed in the clinician device(s) 104. As described above, the admit module 112 in the clinician device(s) 104 may include a scanner application or the like that can scan a patient tag and a device or location tag, obtain identifiers from each tag, and couple the tags in physical computer storage (such as in an electronic medical records system). This coupling can include sending a message from the admit module 112 to the admit module 226. The admit module 226 can receive the patient identifier and device or location identifier(s) from the admit module 112 and associate the identifiers in physical computer storage, such as in the EMR system or another database.
The MMS 210 also includes a translation module 228 that can receive serial data from third party devices (see
Turning to
In the depicted example, the patient monitor 302 at state 1 issues an alarm to the MMS 310. The alarm may be a clinical alarm or a nonclinical alarm as described above. At state 2, the MMS 310 sends an alarm notification message to the clinician device 304. A notification client (not shown; see
At state 4, a user of the clinician device 304 may view the alarm using, for example, the notification client 108. The user may view the alarm in a variety of ways. Generally speaking, the notification client 108 can depict a user interface that shows some aspect of the alarm on a lock screen of the notification client 108, on an active alerts screen, or on an application screen of the notification client 108. The notification client 108 may consider the alarm as being viewed if the clinician device 304 changes state from locked to unlocked (for example, via button press by the clinician) and if the lock screen depicts the alarm (see, for example,
At state 5, the clinician device 304 reports to the MMS 310 that the alarm has been viewed. This state may also be implemented by the notification client 108 by reporting that the alarm has been viewed. The notification client 108 of the clinician device 304 can enable the MMS 310 to know that the clinician is now aware of the alarm and not just that the clinician's device 304 has received the alarm. Knowing (or, equivalently, receiving or storing an indication in the MMS 310) that the clinician has viewed the alarm can further increase confidence that the clinician may respond to the alarm. Conversely, if the alarm had been received by the clinician device 304 but had not been indicated as being viewed by the clinician, the MMS 310 might hasten escalation to another clinician or set of clinicians (see, e.g.,
At state 6, the user can accept the alarm or forward the alarm, for example, by inputting an indication of acceptance or forwarding to the clinician device 304. The clinician device 304 can, for instance, output a user interface that includes elements or options for accepting an alarm or forwarding the alarm to one or more other clinician(s) (see, for example,
The notification client 108 may, in some examples, infer the clinician's decision to accept handling or decline handling the alarm based on the user's input. For instance, if the clinician marks an alarm notification message as “unread” (e.g., similar to marking an email as unread) or otherwise selects an option to decline the alarm, then the notification device client 108 may infer that the clinician has decided not to handle the alarm. At state 7, the clinician device 304 reports to the MMS 310 whether the clinician has decided to accept or forward the alarm. If the clinician has forwarded the alarm, the MMS 310 can rapidly or immediately escalate the alarm to another clinician or set of clinicians (either chosen by the MMS 310 or optionally selected by the clinician as described above). If the clinician accepts the alarm but does not enter the patient's room and silence the alarm at the bedside device within a period of time, the alarm can be escalated (or re-escalated).
In one example, acceptance is not provided as an option in the notification client 108 because a clinician may directly respond to the alarm without indicating his acceptance of the alarm. Likewise, many other aspects described herein are optional and may be omitted or added thereto.
Turning to
At block 402, the escalation module 218 receives an alarm from a patient device and sends the alarm to a clinician device or devices at block 404. At decision block 406, it is determined by the escalation module 218 whether the clinician device or devices report the alarm having been received. If not, at block 408, the escalation module 218 escalates the alarm to one or more other clinician devices, which may but need not include the initial clinician device or devices to which the initial message was sent.
In some embodiments, the escalation module 218 can dynamically determine which clinicians to notify of an alarm. The escalation module 218 can determine which clinicians to transmit an alarm based on respective clinician devices that are available on the network or that a particular clinician has logged into the clinician device. Thus, the escalation module 218 can omit transmitting alarms to recipients that appear to be unavailable.
In an example, if the initial message was sent to a single clinician device and at block 406, it is determined that the clinician device did not report receiving the message, escalation happens automatically at block 408. In another example, when the initial message is sent to a plurality of clinician devices, block 406 does not trigger escalation at block 408 until it is determined that none of the clinician devices reported receiving the alarm. Alternatively, the escalation module 218 can implement a hybrid approach where if any of a plurality of client devices have not responded as receiving the message, the escalation module 218 can escalate at block 408. In another example, the escalation module 218 escalates if a majority of the client devices did not receive the alarm or indicate having received the alarm message. Other implementations are possible.
If, at decision block 406, the clinician device or devices reported receiving the alarm, then it is further determined by the escalation module 218 at block 410 whether the clinician device or devices reported the alarm being viewed by a user. If not, then the escalation module 218 can escalate or re-escalate the alarm at block 408 to one or more clinician devices. As used herein, in addition to having its ordinary meaning, the term “re-escalate” can refer to escalating a second time or any successive time after a previous escalation has occurred.
As with the decision block 406, the decision block 410 can select a different output depending on the number of clinician devices to which the alarm was sent. If a plurality of clinician devices received the alarm, then the escalation module 218 may proceed to block 408 and escalate if just one of them did not indicate that the user viewed the message. In another example, escalation occurs at block 408 if a majority did not view the message, or if all did not view the message, or the like.
If the clinician device or devices reported the alarm being viewed at block 410, the process 400 proceeds to block 412. At block 412, the escalation module determines whether the clinician device or devices accepted or forwarded the alarm. If the clinician device or devices forwarded (and thus declined) the alarm, then the escalation module 218 proceeds to escalate or re-escalate at block 408. As with the previous decision block 406 and 410, the escalation may occur at block 408 via block 412 if a single device declined the alarm or if a majority or all of the devices forwarded the alarm, depending on the implementation. If one or more devices instead accepted the alarm at block 412, then the escalation module 218 can suspend or silence the alarm at the patient device. Suspending an alarm can include temporarily disabling an audible alarm, for example, for 60 seconds or some other time. Silencing an alarm can include permanently disabling an audible alarm. Even after silencing an alarm, an audible alarm can be triggered again later by the patient data exceeding safe limits. Further, at block 414, the escalation module 218 can await to determine whether the alarm has been cleared. If the alarm has been cleared at the point-of-care device (for example, in person, by a clinician who accepted the alarm or by anyone else), the process 400 ends. Otherwise, the escalation module 218 escalates or re-escalates at block 408.
If multiple parameters are alarming at the same time or together (e.g., one after another and the first has not yet been cleared by clinician or on its own), the process 400 may be modified. For instance, any step in the process may be truncated in time, for example, by shortening wait times, to escalate faster at any point in the process 400. The amount of delay can be configurable, for instance, according to hospital policies. For example, delays between sending an alarm to a clinician device and determining whether to escalate, between clinicians reporting alarms viewed and determining whether to escalate, between accepting an alarm and clearing an alarm or escalating, can all be determined and saved in the MMS.
In another example implementation, block 410 is omitted, and the “yes” path from block 406 proceeds directly to block 412. In yet another example implementation, blocks 406 and 410 are omitted, and escalation is determined solely based on the conditions set forth in blocks 412 and 414.
An advantage of the multi-factor escalation process 400 is that data from the process 400 can be used for reporting purposes. A report can be generated that indicates statistics regarding clinicians' responses, such as the response times of clinicians or who is responding to notifications. For example, a report can indicate if a particular clinician declines many or all of his or her notifications. As another example, a report can be generated that shows the number of alarms in particular geographic areas, such as a wing, domain, or area of a hospital, such that more clinicians can be allocated to those areas. Thus, reviewers of such reports can identify and potentially resolve bottlenecks or inefficiencies in the patient alarm process.
The portable patient monitor 502 can communicate with the hub 500, for example, through the docking station 506 when docked and, for example, wirelessly when undocked; however, such undocked communication is not required. The hub 500 can communicate with one or more multi-patient monitoring systems 610 or server systems, such as, for example, those disclosed with in U.S. Pat. Pub. Nos. 2011/0105854, 2011/0169644, and 2007/0180140. The system 610 is an example of the system 110. The system 610 can communicate with caregiver backend systems 606 such as EMR and/or ADT systems.
The auxiliary device 640 shown can be a computing device having physical computer hardware, a display, and the like. For example, the auxiliary device 640 may be a handheld computing device used by a clinician, such as a tablet, laptop, cellphone or smartphone, personal digital assistant (PDA), a wearable computer (such as a smart watch or glasses), or the like. The auxiliary device 640 may also be simply a display device, such as a computer monitor or digital television. In an example, the auxiliary device 640 provides second screen functionality for the hub 500, PPM 502, or MMS 610. As such, the auxiliary device 640 can communicate wirelessly or through a wired connection with the hub 500, MMS 610, or PPM 502.
As a second screen device, the auxiliary device 640 can depict a copy of at least a portion of the display of the hub 500 (or the PPM 502) or a different version of the hub 500 (or the PPM 502) display. For instance, the auxiliary device 640 can receive physiological parameter data, trend data, or waveforms from the hub 500, PPM 502, or MMS 640 and display the parameter data, trend data, or waveforms. The auxiliary device 640 can output any information available to the hub 500, PPM 502, or MMS 610. One use of the auxiliary device 640 is as a clinician device usable by a clinician to view data from the hub 500, PPM 502, or MMS 610 while away from a patient's room (or even while in a patient's room). A clinician can use the auxiliary device 640 to view more detailed information about physiological parameters than is displayed on the hub 500 or PPM 502. For instance, the auxiliary device 640 may include zoom functionality or the like that enables a clinician to zoom into trends or waveforms to more closely inspect parameter activity. In some cases, the auxiliary device 640 can perform at least some processing of physiological parameters, including any of the functionality of the monitoring hub 500. For instance, the auxiliary device 640 may include a translation module 605 (which can have the same or similar functionality as the translation module 228). Additional example features of the translation module 605 are described in greater detail in U.S. Pat. No. 9,943,269, titled “System for Displaying Medical Monitoring Data,” filed Oct. 10, 2014 (“the '269 patent”), the disclosure of which is hereby incorporated by reference in its entirety.
Each of the user interfaces shown includes one or more user interface elements or controls that can be selected by a user. The user interface elements shown are merely illustrative examples and can be varied in other embodiments. For instance, any of the user interface elements shown may be substituted with other types of user interface elements. Some examples of user interface elements that may be used include buttons, dropdown boxes, select boxes, text boxes or text fields, checkboxes, radio buttons, toggles, breadcrumbs (e.g., identifying a page or interface that is displayed), sliders, search fields, pagination elements, tags, icons, tooltips, progress bars, notifications, message boxes, image carousels, modal windows (such as pop-ups), date and/or time pickers, accordions (e.g., a vertically stacked list with show/hide functionality), and the like. Additional user interface elements not listed here may be used.
Further, the user interfaces shown may be combined or divided into other user interfaces such that similar functionality or the same functionality may be provided fewer or more screens. Moreover, each of the user interface elements may be selected by a user using one or more input options, such as a mouse, touch screen input (e.g., finger or pen), or keyboard input, among other user interface input options. Although each of these user interfaces are shown implemented in a mobile device, the user interfaces or similar user interfaces can be output by any computing device, examples of which are described above.
The notifications screen 800 is an example default view for the mobile application described above, such as the notification client 108. The notifications screen 800 can provide notifications of alarms for a plurality of patients to a clinician. These notifications may be obtained or sent from a remote server, such as the MMS 110-610.
The notifications screen 800 includes a plurality of alarm notifications 810. Each alarm notification 810 is shown as a rectangular box with rounded corners. More generally, each alarm notification 810 may include a region, area, or portion of the display that may, but need not, be box-shaped. Each alarm notification 810 can display information about a patient, such as a label or identifier that may have been assigned to the patient at time of admission (for example MHill74698 and JHoward56498) as well as optionally the room number, the time and date of the notification, and an indication of what the alarm is about. For example, the first alarm notification 810 shown at the top of the notifications screen 800 indicates that the alarm relates to SpHb, which is high and has a value of 12.9 (g/dL). Admission of a patient to a device is described in greater detail in the '121 publication, incorporated by reference above.
To the left of each alarm notification 810 is a notification state indicator 820. Each notification state indicator 820 is a small, nearly rectangular-shaped vertical box to the left of each alarm notification, which forms a part of the alarm notification 810 box. The notification state indicator 820 can have a certain color or other characteristic that provides information about the alarm notification to which it is appended. For example, the notification state indicator 820 can have one of a plurality of colors such as the following: yellow, which can indicate that an alarm notification 810 is an initial notification; orange, which can indicate that an alarm notification 810 is a second or escalated alarm notification 810; red, which can indicate that an alarm notification 810 is a third notification or reescalation; or grey, which can indicate that the alarm notification 810 has been completed or otherwise cleared.
At the bottom of the notifications screen 800 are two user interface elements 840 and 850. The element 840 is a notifications screen element. This element 840 is shown as a different color than the element 850 (such as blue) in this particular screen 800, which can signify that this element 840 is in the selected state. Selecting the element 840 from a different screen, for instance, can result in the notifications screen 800 being displayed. The other element 850 is a patients screen element 850. Selecting the patients screen element 850 can provide a view of a plurality of patients that are assigned to the clinician who is using the clinician device. Example patients screens are shown and described below with respect to
The alarm notifications 810 can be user selectable in any of a variety of ways. For instance, an alarm notification 810 may be selected by pressing, long-pressing, or 3-D pressing the alarm notification or by swiping the alarm notification to left and/or right. Swiping the alarm notification may provide different options, which are discussed below with respect to
Turning now to
Turning to
Upon selection of the accept option 1020, the mobile device can send an indication to the MMS 110-610 that the clinician has accepted the alarm and therefore escalation may not occur at this time. Selection of the accept option 1020 may but need not cause the audible alarm that may be occurring at the point-of-care device to suspend or silence. Further options for suspending or silencing an audible alarm are discussed below. The accept option is an example of the “accept” option discussed above with respect to
Turning to
Turning to
Turning to
Turning to
Each of the tiles 1410 of patient data is surrounded by a border 1412 or 1414 to form a box or rectangle (for example, with rounded corners). The border 1412 or 1414 may be color-coded to indicate a status of the patient. For instance, the border 1412 can be a green border, which can indicate that no alarm is currently taking place, whereas the border 1414 can be a red border, which can indicate that an alarm is taking place. A green border can further indicate successful admission and connection with a point-of-care device. A yellow border can indicate successful connection to a point-of-care device without actual admission to that device. For example, a patient may be connected to a device via sensors but may not yet be admitted to the device using the techniques of the '121 publication described above. A yellow border can also indicate a potential probe-off condition, where the sensor may have fallen off the patient, may be improperly placed on the patient, or where a cable has become disconnected from either the sensor or the monitor. A red border 1414 can indicate that a device is alarming, and a grey border can indicate that a device is disconnected from the patient or from the network. Other highlighting techniques can also be used. For example, the various patient boxes can include shading in different colors as an alternative or in addition to changing the color of the borders.
A glow graphic 1422 behind the alarming parameter(s) can further indicate that an alarm is taking place. The glow graphic 1422 in this example depicts a diffuse circular colored area, which can serve to further draw a clinician's attention to the alarm. The color of the glow graphic 1422 may be red or yellow for alarms, or some other color (for example, according to any of the color schemes described herein). The glow graphic 1422 could also be overlaid in front of the parameter value but be partially transparent to permit viewing of both the glow graphic 1422 and the parameter value. The glow graphic 1422 can flash or blink (optionally pulsing, or fading in and out) to further indicate the presence of the alarm.
Unlike the patients screen 1400, where the tiles 1410 of patient data include physiological parameter values, no physiological parameter values are shown in the patient boxes 1510. One benefit of not showing these values can be that more patients can be shown in one screen. This can be a benefit because mobile devices may have small screens and may present a fuller view of the clinician's assigned patients. In addition, by omitting the physiological parameter values from the screen 1500, the screen 1500 may present a view without frequently changing numbers and can therefore be less visually distracting.
Yet each of the patient boxes 1510 can provide a quick, at-a-glance view of patient status. The status of the patients can be represented by status borders 1512 and 1514 surrounding the boxes 1510. The status borders 1512, 1514 can have different colors, such as any of the colors described above with respect to
Also shown is a list view element 1532, which can enable a user to access the list view of the patients screen 1400 (see
Patients or alarm notifications can be automatically sorted by a clinician's most recent sort option. If alarm severity were the most recent option, for instance, any new incoming alarm notification (or patient in the list) may cause a reordering of existing alarm notifications (or patients) based on severity. However, one downside of automatically reordering patients or notifications by severity may be that the display may perform the reordering just as a user is about to select one of the notifications or patients, causing a missed selection. Missed selections due to automatic re-ordering could be frustrating for users. Thus, sorting based on alarm severity may be disabled or omitted from the application.
In either the patients screen 1400 or 1500, the swipe functionality of the notifications screen 800 may be used. For instance, any row 1410 of
Turning to
In general, a patient data screen can have an identical or similar display to a point-of-care device that sends data through the MMS to the mobile device. Accordingly, a clinician can view whatever he or she could view at the patient's side remotely. Mimicking or replicating the point-of-care display (or a similar version thereof, such as more than half of the point-of-care display) on a mobile clinician device can enable clinicians to make more informed remote decisions about patients than could be done in the past with pagers or even simple mobile device applications. With such a patient data screen, a clinician can formulate an action plan for treating a patient while on the way to clearing an alarm, rather than after the clinician reaches the patient's side and sees the full data for the first time. This ability to plan ahead, provided by the patient data screen's robust data display, can save valuable time that can translate into saved lives and improved patient outcomes.
Because some mobile devices may be more constrained in screen real estate than some point-of-care devices, the patient data screen may display less information or a condensed view of the point-of-care device screen. Still other point-of-care devices, such as some patient-worn devices, have smaller displays than many mobile devices. For these point-of-care devices, the patient data screen can be identical or include even more information than is shown on the point-of-care devices (such as by adding waveforms if waveforms do not natively fit on the point-of-care devices).
Other configurations are also possible. For instance, a patient data screen corresponding to the same point-of-care device can be formatted differently for a laptop or tablet display, which may have a larger screen area than a smartphone display. The laptop or tablet patient data screen may have an identical or nearly identical display as the point-of-care device, while the smartphone display may have a condensed view such as the screen 1600 discussed below.
Referring specifically to
The rows 1620 can be panned or zoomed, for example, using finger gestures like taps, finger drags, and pinch zooms. Accordingly, a clinician can view more data than is displayed on one current screen. The rows of data 1620 show relatively flat trend lines 1622 because the time scale 1652 at the bottom of this example screen 1600 is about 10 minutes, but panning or zooming may show more detail in the trend lines 1622.
The grid 1630 of patient data includes two rows and three columns of parameter value boxes 1632. Each parameter value box 1632 includes a physiological parameter value (such as 8) and a label (such as RRa, rpm—respiratory rate (acoustic), respirations (or breaths) per minute). The parameter value boxes 1632 are borderless in the depicted example except for one box 1634, which has a red border 1636 and a glow graphic behind the parameter value that indicates that this particular parameter is alarming. The indicator 1638 can provide a notification descriptor, such as “Pulse CO-Ox SpOC Low.” The color of the border 1636 and the glow graphic may be the same or similar to the color schemes provided above or a different type of color scheme. Further, the parameter value—the actual number that is the subject of the alarm may also have a color that indicates an alarm place of or in addition to the glow graphic behind the parameter and/or the border 1636. The box 1634 can also blink in a red, yellow, or some other color to draw attention to the alarm. Near the top of the display, below a current instrument name 1648 (discussed below), is an indication of the alarm, replicating the alarm indication in the box 1634. The grid 1630 can also be scrollable if enough parameters are included in the grid 1630. For instance, if enough parameters are included in the grid to exceed two rows worth of boxes, the grid 1630 may become scrollable. Additional examples of scrollable grids and example criteria for making a grid scrollable are described in detail below.
The boxes 1632 in the grid 1630 can be user selectable to switch boxes 1632 in the grid 1630 with rows 1620. A user can select and drag and drop one of the boxes 1632 to the area of the screen that depicts the rows 1620. Once this has occurred, the parameter represented in the dragged and dropped box 1632 can be expanded to have its own row 1620, which may take the place of or may be in addition to one of the existing rows 1620. When placed as a row, the parameter that is in the box 1632 may have the characteristics of either the row 1620 (for example, depicting a wave form, trend, and/or a parameter value).
Thus, if a user wants to see more detailed parameter information about one of the parameters in the grid 1630, the user can move that parameter from the grid 1630 to the rows 1620 area of the display to see a trend, wave form, and/or parameter value together. When the user does so, one of the existing rows 1620 may then be collapsed into one of the boxes 1632 in the grid 1630. For example, if the SpHb parameter value box 1632 were dragged to the rows 1620 section of the display, then one of the rows 1620 (such as the last one for Pi) may disappear and the parameter value for that row may show up in the grid 1630 in place of the SpHb box.
In other example implementations, dragging a box 1632 to the rows 1620 may add a new row without causing an existing row to disappear. The rows 1620 may become scrollable, for instance, so that not all of the rows 1620 may be displayed at once but rather can be scrolled through (for example, up and down). In another example, adding another row by dragging a box to the rows 1620 area can cause the existing rows 1620 to shrink in the vertical dimension to accommodate the new row. Likewise the grid 1630 could shrink to accommodate the new row, or both the grid and the existing rows 1620 may shrink. Further, the rows 1620 may be split into two horizontal columns of rows so that more rows may be displayed (with or without a grid 1630). If multiple boxes 1632 are dragged to the rows 1620, then the grid 1630 may ultimately be reduced to a single row of boxes 1632 instead of two rows. In that case, more rows of detailed data may be shown above the grid 1630. In yet another example, the grid 1630 is omitted and all parameters are shown in rows, which may be scrollable if not enough screen real estate exists to depict all the rows at once.
Further, the placement of the grid 1630 with respect to the rows 1620 may not be fixed and may instead be moved above the rows or below the rows, between rows, or to the left or the right of the rows. The screen 1600 may be rotated to automatically cause the grid 1630 to dock to the left or right of the screen 1600, giving more screen real estate in the vertical axis for showing more rows 1620. The grid 1630 or the rows 1620 may be minimized to provide more screen real estate for one or the other. Many other configurations are also possible.
Toward the top of the screen 1600 are instrument selectors 1640 and 1642. The instrument selectors 1640 and 1642 are user interface elements, arrows in this example, which can enable a user to select a different instrument view. The example instrument selected for viewing in the patient data screen 1600 is indicated as the current instrument 1648, labeled “Root: rainbow.” Another instrument selector 1644 is next to the current instrument 1648 and is in the form of an arrow pointing downward. A user can select the instrument selector 1644 to obtain a drop-down box that can allow a quick selection of an instrument from a list. In contrast, the instrument selectors 1640 and 1642 can operate in a carousel fashion, where selection of either selector 1640, 1642 causes the next instrument in the list to automatically be displayed. Another example instrument display is discussed below with respect to
Selecting any of the instrument selectors 1640 through 1642 can cause the mobile application to obtain patient data from the server (for example, the MMS 110-610) corresponding to a different point-of-care instrument. Multiple point-of-care instruments may be connected to a patient. There may be, for example, (referring to
It is possible for the point-of-care device to send a preformatted image of the display on the point-of-care device to the server MMS 110-610, which can in turn provide the preformatted display to the clinician device. However, it may be more practical in some implementations for the MMS 110-610 to obtain the patient data from the point-of-care device and forward this information on to the clinician device or mobile device. The clinician device can include one or more graphics libraries and/or stored images corresponding to the point-of-care devices. Using currently-available or custom graphics library commands and/or stored images, the mobile application at the clinician device can construct a patient data screen to display a view the same as or similar to the point-of-care device display.
Turning to
In addition, an instrument selector indicator 1745 is shown to indicate which of how many screens is being depicted. The instrument indicator 1745 is essentially a carousel indicator that shows a larger dot next to smaller dots. The larger dot represents the screen in the carousel of screens that is selected. Selecting the instrument selector 1640 can cause the next dot to the left of the largest dot to become the largest dot and to indicate that it is showing that selected monitor with the right instrument selector 1642 having the opposite functionality. Selecting the instrument selector 1642 can cause the carousel to loop to the first screen, represented by the leftmost dot (which would then become the largest dot), and so on.
The patient data screen 1700 corresponds to a different monitor than the one used to derive the patient data screen 1600. The monitor that has data displayed measures ECG parameters as well as a plethysmograph and respiration. This data is represented in rows 1620 of patient data (as in
Another example display that could be shown on the clinician device, selected by an instrument selector, is a display of the auxiliary device 640, which may be a television, tablet or the like in the hospital room. The auxiliary device 640 and its associated displays are described in greater detail in the '269 patent, incorporated above, as well as in U.S. Provisional Application No. 62/574,726, filed Oct. 19, 2017, titled “Medical Monitoring Hub,” the disclosure of which is hereby incorporated by reference in its entirety. Since the auxiliary device 640 may be a television or otherwise have a larger display than the clinician device, the display from the auxiliary device 640 shown on the clinician device may be appropriately condensed.
Both
Turning to
In the example alarm setting screen 1950, several different example physiological parameters 1952 are shown including ORi (oxygen reserve index), SpO2, PR (pulse rate), and RRa, as well as SpHb. Alarm settings 1954, 1956 are shown for each parameter 1952, including a high limit 1954 and a low limit 1956. Both limits may not be applicable to all parameters. For example, some parameters (such as SpO2) may have a low limit 1956 but not a high limit 1954. User interface elements 1960 and 1970 in the form of minus and plus signs are provided to be user selectable so as to adjust each of the alarm limits 1954, 1956. A value 1962 is shown displayed between the UI elements 1960 and 1970, which can be the value of the alarm limit being adjusted by the UI elements 1960, 1970.
Turning to
Each of the alarm notification tiles 2010 can include a patient label (such as J. Smith—which can be a shortened version of the patient's name, full name, or some other identifier), a room number, and one or more parameter values that gave rise to the alarm (such as 83% SpO2) or an error message 2013 such as “No sensor connected.” Notification state indicators 2020 are also provided on the left side of each alarm notification tile 2010. The notification state indicators 2020 can be similar to the notification state indicators 820 in function. Instead of being colored rectangular bars, however, the notification state indicators 2020 are represented as inverted arrows or chevrons on the left side of the alarm notification tiles 2010. Of course, the location of the notification state indicators 2020 may be varied.
In the depicted example, each notification state indicator 2020 includes three inverted arrows or chevrons, some of which are shown in color and others of which are greyed out. One colored arrow in the notification state indicators 2020 can indicate that the alarm is an initial alarm. Two colored arrows can indicate that the alarm has been escalated, and three colored arrows can indicate that the alarm has been re-escalated. While three inverted arrows are shown, in other implementations fewer or more arrows (or other symbols) may be used to represent alarms, escalations, and re-escalations.
When an alarm notification is first received at the clinician device, if the device is currently locked, an alarm notification tile 2010 can be displayed on the lock screen of the device (not shown). The alarm notification tile 2010 can include any of the features described herein, including the notification state indicators 2020. A clinician can interact directly with the alarm notification tile 2010 from the lock screen in a similar manner as if the alarm notification tile 2010 were depicted on the user interface 2000.
Many different options can be used for determining when to escalate and re-escalate alarms, including any of the options described above. Hospital policy, for example, may specify when an alarm may be escalated or re-escalated. For instance, one hospital policy can be to escalate alarms after a minute has passed without any action being taken at the bedside monitor to disable the alarm. Another hospital policy can be to re-escalate an alarm if five minutes have passed after initial escalation without any interaction at the bedside monitor. These time periods may vary in different implementations.
Another difference from the alarm notification screen 2000 and the notification screen 800 is that some of the alarm notification tiles 2010 can include clinician response indicators 2012. In this example, the clinician response indicators 2012 are depicted as checkmarks. The checkmark clinician response indicator 2012 can indicate that a clinician has accepted the alarm, whereas an X indicator (not shown) or an arrow indicator (see
For alarm notification tiles 2010 that do not have a clinician response indicator 2012, the lack of indicator may mean that no clinician has yet responded or that the clinician using the user interface 2000 has not responded. Having an empty clinician response indicator 2012 can also indicate that another clinician has responded. Optionally, a different indicator may be provided to show that another clinician has responded. The clinician response indicators 2012 can be output based on the forward and accept options described above and which are further described in greater detail below. The clinician response indicators 2012 may also be used in conjunction with the notification screen 800. More generally, any of the features of the notification screen 2000 can be combined with the notification screen 800 and vice versa.
One tile 2011 looks like the other alarm notification tiles 2010 except that it is greyed out. This tile 2011 is greyed out because the tile 2011 used to represent an alarm notification but now indicates that an alarm has been addressed. However, greying out previous alarm notification tiles 2010 is one of multiple possible options for dealing with completed alarms. Another option is to cause such tiles to disappear from view automatically. Alternatively a greyed-out tile 2011 can disappear from view at some later time.
As in
Turning to
Turning to
Turning to
Likewise, turning to
In
Turning to
Turning to
Turning to
As described above with respect to
A grid view element 2934 can also be selected to cause a patients screen 3000 or the like to be displayed as shown in
Referring again to
Referring specifically to
In the grid 1630, a scroll bar 3390 is provided to indicate that the grid 1630 may be scrolled to view additional parameters. The scroll bar 3390 can indicate the relative position of the grid. The scrollbar 3390 itself may be selectable to scroll the grid up and down. When the grid 1630 has three or more rows of data, the grid may be scrollable. Alternatively, when the grid 1630 occupies a relatively smaller area of the screen than the rows, the grid may be scrollable with fewer than three rows. The grid 1630 may also scroll from side to side instead of vertically. The grid 1630 can also scroll like a ticker automatically, from one side to the other.
Toward the top of the patient data screen 3300, an instrument selector region 3380 is provided that includes several different elements. The instrument selector region 3380 depicts a name of the patient device and/or channel of that device that corresponds to the patient data being displayed. In this example, the patient device name is “Root,” which is an example patient device available from Masimo Corporation of Irvine, Calif. Next to the device name is a channel name, called “rainbow.” This channel is also available from Masimo and corresponds to optically-derived parameters such as SpO2, pulse rate, and respiratory rate, as well as other parameters. In general, a channel can correspond to a subset of the functionality of an instrument. A channel may also correspond to add-on functionality through another sensor or board-in-cable (BIC) connected to the instrument. Example BICs that can be used with any of the functionality herein are described in the '269 patent, incorporated by reference above.
Also shown in the instrument selector region 3380 is an instrument selector 1644 (see also
The arrows 1640 and 1642 from
Another alarm indicator 3352, shown as a red dot above the carousel 1745, indicates that an alarm is occurring on the instrument or channel corresponding to the portion of the carousel 1745 which the red dot is above. There may be multiple alarm indicators 3352 shown if multiple instruments or channels are alarming. Moreover, an alarm control button 3350 can allow a user to suspend or silence an alarm at the point of care, as described above.
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
Additional instruments may be connected to the hub (see
With continued reference to
Turning to
Turning to
The remaining Figures, until
A group of patient devices can include a hierarchy, such as a first group with children groups, grandchildren groups, and great-grandchildren groups. If a clinician device is configured for a group of patient devices, a sub-group of patient devices, or a sub-sub-group of patient devices, etc., then the clinician device may display alarm notifications for the configured group while excluding alarm notifications or other data for other groups. A clinical benefit of configuring a clinician device for a group of patient devices can include limiting the quantity of alarm notifications or other data that can be displayed or accessed by the clinician, which can thereby improve the user interface by making data or information more easily accessible by the clinician and/or by making the user interface less cluttered.
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
As shown, the response status for a clinician can be graphically represented in the notification user interface 5400. In the notification user interface 5400, “EB” can represent the initials for the clinician using the clinician device. Accordingly, the lack of a graphical indicator for the response status 5472 can indicate that the clinician has not responded to the first notification 5465. The first notification 5465 may have been responded to by another clinician, which can be indicated by the response status 5474 for another clinician represented by the initials “OA.” The response status 5474 for another clinician can include an acceptance graphical indicator that indicates that the other clinician has selected the notification 5465. Conversely, the response status 5476 can include a declined graphical indicator that indicates that a respective clinician has denied the corresponding notification. Accordingly, the response status is in the notification user interface 5400 can advantageously provide quick indications to a clinician regarding the notifications that have been accepted, denied, or that await a response.
Turning to
Turning to
Turning to
Turning to
Turning to
The user interface 5900 can include a historical view 5903 associated with a notification, such as the first notification 5465 of
Turning to
The notification indicator 6121 can further indicate one or more types of notifications that are off-screen. The notification indicator 6121 can be color-coded to indicate the one or more types of off-screen notifications. A notification indicator 6121 that is a first color, such as yellow, can indicate there are one or more notifications of a first type, such as notifications that correspond to a yellow color as described above. A notification indicator 6121 that is a second color, such as red, can indicate there are one or more notifications of at least a second type, such as notifications that correspond to at least one red or alarm status as described above. If the notification indicator 6121 is the second color, such as red, there can be at least one alarm status notification and additional lower status notifications, such as the first color. Additional details regarding notification statuses are described in further detail above with respect to
Turning to
Patient notes or the patient notes user interface 7500 can be used in a patient handoff workflow between multiple clinicians, such as during a shift change. In existing clinical settings, a patient handoff can be verbal, such as a first clinician telling a second clinician what happened with the patient. Accordingly, information can be lost where the first clinician forgets to tell the second clinician something in these existing handoffs. Information loss can be exacerbated after there have been multiple handoffs for the same patient. Thus, a patient handoff workflow process using the clinician device and electronic notes can improve existing patient handoffs and thereby improve patient care. Additional details regarding patient handoffs are described in further detail below with respect to
Turning to
Turning to
Turning to
Turning to
The dashboard user interface 8200 can also include on admit patient user interface element 8211. The admit patient user interface element 8211 can enable a clinician to admit a patient to a particular device using the clinician device. User selection of the admit patient user interface element 8211 can initiate a process to admit the patient, such as initiating a scanner process on the clinician device. Example scanner processes include barcode technology for linear or two-dimensional barcode scanners. Thus, a clinician can scan one or more of a patient wristband or a barcode on a patient device as part of the admitting process. The clinician can use a clinician device equipped with a camera, infrared scanner, or the like, or a separate optical scanner to scan the barcode.
Turning to
Similar to user selection of the discharge element 6219 of
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
At block 10802, user input can be received. The clinician device 104 can receive user input. The clinician device 104 can receive a user selection of a first configuration group from multiple configuration groups. As described above with respect to
Additional user input can be received for patient management. The clinician device 104 can receive a user selection to discharge a patient from a patient device. Based on the user input, a particular patient and patient device can be determined for discharge purposes. Examples of receiving user input to discharge a patient device are described in further detail above with respect to
Additional user input can be received for user interface customization. A clinician can customize one or more user interfaces, such as the patient alarming user interface 9600 of
At block 10804, one or more alarm notifications can be filtered. The clinician device 104 can transmit the user selection of the configuration group to a remote server over a network. In some embodiments, the remote server (such as the MMS 110) can receive the user selection and can transmit alarm notifications that correspond to the selected configuration group. Thus, the clinician device 104 can receive an alarm notification by the remote server from a patient device that is assigned to the first configuration group.
In some embodiments, the clinician device 104 can perform some alarm notification filtering. Based on the selected configuration group, the clinician device 104 can select a subset of alarm notifications to present or make available via a user interface. For example, the clinician device 104 may receive or store alarm notifications from multiple configuration groups, and the user selection can be used to select a subset of those alarm notifications. As another example, the clinician device 104 can filter alarm notifications received from the remote server over the network for a dashboard user interface. The clinician device 104 can determine, from the alarm notifications, a first subset of notifications that include an unread status. The clinician device 104 can identify categories from the first subset of notifications, where each category can correspond to an escalation status. The clinician device 104 can determine, from the alarm notifications, a second subset of notifications that can include an alarming status. Additional details regarding alarm notifications for a dashboard user interface are described above with respect to
As yet another example, the clinician device 104 can filter alarm notifications received from the remote server over the network for a patient alarming user interface, which can include grouping alarm notifications based on the originating patient device. As described herein, the alarm notifications can include a measured physiological parameter value corresponding to the patient. The clinician device 104 can determine, from the alarm notifications, a first subset of notifications for the patient associated with a first patient device. The clinician device 104 can also determine, from the alarm notifications, a second subset of notifications for the patient associated with a patient device. Additional details regarding alarm notifications for a patient alarming user interface are described above with respect to
At block 10805, one or more messages can be transmitted or received. The clinician device 104 can transmit or receive one or more messages with other clinician devices. The messages can include textual data, pictures, images, audio, attachments, multimedia, or any other type of data. Clinicians would like to use texting or messaging functionality, but regulations and laws regarding patient privacy, such as Health Insurance Portability and Accountability Act (HIPAA), may need to be taken into consideration. Applications running on network devices may use encryption to secure communications between devices. Accordingly, text-like messages, video, audio, images, or any other data sent to or from devices such as the patient device 102, the clinician device 104, the nurse station 106, the multi-patient monitoring system 110, or other networked devices can occur securely within an application on the device to comply with regulations and laws and maintain patient privacy. Encryption allows clinicians to securely communicate with other clinicians or patients, using, for example, text messaging, audio calling, or video calling. Encryption may also be used to communicate patient data and alarm conditions. Additional security can be used for networked devices. For example, a clinician may be required to login to the application or clinician device 104 with credentials, maintaining security of the in-application messaging. The encryption layer running at the application level allows secure communication between devices over both public and private networks and over multiple network types. For example, applications running on patient and/or clinician devices may use encryption at the application layer to encrypt text messages, images, video calling, audio calling, and/or the transmission of patient data. As another example, an application may initiation a communication with a device on a cellular network that is received by an application running on a device on an 802.11x network. Push notifications may be communicated using encryption to alert clinicians of, for example, changes in patient status or changes in patient assignments. In some embodiments, public-key encryption is used. In some embodiments, secret-key encryption is used. Digital certificates may be used to verify the identities of individuals, organizations, or devices. A device may select between multiple certificates, with the certificates being associated with, for example, different locations, different communication groups, or different users.
At block 10806, one or more events can be received. The clinician device 104 can receive an event data for a timeline user interface. The clinician device 104 can receive events from the remote server over the network, where some or all events can include a measured physiological parameter value corresponding to the patient. The events can indicate particular alarm notifications, when the alarm notifications occurred, or other patient related events such as intubation or a location change. The event data can include timestamps, such as when an event was generated or when it was received. In some embodiments, the clinician device 104 can receive events for a patient handoff. Additional information regarding events are described in further detail above with respect to
At block 10808, one or more notes can be received. The clinician device 104 can receive notes data for a notes user interface or a patient handoff process. The clinician device 104 can receive notes from the remote server over the network, where each note can include textual data regarding the patient and a timestamp. The timestamp can indicate when the note was generated or received. The notes can be generated by a clinician through a clinician device, such as by typing on a keyboard, speaking into a microphone, or using some other input device. Additional information regarding notes are described in further detail above with respect to
At block 10810, patient data can be received. The clinician device 104 can receive patient data from a remote server, an electronic medical record (EMR) system, or through a clinician via the clinician device 104. The clinician device 104 can request patient data from the remote server using a patient identifier. Example patient data includes a patient's name, label, room, patient medical record number (MRN), patient allergies, patient conditions, patient medication information (last medication taken, medication schedule, next scheduled medication), patient medical history, medical records, lab data, x-rays, blood work, or any other patient related information. Patient data or any data sent to or from the clinician device 104 can be transmitted according to a Health Level-7 or HL7 format, which refers to a set of international standards for transfer of clinical and administrative data between software applications used by various healthcare providers. In some embodiments, the clinician can use his or her clinician device 104 to edit or enter any patient data. Additional information regarding patient information are described in further detail with respect to
At block 10812, one or more patient devices can be managed. The clinician device 104 can manage a patient device by transmitting instructions to the remote server. The clinician device 104 can transmit the user selection to discharge the patient from a patient device to the remote server over the network. The remote server, such as the MMS 110, can remove an association between a patient (such as a patient profile) and a particular patient device, such that physiological data regarding the patient may no longer be captured or transmitted by the patient device. Additional information regarding discharging a patient are described in further detail above with respect to
Blocks 10814, 10816, and 10818 relate to error handling. At block 10814, an error status can be determined. The clinician device 104 can determine an error status. The clinician device 104 can detect a failed connection with the remote server over the network. Detection of a failed connection can include detecting that a network card is not working or that a network connection with the remote server cannot be made. Additional examples of error detection include detection of failed device hardware on the clinician device 104. If an error state has been detected, the process 10800 can proceed to block 10816; otherwise, the process can proceed to block 10820 where an error state has not been detected. At block 10816, a warning can be presented. The clinician device 104 can present a visual warning of the failed connection. At block 10818, a correction to the error can be detected. The clinician device 104 can detect that the error state has been corrected. In the context of a failed network connection, the clinician device 104 can detect a correction where the clinician device 104 successfully establishes a connection with the remote server over the network. If a correction has been detected, the clinician device 104 can proceed to block 10822; otherwise, the clinician device 104 can return to block 10818 and can continue checking for a correction of the error state. While the clinician device 105 keeps checking, the warning at block 10816 can persist, which can advantageously continue to inform the clinician that the clinician device 104 or the remote server is experiencing errors. Additional information regarding warnings, error states, and error correction are described in further detail above with respect to
At block 10820, a user interface can be output. Example output user interfaces are described above with respect to
The clinician device 104 can output a dashboard user interface. The dashboard user interface can include a first summary indicator of a first subset of notifications (such as unread notifications), a plurality of second summary indicators for each category (such as initial, escalated, and re-escalated statuses), and a third summary indicator of another subset of notifications (such as notifications that are alarming). Thus, in the dashboard user interface, the clinician can view how many notifications are unread, how many unread notifications there are of each category type, the alarming notifications and how many are alarming. The summary indicators can include a quantity of notifications or a number of notifications. Additional information regarding a dashboard user interface is described in further detail above with respect to
The clinician device 104 can also output a patient alarming user interface. The patient alarming user interface can include patient alarms segregated by originating patient device. Further, the patient alarming user interface can include multiple patient alarms grouped by device from multiple patient devices. In particular, the patient alarming user interface can include a first visual representation for each first measured physiological parameter value from a first subset of notifications grouped by a first patient device, and a second visual representation for each second measured physiological parameter value from a second subset of notifications grouped by a second patient device. Additional details regarding a patient alarming user interface are described in further detail with respect to
In some embodiments, the clinician device 104 can output a user interface based on customization input. The clinician device 104 can use user-specified customization to dynamically output a user interface, such as the type of notifications to view in a user interface, the layout of the notifications, or any other type of customization. Further, a dynamically output user interface can be further customized for particular patients. A clinician can have a different patient alarming user interface for a first patient than a second patient based on customization parameters specific to particular patients.
Turning to
At block 10902, one or more clinicians for the patient handoff can be identified. For example, the clinician device 104 can identify a first clinician and a second clinician for a handoff workflow for a patient. For example, the clinician leaving for shift change can conduct the patient handoff with the clinician device 104. In some embodiments, the patient handoff may be associated with multiple clinicians. As part of the handoff process, each of the transitioning clinicians can be specified to the clinician device 104 in addition to a particular patient.
At block 10904, patient data can be received. The clinician device 104 can receive patient data from the remote server over the network. The block 10904 for receiving patient data can be similar to the block 10810 of
At block 10906, notes can be received. The clinician device 104 can receive notes for the patient from the remote server over the network. Each note can include, for example, (i) textual data regarding the patient, and (ii) a timestamp. In some embodiments, notes can be stored locally on the clinician device 104 and can be retrieved from local storage. The block 10906 can be similar to the block 10808 of
At block 10908, events can be received. The clinician device 104 can receive events for the patient from the remote server over the network. Each event can include (i) a measured physiological parameter value corresponding to the patient, and (ii) a timestamp. In some embodiments, events can be stored locally on the clinician device 104 and can be retrieved from local storage. The block 10908 can be similar to the block 10806 of
At block 10910, one or more user interfaces can be output. The clinician device 104 can output a first user interface including, for example, (i) the notes ordered by each respective timestamp, and (ii) a visual representation of at least some of the textual data regarding the patient. The clinician device 104 can output a second user interface including, for example, (i) the events ordered by each respective timestamp, and (ii) a visual representation for each measured physiological parameter value. The clinician device 104 can output a third user interface including patient data. In some embodiments, the clinician device 104 can output a user interface that integrates notes, events, or patient data. For example, the user interface can include a feed such that notes, events, or patient data can be ordered by timestamps and reviewed by the handoff clinicians.
At block 10912, one or more confirmations can be received. The clinician device 104 can receive confirmations that indicate the clinicians have reviewed the handoff data. In some embodiments, a confirmation can include a clinician simply selecting a next user interface element to proceed through the handoff workflow. The clinician device 104 can receive a confirmation that a review of the user interface including the notes has been completed. The clinician device 104 can receive a confirmation that a review of the user interface including the events have been completed. The clinician device 104 can receive a confirmation that a review of the user interface including patient data has been completed.
At block 10914, data can be transmitted that indicates completion of the handoff workflow. In response to receiving one or more confirmations, the clinician device 104 can transmit an indication to the remote server that the handoff workflow for the patient has been completed by the clinicians. The indication can include a patient identifier, identifiers for clinicians, or a timestamp indicating a time that the handoff was completed. In some embodiments, the remote server does not need to be notified of the handoff completion. Handoff completion data may not need to be transmitted to the remote server or may not need to be stored at all.
Many other variations than those described herein will be apparent from this disclosure. For example, depending on the embodiment, certain acts, events, or functions of any of the algorithms described herein can be performed in a different sequence, can be added, merged, or left out altogether (e.g., not all described acts or events are necessary for the practice of the algorithms). Moreover, in certain embodiments, acts or events can be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially. In addition, different tasks or processes can be performed by different machines and/or computing systems that can function together.
The various illustrative logical blocks, modules, and algorithm steps described in connection with the embodiments disclosed herein can be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. The described functionality can be implemented in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosure.
The various illustrative logical blocks and modules described in connection with the embodiments disclosed herein can be implemented or performed by a machine, such as a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor can be a microprocessor, but in the alternative, the processor can be a controller, microcontroller, or state machine, combinations of the same, or the like. A processor can include electrical circuitry configured to process computer-executable instructions. In another embodiment, a processor includes an FPGA or other programmable device that performs logic operations without processing computer-executable instructions. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. A computing environment can include any type of computer system, including, but not limited to, a computer system based on a microprocessor, a mainframe computer, a digital signal processor, a portable computing device, a device controller, or a computational engine within an appliance, to name a few.
The steps of a method, process, or algorithm described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module stored in one or more memory devices and executed by one or more processors, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of non-transitory computer-readable storage medium, media, or physical computer storage known in the art. An example storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor. The storage medium can be volatile or nonvolatile. The processor and the storage medium can reside in an ASIC.
Conditional language used herein, such as, among others, “can,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Further, the term “each,” as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term “each” is applied.
While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the devices or algorithms illustrated can be made without departing from the spirit of the disclosure. As will be recognized, certain embodiments of the inventions described herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 62/659,961, filed Apr. 19, 2018, titled Mobile Patient Alarm Display, U.S. Provisional Patent Application Ser. No. 62/678,848, filed May 31, 2018, titled Mobile Patient Alarm Display, and U.S. Provisional Patent Application Ser. No. 62/712,154, filed Jul. 30, 2018, titled Mobile Patient Alarm Display. All of the foregoing applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4960128 | Gordon et al. | Oct 1990 | A |
4964408 | Hink et al. | Oct 1990 | A |
5041187 | Hink et al. | Aug 1991 | A |
5069213 | Polczynski | Dec 1991 | A |
5163438 | Gordon et al. | Nov 1992 | A |
5319355 | Russek | Jun 1994 | A |
5337744 | Branigan | Aug 1994 | A |
5341805 | Stavridi et al. | Aug 1994 | A |
D353195 | Savage et al. | Dec 1994 | S |
D353196 | Savage et al. | Dec 1994 | S |
5377676 | Vari et al. | Jan 1995 | A |
D359546 | Savage et al. | Jun 1995 | S |
5431170 | Mathews | Jul 1995 | A |
D361840 | Savage et al. | Aug 1995 | S |
D362063 | Savage et al. | Sep 1995 | S |
5452717 | Branigan et al. | Sep 1995 | A |
D363120 | Savage et al. | Oct 1995 | S |
5456252 | Vari et al. | Oct 1995 | A |
5479934 | Imran | Jan 1996 | A |
5482036 | Diab et al. | Jan 1996 | A |
5490505 | Diab et al. | Feb 1996 | A |
5494043 | O'Sullivan et al. | Feb 1996 | A |
5533511 | Kaspari et al. | Jul 1996 | A |
5534851 | Russek | Jul 1996 | A |
5561275 | Savage et al. | Oct 1996 | A |
5562002 | Lalin | Oct 1996 | A |
5590649 | Caro et al. | Jan 1997 | A |
5602924 | Durand et al. | Feb 1997 | A |
5632272 | Diab et al. | May 1997 | A |
5638816 | Kiani-Azarbayjany et al. | Jun 1997 | A |
5638818 | Diab et al. | Jun 1997 | A |
5645440 | Tobler et al. | Jul 1997 | A |
5685299 | Diab et al. | Nov 1997 | A |
D393830 | Tobler et al. | Apr 1998 | S |
5743262 | Lepper, Jr. et al. | Apr 1998 | A |
5758644 | Diab et al. | Jun 1998 | A |
5760910 | Lepper, Jr. et al. | Jun 1998 | A |
5769785 | Diab et al. | Jun 1998 | A |
5782757 | Diab et al. | Jul 1998 | A |
5785659 | Caro et al. | Jul 1998 | A |
5791347 | Flaherty et al. | Aug 1998 | A |
5810734 | Caro et al. | Sep 1998 | A |
5823950 | Diab et al. | Oct 1998 | A |
5830131 | Caro et al. | Nov 1998 | A |
5833618 | Caro et al. | Nov 1998 | A |
5860919 | Kiani-Azarbayjany et al. | Jan 1999 | A |
5890929 | Mills et al. | Apr 1999 | A |
5904654 | Wohltmann et al. | May 1999 | A |
5919134 | Diab | Jul 1999 | A |
5934925 | Tobler et al. | Aug 1999 | A |
5940182 | Lepper, Jr. et al. | Aug 1999 | A |
5987343 | Kinast | Nov 1999 | A |
5995855 | Kiani et al. | Nov 1999 | A |
5997343 | Mills et al. | Dec 1999 | A |
6002952 | Diab et al. | Dec 1999 | A |
6011986 | Diab et al. | Jan 2000 | A |
6027452 | Flaherty et al. | Feb 2000 | A |
6036642 | Diab et al. | Mar 2000 | A |
6045509 | Caro et al. | Apr 2000 | A |
6067462 | Diab et al. | May 2000 | A |
6081735 | Diab et al. | Jun 2000 | A |
6088607 | Diab et al. | Jul 2000 | A |
6110522 | Lepper, Jr. et al. | Aug 2000 | A |
6124597 | Shehada | Sep 2000 | A |
6128521 | Marro et al. | Oct 2000 | A |
6129675 | Jay | Oct 2000 | A |
6144868 | Parker | Nov 2000 | A |
6151516 | Kiani-Azarbayjany et al. | Nov 2000 | A |
6152754 | Gerhardt et al. | Nov 2000 | A |
6157850 | Diab et al. | Dec 2000 | A |
6165005 | Mills et al. | Dec 2000 | A |
6184521 | Coffin, IV et al. | Feb 2001 | B1 |
6206830 | Diab et al. | Mar 2001 | B1 |
6229856 | Diab et al. | May 2001 | B1 |
6232609 | Snyder et al. | May 2001 | B1 |
6236872 | Diab et al. | May 2001 | B1 |
6241683 | Macklem et al. | Jun 2001 | B1 |
6253097 | Aronow et al. | Jun 2001 | B1 |
6256523 | Diab et al. | Jul 2001 | B1 |
6263222 | Diab et al. | Jul 2001 | B1 |
6278522 | Lepper, Jr. et al. | Aug 2001 | B1 |
6280213 | Tobler et al. | Aug 2001 | B1 |
6285896 | Tobler et al. | Sep 2001 | B1 |
6301493 | Marro et al. | Oct 2001 | B1 |
6308089 | von der Ruhr et al. | Oct 2001 | B1 |
6317627 | Ennen et al. | Nov 2001 | B1 |
6321100 | Parker | Nov 2001 | B1 |
6325761 | Jay | Dec 2001 | B1 |
6334065 | Al-Ali et al. | Dec 2001 | B1 |
6343224 | Parker | Jan 2002 | B1 |
6349228 | Kiani et al. | Feb 2002 | B1 |
6360114 | Diab et al. | Mar 2002 | B1 |
6368283 | Xu et al. | Apr 2002 | B1 |
6371921 | Caro et al. | Apr 2002 | B1 |
6377829 | Al-Ali | Apr 2002 | B1 |
6388240 | Schulz et al. | May 2002 | B2 |
6397091 | Diab et al. | May 2002 | B2 |
6430437 | Marro | Aug 2002 | B1 |
6430525 | Weber et al. | Aug 2002 | B1 |
6463311 | Diab | Oct 2002 | B1 |
6470199 | Kopotic et al. | Oct 2002 | B1 |
6501975 | Diab et al. | Dec 2002 | B2 |
6505059 | Kollias et al. | Jan 2003 | B1 |
6515273 | Al-Ali | Feb 2003 | B2 |
6519487 | Parker | Feb 2003 | B1 |
6525386 | Mills et al. | Feb 2003 | B1 |
6526300 | Kiani et al. | Feb 2003 | B1 |
6541756 | Schulz et al. | Apr 2003 | B2 |
6542764 | Al-Ali et al. | Apr 2003 | B1 |
6580086 | Schulz et al. | Jun 2003 | B1 |
6584336 | Ali et al. | Jun 2003 | B1 |
6595316 | Cybulski et al. | Jul 2003 | B2 |
6597932 | Tian et al. | Jul 2003 | B2 |
6597933 | Kiani et al. | Jul 2003 | B2 |
6606511 | Ali et al. | Aug 2003 | B1 |
6632181 | Flaherty et al. | Oct 2003 | B2 |
6639668 | Trepagnier | Oct 2003 | B1 |
6640116 | Diab | Oct 2003 | B2 |
6643530 | Diab et al. | Nov 2003 | B2 |
6650917 | Diab et al. | Nov 2003 | B2 |
6654624 | Diab et al. | Nov 2003 | B2 |
6658276 | Kiani et al. | Dec 2003 | B2 |
6661161 | Lanzo et al. | Dec 2003 | B1 |
6671531 | Al-Ali et al. | Dec 2003 | B2 |
6678543 | Diab et al. | Jan 2004 | B2 |
6684090 | Ali et al. | Jan 2004 | B2 |
6684091 | Parker | Jan 2004 | B2 |
6697656 | Al-Ali | Feb 2004 | B1 |
6697657 | Shehada et al. | Feb 2004 | B1 |
6697658 | Al-Ali | Feb 2004 | B2 |
RE38476 | Diab et al. | Mar 2004 | E |
6699194 | Diab et al. | Mar 2004 | B1 |
6714804 | Al-Ali et al. | Mar 2004 | B2 |
RE38492 | Diab et al. | Apr 2004 | E |
6721582 | Trepagnier et al. | Apr 2004 | B2 |
6721585 | Parker | Apr 2004 | B1 |
6725075 | Al-Ali | Apr 2004 | B2 |
6728560 | Kollias et al. | Apr 2004 | B2 |
6735459 | Parker | May 2004 | B2 |
6745060 | Diab et al. | Jun 2004 | B2 |
6760607 | Al-Ali | Jul 2004 | B2 |
6770028 | Ali et al. | Aug 2004 | B1 |
6771994 | Kiani et al. | Aug 2004 | B2 |
6792300 | Diab et al. | Sep 2004 | B1 |
6813511 | Diab et al. | Nov 2004 | B2 |
6816741 | Diab | Nov 2004 | B2 |
6822564 | Al-Ali | Nov 2004 | B2 |
6826419 | Diab et al. | Nov 2004 | B2 |
6830711 | Mills et al. | Dec 2004 | B2 |
6850787 | Weber et al. | Feb 2005 | B2 |
6850788 | Al-Ali | Feb 2005 | B2 |
6852083 | Caro et al. | Feb 2005 | B2 |
6861639 | Al-Ali | Mar 2005 | B2 |
6898452 | Al-Ali et al. | May 2005 | B2 |
6920345 | Al-Ali et al. | Jul 2005 | B2 |
6931268 | Kiani-Azarbayjany et al. | Aug 2005 | B1 |
6934570 | Kiani et al. | Aug 2005 | B2 |
6939305 | Flaherty et al. | Sep 2005 | B2 |
6943348 | Coffin, IV | Sep 2005 | B1 |
6950687 | Al-Ali | Sep 2005 | B2 |
6961598 | Diab | Nov 2005 | B2 |
6970792 | Diab | Nov 2005 | B1 |
6979812 | Al-Ali | Dec 2005 | B2 |
6985764 | Mason et al. | Jan 2006 | B2 |
6993371 | Kiani et al. | Jan 2006 | B2 |
6996427 | Ali et al. | Feb 2006 | B2 |
6999904 | Weber et al. | Feb 2006 | B2 |
7003338 | Weber et al. | Feb 2006 | B2 |
7003339 | Diab et al. | Feb 2006 | B2 |
7015451 | Dalke et al. | Mar 2006 | B2 |
7024233 | Ali et al. | Apr 2006 | B2 |
7027849 | Al-Ali | Apr 2006 | B2 |
7030749 | Al-Ali | Apr 2006 | B2 |
7039449 | Al-Ali | May 2006 | B2 |
7041060 | Flaherty et al. | May 2006 | B2 |
7044918 | Diab | May 2006 | B2 |
7048687 | Reuss et al. | May 2006 | B1 |
7067893 | Mills et al. | Jun 2006 | B2 |
7096052 | Mason et al. | Aug 2006 | B2 |
7096054 | Abdul-Hafiz et al. | Aug 2006 | B2 |
7132641 | Schulz et al. | Nov 2006 | B2 |
7142901 | Kiani et al. | Nov 2006 | B2 |
7149561 | Diab | Dec 2006 | B2 |
7186966 | Al-Ali | Mar 2007 | B2 |
7190261 | Al-Ali | Mar 2007 | B2 |
7215984 | Diab | May 2007 | B2 |
7215986 | Diab | May 2007 | B2 |
7221971 | Diab | May 2007 | B2 |
7225006 | Al-Ali et al. | May 2007 | B2 |
7225007 | Al-Ali | May 2007 | B2 |
RE39672 | Shehada et al. | Jun 2007 | E |
7239905 | Kiani-Azarbayjany et al. | Jul 2007 | B2 |
7245953 | Parker | Jul 2007 | B1 |
7254429 | Schurman et al. | Aug 2007 | B2 |
7254431 | Al-Ali | Aug 2007 | B2 |
7254433 | Diab et al. | Aug 2007 | B2 |
7254434 | Schulz et al. | Aug 2007 | B2 |
7272425 | Al-Ali | Sep 2007 | B2 |
7274955 | Kiani et al. | Sep 2007 | B2 |
D554263 | Al-Ali | Oct 2007 | S |
7280858 | Al-Ali et al. | Oct 2007 | B2 |
7289835 | Mansfield et al. | Oct 2007 | B2 |
7292883 | De Felice et al. | Nov 2007 | B2 |
7295866 | Al-Ali | Nov 2007 | B2 |
7328053 | Diab et al. | Feb 2008 | B1 |
7332784 | Mills et al. | Feb 2008 | B2 |
7340287 | Mason et al. | Mar 2008 | B2 |
7341559 | Schulz et al. | Mar 2008 | B2 |
7343186 | Lamego et al. | Mar 2008 | B2 |
D566282 | Al-Ali et al. | Apr 2008 | S |
7355512 | Al-Ali | Apr 2008 | B1 |
7356365 | Schurman | Apr 2008 | B2 |
7371981 | Abdul-Hafiz | May 2008 | B2 |
7373193 | Al-Ali et al. | May 2008 | B2 |
7373194 | Weber et al. | May 2008 | B2 |
7376453 | Diab et al. | May 2008 | B1 |
7377794 | Al Ali et al. | May 2008 | B2 |
7377899 | Weber et al. | May 2008 | B2 |
7383070 | Diab et al. | Jun 2008 | B2 |
7415297 | Al-Ali et al. | Aug 2008 | B2 |
7428432 | Ali et al. | Sep 2008 | B2 |
7438683 | Al-Ali et al. | Oct 2008 | B2 |
7440787 | Diab | Oct 2008 | B2 |
7454240 | Diab et al. | Nov 2008 | B2 |
7467002 | Weber et al. | Dec 2008 | B2 |
7469157 | Diab et al. | Dec 2008 | B2 |
7471969 | Diab et al. | Dec 2008 | B2 |
7471971 | Diab et al. | Dec 2008 | B2 |
7483729 | Al-Ali et al. | Jan 2009 | B2 |
7483730 | Diab et al. | Jan 2009 | B2 |
7489958 | Diab et al. | Feb 2009 | B2 |
7496391 | Diab et al. | Feb 2009 | B2 |
7496393 | Diab et al. | Feb 2009 | B2 |
D587657 | Al-Ali et al. | Mar 2009 | S |
7499741 | Diab et al. | Mar 2009 | B2 |
7499835 | Weber et al. | Mar 2009 | B2 |
7500950 | Al-Ali et al. | Mar 2009 | B2 |
7509154 | Diab et al. | Mar 2009 | B2 |
7509494 | Al-Ali | Mar 2009 | B2 |
7510849 | Schurman et al. | Mar 2009 | B2 |
7526328 | Diab et al. | Apr 2009 | B2 |
7530942 | Diab | May 2009 | B1 |
7530949 | Al Ali et al. | May 2009 | B2 |
7530955 | Diab et al. | May 2009 | B2 |
7563110 | Al-Ali et al. | Jul 2009 | B2 |
7596398 | Al-Ali et al. | Sep 2009 | B2 |
7618375 | Flaherty | Nov 2009 | B2 |
D606659 | Kiani et al. | Dec 2009 | S |
7647083 | Al-Ali et al. | Jan 2010 | B2 |
D609193 | Al-Ali et al. | Feb 2010 | S |
D614305 | Al-Ali et al. | Apr 2010 | S |
RE41317 | Parker | May 2010 | E |
7729733 | Al-Ali et al. | Jun 2010 | B2 |
7734320 | Al-Ali | Jun 2010 | B2 |
7761127 | Al-Ali et al. | Jul 2010 | B2 |
7761128 | Al-Ali et al. | Jul 2010 | B2 |
7764982 | Dalke et al. | Jul 2010 | B2 |
D621516 | Kiani et al. | Aug 2010 | S |
7791155 | Diab | Sep 2010 | B2 |
7801581 | Diab | Sep 2010 | B2 |
7822452 | Schurman et al. | Oct 2010 | B2 |
RE41912 | Parker | Nov 2010 | E |
7844313 | Kiani et al. | Nov 2010 | B2 |
7844314 | Al-Ali | Nov 2010 | B2 |
7844315 | Al-Ali | Nov 2010 | B2 |
7865222 | Weber et al. | Jan 2011 | B2 |
7873497 | Weber et al. | Jan 2011 | B2 |
7880606 | Al-Ali | Feb 2011 | B2 |
7880626 | Al-Ali et al. | Feb 2011 | B2 |
7891355 | Al-Ali et al. | Feb 2011 | B2 |
7894868 | Al-Ali et al. | Feb 2011 | B2 |
7899507 | Al-Ali et al. | Mar 2011 | B2 |
7899518 | Trepagnier et al. | Mar 2011 | B2 |
7904132 | Weber et al. | Mar 2011 | B2 |
7909772 | Popov et al. | Mar 2011 | B2 |
7910875 | Al-Ali | Mar 2011 | B2 |
7919713 | Al-Ali et al. | Apr 2011 | B2 |
7937128 | Al-Ali | May 2011 | B2 |
7937129 | Mason et al. | May 2011 | B2 |
7937130 | Diab et al. | May 2011 | B2 |
7941199 | Kiani | May 2011 | B2 |
7951086 | Flaherty et al. | May 2011 | B2 |
7957780 | Lamego et al. | Jun 2011 | B2 |
7962188 | Kiani et al. | Jun 2011 | B2 |
7962190 | Diab et al. | Jun 2011 | B1 |
7976472 | Kiani | Jul 2011 | B2 |
7988637 | Diab | Aug 2011 | B2 |
7990382 | Kiani | Aug 2011 | B2 |
7991446 | Al-Ali et al. | Aug 2011 | B2 |
8000761 | Al-Ali | Aug 2011 | B2 |
8008088 | Bellott et al. | Aug 2011 | B2 |
RE42753 | Kiani-Azarbayjany et al. | Sep 2011 | E |
8019400 | Diab et al. | Sep 2011 | B2 |
8028701 | Al-Ali et al. | Oct 2011 | B2 |
8029765 | Bellott et al. | Oct 2011 | B2 |
8036727 | Schurman et al. | Oct 2011 | B2 |
8036728 | Diab et al. | Oct 2011 | B2 |
8046040 | Ali et al. | Oct 2011 | B2 |
8046041 | Diab et al. | Oct 2011 | B2 |
8046042 | Diab et al. | Oct 2011 | B2 |
8048040 | Kiani | Nov 2011 | B2 |
8050728 | Al-Ali et al. | Nov 2011 | B2 |
RE43169 | Parker | Feb 2012 | E |
8118620 | Al-Ali et al. | Feb 2012 | B2 |
8126528 | Diab et al. | Feb 2012 | B2 |
8128572 | Diab et al. | Mar 2012 | B2 |
8130105 | Al-Ali et al. | Mar 2012 | B2 |
8145287 | Diab et al. | Mar 2012 | B2 |
8150487 | Diab et al. | Apr 2012 | B2 |
8175672 | Parker | May 2012 | B2 |
8180420 | Diab et al. | May 2012 | B2 |
8182443 | Kiani | May 2012 | B1 |
8185180 | Diab et al. | May 2012 | B2 |
8190223 | Al-Ali et al. | May 2012 | B2 |
8190227 | Diab et al. | May 2012 | B2 |
8203438 | Kiani et al. | Jun 2012 | B2 |
8203704 | Merritt et al. | Jun 2012 | B2 |
8204566 | Schurman et al. | Jun 2012 | B2 |
8219172 | Schurman et al. | Jul 2012 | B2 |
8224411 | Al-Ali et al. | Jul 2012 | B2 |
8228181 | Al-Ali | Jul 2012 | B2 |
8229533 | Diab et al. | Jul 2012 | B2 |
8233955 | Al-Ali et al. | Jul 2012 | B2 |
8244325 | Al-Ali et al. | Aug 2012 | B2 |
8255026 | Al-Ali | Aug 2012 | B1 |
8255027 | Al-Ali et al. | Aug 2012 | B2 |
8255028 | Al-Ali et al. | Aug 2012 | B2 |
8260577 | Weber et al. | Sep 2012 | B2 |
8265723 | McHale et al. | Sep 2012 | B1 |
8274360 | Sampath et al. | Sep 2012 | B2 |
8280473 | Al-Ali | Oct 2012 | B2 |
8301217 | Al-Ali et al. | Oct 2012 | B2 |
8306596 | Schurman et al. | Nov 2012 | B2 |
8310336 | Muhsin et al. | Nov 2012 | B2 |
8315683 | Al-Ali et al. | Nov 2012 | B2 |
RE43860 | Parker | Dec 2012 | E |
8337403 | Al-Ali et al. | Dec 2012 | B2 |
8346330 | Lamego | Jan 2013 | B2 |
8353842 | Al-Ali et al. | Jan 2013 | B2 |
8355766 | MacNeish, III et al. | Jan 2013 | B2 |
8359080 | Diab et al. | Jan 2013 | B2 |
8364223 | Al-Ali et al. | Jan 2013 | B2 |
8364226 | Diab et al. | Jan 2013 | B2 |
8374665 | Lamego | Feb 2013 | B2 |
8385995 | Al-ali et al. | Feb 2013 | B2 |
8385996 | Smith et al. | Feb 2013 | B2 |
8388353 | Kiani et al. | Mar 2013 | B2 |
8399822 | Al-Ali | Mar 2013 | B2 |
8401602 | Kiani | Mar 2013 | B2 |
8405608 | Al-Ali et al. | Mar 2013 | B2 |
8414499 | Al-Ali et al. | Apr 2013 | B2 |
8418524 | Al-Ali | Apr 2013 | B2 |
8423106 | Lamego et al. | Apr 2013 | B2 |
8428967 | Olsen et al. | Apr 2013 | B2 |
8430817 | Al-Ali et al. | Apr 2013 | B1 |
8437825 | Dalvi et al. | May 2013 | B2 |
8455290 | Siskavich | Jun 2013 | B2 |
8457703 | Al-Ali | Jun 2013 | B2 |
8457707 | Kiani | Jun 2013 | B2 |
8463349 | Diab et al. | Jun 2013 | B2 |
8466286 | Bellot et al. | Jun 2013 | B2 |
8471713 | Poeze et al. | Jun 2013 | B2 |
8473020 | Kiani et al. | Jun 2013 | B2 |
8483787 | Al-Ali et al. | Jul 2013 | B2 |
8489364 | Weber et al. | Jul 2013 | B2 |
8498684 | Weber et al. | Jul 2013 | B2 |
8504128 | Blank et al. | Aug 2013 | B2 |
8509867 | Workman et al. | Aug 2013 | B2 |
8515509 | Bruinsma et al. | Aug 2013 | B2 |
8523781 | Al-Ali | Sep 2013 | B2 |
8529301 | Al-Ali et al. | Sep 2013 | B2 |
8532727 | Ali et al. | Sep 2013 | B2 |
8532728 | Diab et al. | Sep 2013 | B2 |
D692145 | Al-Ali et al. | Oct 2013 | S |
8547209 | Kiani et al. | Oct 2013 | B2 |
8548548 | Al-Ali | Oct 2013 | B2 |
8548549 | Schurman et al. | Oct 2013 | B2 |
8548550 | Al-Ali et al. | Oct 2013 | B2 |
8560032 | Al-Ali et al. | Oct 2013 | B2 |
8560034 | Diab et al. | Oct 2013 | B1 |
8570167 | Al-Ali | Oct 2013 | B2 |
8570503 | Vo et al. | Oct 2013 | B2 |
8571617 | Reichgott et al. | Oct 2013 | B2 |
8571618 | Lamego et al. | Oct 2013 | B1 |
8571619 | Al-Ali et al. | Oct 2013 | B2 |
8577431 | Lamego et al. | Nov 2013 | B2 |
8581732 | Al-Ali et al. | Nov 2013 | B2 |
8584345 | Al-Ali et al. | Nov 2013 | B2 |
8588880 | Abdul-Hafiz et al. | Nov 2013 | B2 |
8600467 | Al-Ali et al. | Dec 2013 | B2 |
8606342 | Diab | Dec 2013 | B2 |
8626255 | Al-Ali et al. | Jan 2014 | B2 |
8630691 | Lamego et al. | Jan 2014 | B2 |
8634889 | Al-Ali et al. | Jan 2014 | B2 |
8641631 | Sierra et al. | Feb 2014 | B2 |
8652060 | Al-Ali | Feb 2014 | B2 |
8663107 | Kiani | Mar 2014 | B2 |
8666468 | Al-Ali | Mar 2014 | B1 |
8667967 | Al- Ali et al. | Mar 2014 | B2 |
8670811 | O'Reilly | Mar 2014 | B2 |
8670814 | Diab et al. | Mar 2014 | B2 |
8676286 | Weber et al. | Mar 2014 | B2 |
8682407 | Al-Ali | Mar 2014 | B2 |
RE44823 | Parker | Apr 2014 | E |
RE44875 | Kiani et al. | Apr 2014 | E |
8690799 | Telfort et al. | Apr 2014 | B2 |
8700112 | Kiani | Apr 2014 | B2 |
8702627 | Telfort et al. | Apr 2014 | B2 |
8706179 | Parker | Apr 2014 | B2 |
8712494 | MacNeish, III et al. | Apr 2014 | B1 |
8715206 | Telfort et al. | May 2014 | B2 |
8718735 | Lamego et al. | May 2014 | B2 |
8718737 | Diab et al. | May 2014 | B2 |
8718738 | Blank et al. | May 2014 | B2 |
8720249 | Al-Ali | May 2014 | B2 |
8721541 | Al-Ali et al. | May 2014 | B2 |
8721542 | Al-Ali et al. | May 2014 | B2 |
8723677 | Kiani | May 2014 | B1 |
8740792 | Kiani et al. | Jun 2014 | B1 |
8754776 | Poeze et al. | Jun 2014 | B2 |
8755535 | Telfort et al. | Jun 2014 | B2 |
8755856 | Diab et al. | Jun 2014 | B2 |
8755872 | Marinow | Jun 2014 | B1 |
8761850 | Lamego | Jun 2014 | B2 |
8764671 | Kiani | Jul 2014 | B2 |
8768423 | Shakespeare et al. | Jul 2014 | B2 |
8771204 | Telfort et al. | Jul 2014 | B2 |
8777634 | Kiani et al. | Jul 2014 | B2 |
8781543 | Diab et al. | Jul 2014 | B2 |
8781544 | Al-Ali et al. | Jul 2014 | B2 |
8781549 | Al-Ali et al. | Jul 2014 | B2 |
8788003 | Schurman et al. | Jul 2014 | B2 |
8790268 | Al-Ali | Jul 2014 | B2 |
8801613 | Al-Ali et al. | Aug 2014 | B2 |
8821397 | Al-Ali et al. | Sep 2014 | B2 |
8821415 | Al-Ali et al. | Sep 2014 | B2 |
8830449 | Lamego et al. | Sep 2014 | B1 |
8831700 | Schurman et al. | Sep 2014 | B2 |
8840549 | Al-Ali et al. | Sep 2014 | B2 |
8847740 | Kiani et al. | Sep 2014 | B2 |
8849365 | Smith et al. | Sep 2014 | B2 |
8852094 | Al-Ali et al. | Oct 2014 | B2 |
8852994 | Wojtczuk et al. | Oct 2014 | B2 |
8868147 | Stippick et al. | Oct 2014 | B2 |
8868150 | Al-Ali et al. | Oct 2014 | B2 |
8870792 | Al-Ali et al. | Oct 2014 | B2 |
8886271 | Kiani et al. | Nov 2014 | B2 |
8888539 | Al-Ali et al. | Nov 2014 | B2 |
8888708 | Diab et al. | Nov 2014 | B2 |
8892180 | Weber et al. | Nov 2014 | B2 |
8897847 | Al-Ali | Nov 2014 | B2 |
8909310 | Lamego et al. | Dec 2014 | B2 |
8911377 | Al-Ali | Dec 2014 | B2 |
8912909 | Al-Ali et al. | Dec 2014 | B2 |
8920317 | Al-Ali et al. | Dec 2014 | B2 |
8921699 | Al-Ali et al. | Dec 2014 | B2 |
8922382 | Al-Ali et al. | Dec 2014 | B2 |
8929964 | Al-Ali et al. | Jan 2015 | B2 |
8942777 | Diab et al. | Jan 2015 | B2 |
8948834 | Diab et al. | Feb 2015 | B2 |
8948835 | Diab | Feb 2015 | B2 |
8965471 | Lamego | Feb 2015 | B2 |
8983564 | Al-Ali | Mar 2015 | B2 |
8989831 | Al-Ali et al. | Mar 2015 | B2 |
8996085 | Kiani et al. | Mar 2015 | B2 |
8998809 | Kiani | Apr 2015 | B2 |
9028429 | Telfort et al. | May 2015 | B2 |
9037207 | Al-Ali et al. | May 2015 | B2 |
9060721 | Reichgott et al. | Jun 2015 | B2 |
9066666 | Kiani | Jun 2015 | B2 |
9066680 | Al-Ali et al. | Jun 2015 | B1 |
9072474 | Al-Ali et al. | Jul 2015 | B2 |
9078560 | Schurman et al. | Jul 2015 | B2 |
9084569 | Weber et al. | Jul 2015 | B2 |
9095316 | Welch et al. | Aug 2015 | B2 |
9106038 | Telfort et al. | Aug 2015 | B2 |
9107625 | Telfort et al. | Aug 2015 | B2 |
9107626 | Al-Ali et al. | Aug 2015 | B2 |
9113831 | Al-Ali | Aug 2015 | B2 |
9113832 | Al-Ali | Aug 2015 | B2 |
9119595 | Lamego | Sep 2015 | B2 |
9131881 | Diab et al. | Sep 2015 | B2 |
9131882 | Al-Ali et al. | Sep 2015 | B2 |
9131883 | Al-Ali | Sep 2015 | B2 |
9131917 | Telfort et al. | Sep 2015 | B2 |
9138180 | Coverston et al. | Sep 2015 | B1 |
9138182 | Al-Ali et al. | Sep 2015 | B2 |
9138192 | Weber et al. | Sep 2015 | B2 |
9142117 | Muhsin et al. | Sep 2015 | B2 |
9153112 | Kiani et al. | Oct 2015 | B1 |
9153121 | Kiani et al. | Oct 2015 | B2 |
9161696 | Al-Ali et al. | Oct 2015 | B2 |
9161713 | Al-Ali et al. | Oct 2015 | B2 |
9167995 | Lamego et al. | Oct 2015 | B2 |
9176141 | Al-Ali et al. | Nov 2015 | B2 |
9186102 | Bruinsma et al. | Nov 2015 | B2 |
9192312 | Al-Ali | Nov 2015 | B2 |
9192329 | Al-Ali | Nov 2015 | B2 |
9192351 | Telfort et al. | Nov 2015 | B1 |
9195385 | Al-Ali et al. | Nov 2015 | B2 |
9211072 | Kiani | Dec 2015 | B2 |
9211095 | Al-Ali | Dec 2015 | B1 |
9218454 | Kiani et al. | Dec 2015 | B2 |
9226696 | Kiani | Jan 2016 | B2 |
9241662 | Al-Ali et al. | Jan 2016 | B2 |
9245668 | Vo et al. | Jan 2016 | B1 |
9259185 | Abdul-Hafiz et al. | Feb 2016 | B2 |
9267572 | Barker et al. | Feb 2016 | B2 |
9277880 | Poeze et al. | Mar 2016 | B2 |
9289167 | Diab et al. | Mar 2016 | B2 |
9295421 | Kiani et al. | Mar 2016 | B2 |
9307928 | Al-Ali et al. | Apr 2016 | B1 |
9323894 | Kiani | Apr 2016 | B2 |
D755392 | Hwang et al. | May 2016 | S |
9326712 | Kiani | May 2016 | B1 |
9333316 | Kiani | May 2016 | B2 |
9339220 | Lamego et al. | May 2016 | B2 |
9341565 | Lamego et al. | May 2016 | B2 |
9351673 | Diab et al. | May 2016 | B2 |
9351675 | Al-Ali et al. | May 2016 | B2 |
9364181 | Kiani et al. | Jun 2016 | B2 |
9368671 | Wojtczuk et al. | Jun 2016 | B2 |
9370325 | Al-Ali et al. | Jun 2016 | B2 |
9370326 | McHale et al. | Jun 2016 | B2 |
9370335 | Al-Ali et al. | Jun 2016 | B2 |
9375185 | Ali et al. | Jun 2016 | B2 |
9386953 | Al-Ali | Jul 2016 | B2 |
9386961 | Al-Ali et al. | Jul 2016 | B2 |
9392945 | Al-Ali et al. | Jul 2016 | B2 |
9397448 | Al-Ali et al. | Jul 2016 | B2 |
9408542 | Kinast et al. | Aug 2016 | B1 |
9436645 | Al-Ali et al. | Sep 2016 | B2 |
9445759 | Lamego et al. | Sep 2016 | B1 |
9466919 | Kiani et al. | Oct 2016 | B2 |
9474474 | Lamego et al. | Oct 2016 | B2 |
9480422 | Al-Ali | Nov 2016 | B2 |
9480435 | Olsen | Nov 2016 | B2 |
9492110 | Al-Ali et al. | Nov 2016 | B2 |
9510779 | Poeze et al. | Dec 2016 | B2 |
9517024 | Kiani et al. | Dec 2016 | B2 |
9532722 | Lamego et al. | Jan 2017 | B2 |
9538949 | Al-Ali et al. | Jan 2017 | B2 |
9538980 | Telfort et al. | Jan 2017 | B2 |
9549696 | Lamego et al. | Jan 2017 | B2 |
9554737 | Schurman et al. | Jan 2017 | B2 |
9560996 | Kiani | Feb 2017 | B2 |
9560998 | Al-Ali et al. | Feb 2017 | B2 |
9566019 | Al-Ali et al. | Feb 2017 | B2 |
9579039 | Jansen et al. | Feb 2017 | B2 |
9591975 | Dalvi et al. | Mar 2017 | B2 |
9622692 | Lamego et al. | Apr 2017 | B2 |
9622693 | Diab | Apr 2017 | B2 |
D788312 | Al-Ali et al. | May 2017 | S |
9636055 | Al-Ali et al. | May 2017 | B2 |
9636056 | Al-Ali | May 2017 | B2 |
9649054 | Lamego et al. | May 2017 | B2 |
9662052 | Al-Ali et al. | May 2017 | B2 |
9668679 | Schurman et al. | Jun 2017 | B2 |
9668680 | Bruinsma et al. | Jun 2017 | B2 |
9668703 | Al-Ali | Jun 2017 | B2 |
9675286 | Diab | Jun 2017 | B2 |
9687160 | Kiani | Jun 2017 | B2 |
9693719 | Al-Ali et al. | Jul 2017 | B2 |
9693737 | Al-Ali | Jul 2017 | B2 |
9697928 | Al-Ali et al. | Jul 2017 | B2 |
9717425 | Kiani et al. | Aug 2017 | B2 |
9717458 | Lamego et al. | Aug 2017 | B2 |
9724016 | Al-Ali et al. | Aug 2017 | B1 |
9724024 | Al-Ali | Aug 2017 | B2 |
9724025 | Kiani et al. | Aug 2017 | B1 |
9730640 | Diab et al. | Aug 2017 | B2 |
9743887 | Al-Ali et al. | Aug 2017 | B2 |
9749232 | Sampath et al. | Aug 2017 | B2 |
9750442 | Olsen | Sep 2017 | B2 |
9750443 | Smith et al. | Sep 2017 | B2 |
9750461 | Telfort | Sep 2017 | B1 |
9775545 | Al-Ali et al. | Oct 2017 | B2 |
9775546 | Diab et al. | Oct 2017 | B2 |
9775570 | Al-Ali | Oct 2017 | B2 |
9778079 | Al-Ali et al. | Oct 2017 | B1 |
9782077 | Lamego et al. | Oct 2017 | B2 |
9782110 | Kiani | Oct 2017 | B2 |
9787568 | Lamego et al. | Oct 2017 | B2 |
9788735 | Al-Ali | Oct 2017 | B2 |
9788768 | Al-Ali et al. | Oct 2017 | B2 |
9795300 | Al-Ali | Oct 2017 | B2 |
9795310 | Al-Ali | Oct 2017 | B2 |
9795358 | Telfort et al. | Oct 2017 | B2 |
9795739 | Al-Ali et al. | Oct 2017 | B2 |
9801556 | Kiani | Oct 2017 | B2 |
9801588 | Weber et al. | Oct 2017 | B2 |
9808188 | Perea et al. | Nov 2017 | B1 |
9814418 | Weber et al. | Nov 2017 | B2 |
9820691 | Kiani | Nov 2017 | B2 |
9833152 | Kiani et al. | Dec 2017 | B2 |
9833180 | Shakespeare et al. | Dec 2017 | B2 |
9839379 | Al-Ali et al. | Dec 2017 | B2 |
9839381 | Weber et al. | Dec 2017 | B1 |
9847002 | Kiani et al. | Dec 2017 | B2 |
9847749 | Kiani et al. | Dec 2017 | B2 |
9848800 | Lee et al. | Dec 2017 | B1 |
9848806 | Al-Ali et al. | Dec 2017 | B2 |
9848807 | Lamego | Dec 2017 | B2 |
9861298 | Eckerbom et al. | Jan 2018 | B2 |
9861304 | Al-Ali et al. | Jan 2018 | B2 |
9861305 | Weber et al. | Jan 2018 | B1 |
9867578 | Al-Ali et al. | Jan 2018 | B2 |
9872623 | Al-Ali | Jan 2018 | B2 |
9876320 | Coverston et al. | Jan 2018 | B2 |
9877650 | Muhsin et al. | Jan 2018 | B2 |
9877686 | Al-Ali et al. | Jan 2018 | B2 |
9891079 | Dalvi | Feb 2018 | B2 |
9895107 | Al-Ali et al. | Feb 2018 | B2 |
9913617 | Al-Ali et al. | Mar 2018 | B2 |
9924893 | Schurman et al. | Mar 2018 | B2 |
9924897 | Abdul-Hafiz | Mar 2018 | B1 |
9936917 | Poeze et al. | Apr 2018 | B2 |
9943269 | Muhsin et al. | Apr 2018 | B2 |
9949676 | Al-Ali | Apr 2018 | B2 |
9955937 | Telfort | May 2018 | B2 |
9965946 | Al-Ali | May 2018 | B2 |
9980667 | Kiani et al. | May 2018 | B2 |
D820865 | Muhsin et al. | Jun 2018 | S |
9986919 | Lamego et al. | Jun 2018 | B2 |
9986952 | Dalvi et al. | Jun 2018 | B2 |
9989560 | Poeze et al. | Jun 2018 | B2 |
9993207 | Al-Ali et al. | Jun 2018 | B2 |
10007758 | Al-Ali et al. | Jun 2018 | B2 |
D822215 | Al-Ali et al. | Jul 2018 | S |
D822216 | Barker et al. | Jul 2018 | S |
10010276 | Al-Ali et al. | Jul 2018 | B2 |
10032002 | Kiani et al. | Jul 2018 | B2 |
10039482 | Al-Ali et al. | Aug 2018 | B2 |
10052037 | Kinast et al. | Aug 2018 | B2 |
10058275 | Al-Ali et al. | Aug 2018 | B2 |
10064562 | Al-Ali | Sep 2018 | B2 |
10086138 | Novak, Jr. | Oct 2018 | B1 |
10092200 | Al-Ali et al. | Oct 2018 | B2 |
10092249 | Kiani et al. | Oct 2018 | B2 |
10098550 | Al-Ali et al. | Oct 2018 | B2 |
10098591 | Al-Ali et al. | Oct 2018 | B2 |
10098610 | Al-Ali et al. | Oct 2018 | B2 |
D833624 | DeJong et al. | Nov 2018 | S |
10123726 | Al-Ali et al. | Nov 2018 | B2 |
10130289 | Al-Ali et al. | Nov 2018 | B2 |
10130291 | Schurman et al. | Nov 2018 | B2 |
D835282 | Barker et al. | Dec 2018 | S |
D835283 | Barker et al. | Dec 2018 | S |
D835284 | Barker et al. | Dec 2018 | S |
D835285 | Barker et al. | Dec 2018 | S |
10149616 | Al-Ali et al. | Dec 2018 | B2 |
10154815 | Al-Ali et al. | Dec 2018 | B2 |
10159412 | Lamego et al. | Dec 2018 | B2 |
10188296 | Al-Ali et al. | Jan 2019 | B2 |
10188331 | Al-Ali et al. | Jan 2019 | B1 |
10188348 | Kiani et al. | Jan 2019 | B2 |
RE47218 | Ali-Ali | Feb 2019 | E |
RE47244 | Kiani et al. | Feb 2019 | E |
RE47249 | Kiani et al. | Feb 2019 | E |
10194847 | Al-Ali | Feb 2019 | B2 |
10194848 | Kiani et al. | Feb 2019 | B1 |
10201298 | Al-Ali et al. | Feb 2019 | B2 |
10205272 | Kiani et al. | Feb 2019 | B2 |
10205291 | Scruggs et al. | Feb 2019 | B2 |
10213108 | Al-Ali | Feb 2019 | B2 |
10219706 | Al-Ali | Mar 2019 | B2 |
10219746 | McHale et al. | Mar 2019 | B2 |
10226187 | Al-Ali et al. | Mar 2019 | B2 |
10226576 | Kiani | Mar 2019 | B2 |
10231657 | Al-Ali et al. | Mar 2019 | B2 |
10231670 | Blank et al. | Mar 2019 | B2 |
10231676 | Al-Ali et al. | Mar 2019 | B2 |
RE47353 | Kiani et al. | Apr 2019 | E |
10251585 | Al-Ali et al. | Apr 2019 | B2 |
10251586 | Lamego | Apr 2019 | B2 |
10255994 | Sampath et al. | Apr 2019 | B2 |
10258265 | Poeze et al. | Apr 2019 | B1 |
10258266 | Poeze et al. | Apr 2019 | B1 |
10271748 | Al-Ali | Apr 2019 | B2 |
10278626 | Schurman et al. | May 2019 | B2 |
10278648 | Al-Ali et al. | May 2019 | B2 |
10279247 | Kiani | May 2019 | B2 |
10292628 | Poeze et al. | May 2019 | B1 |
10292657 | Abdul-Hafiz et al. | May 2019 | B2 |
10292664 | Al-Ali | May 2019 | B2 |
10299708 | Poeze et al. | May 2019 | B1 |
10299709 | Perea et al. | May 2019 | B2 |
10305775 | Lamego et al. | May 2019 | B2 |
10307111 | Muhsin et al. | Jun 2019 | B2 |
10325681 | Sampath et al. | Jun 2019 | B2 |
10327337 | Triman et al. | Jun 2019 | B2 |
10327713 | Barker et al. | Jun 2019 | B2 |
10332630 | Al-Ali | Jun 2019 | B2 |
10335033 | Al-Ali | Jul 2019 | B2 |
10335068 | Poeze et al. | Jul 2019 | B2 |
10335072 | Al-Ali et al. | Jul 2019 | B2 |
10342470 | Al-Ali et al. | Jul 2019 | B2 |
10342487 | Al-Ali et al. | Jul 2019 | B2 |
10342497 | Al-Ali et al. | Jul 2019 | B2 |
10349895 | Telfort et al. | Jul 2019 | B2 |
10349898 | Al-Ali et al. | Jul 2019 | B2 |
10354504 | Kiani et al. | Jul 2019 | B2 |
10357206 | Weber et al. | Jul 2019 | B2 |
10357209 | Al-Ali | Jul 2019 | B2 |
10366787 | Sampath et al. | Jul 2019 | B2 |
10368787 | Reichgott et al. | Aug 2019 | B2 |
10376190 | Poeze et al. | Aug 2019 | B1 |
10376191 | Poeze et al. | Aug 2019 | B1 |
10383520 | Wojtczuk et al. | Aug 2019 | B2 |
10383527 | Al-Ali | Aug 2019 | B2 |
10388120 | Muhsin et al. | Aug 2019 | B2 |
10398320 | Kiani et al. | Sep 2019 | B2 |
10405804 | Al-Ali | Sep 2019 | B2 |
10413666 | Al-Ali et al. | Sep 2019 | B2 |
10420493 | Al-Ali et al. | Sep 2019 | B2 |
20060161054 | Reuss et al. | Jul 2006 | A1 |
20090247984 | Lamego et al. | Oct 2009 | A1 |
20090275813 | Davis | Nov 2009 | A1 |
20090275844 | Al-Ali | Nov 2009 | A1 |
20100004518 | Vo et al. | Jan 2010 | A1 |
20100030040 | Poeze et al. | Feb 2010 | A1 |
20110082711 | Poeze et al. | Apr 2011 | A1 |
20110125060 | Telfort et al. | May 2011 | A1 |
20110208015 | Welch et al. | Aug 2011 | A1 |
20110230733 | Al-Ali | Sep 2011 | A1 |
20120165629 | Merritt et al. | Jun 2012 | A1 |
20120209084 | Olsen et al. | Aug 2012 | A1 |
20120283524 | Kiani et al. | Nov 2012 | A1 |
20130023775 | Lamego et al. | Jan 2013 | A1 |
20130041591 | Lamego | Feb 2013 | A1 |
20130060147 | Welch et al. | Mar 2013 | A1 |
20130096405 | Garfio | Apr 2013 | A1 |
20130096936 | Sampath et al. | Apr 2013 | A1 |
20130243021 | Siskavich | Sep 2013 | A1 |
20130296672 | O'Neil et al. | Nov 2013 | A1 |
20130324808 | Al-Ali et al. | Dec 2013 | A1 |
20130331660 | Al-Ali et al. | Dec 2013 | A1 |
20140012100 | Al-Ali et al. | Jan 2014 | A1 |
20140051953 | Lamego et al. | Feb 2014 | A1 |
20140120564 | Workman et al. | May 2014 | A1 |
20140121482 | Merritt et al. | May 2014 | A1 |
20140127137 | Bellott et al. | May 2014 | A1 |
20140163344 | Al-Ali | Jun 2014 | A1 |
20140166076 | Kiani et al. | Jun 2014 | A1 |
20140171763 | Diab | Jun 2014 | A1 |
20140180154 | Sierra et al. | Jun 2014 | A1 |
20140180160 | Brown et al. | Jun 2014 | A1 |
20140187973 | Brown et al. | Jul 2014 | A1 |
20140213864 | Abdul-Hafiz et al. | Jul 2014 | A1 |
20140275835 | Lamego et al. | Sep 2014 | A1 |
20140275871 | Lamego et al. | Sep 2014 | A1 |
20140275872 | Merritt et al. | Sep 2014 | A1 |
20140288400 | Diab et al. | Sep 2014 | A1 |
20140316217 | Purdon et al. | Oct 2014 | A1 |
20140316218 | Purdon et al. | Oct 2014 | A1 |
20140316228 | Blank et al. | Oct 2014 | A1 |
20140323825 | Al-Ali et al. | Oct 2014 | A1 |
20140323897 | Brown et al. | Oct 2014 | A1 |
20140323898 | Purdon et al. | Oct 2014 | A1 |
20140330098 | Merritt et al. | Nov 2014 | A1 |
20140357966 | Al-Ali et al. | Dec 2014 | A1 |
20150005600 | Blank et al. | Jan 2015 | A1 |
20150011907 | Purdon | Jan 2015 | A1 |
20150032029 | Al-Ali et al. | Jan 2015 | A1 |
20150038859 | Dalvi et al. | Feb 2015 | A1 |
20150080754 | Purdon et al. | Mar 2015 | A1 |
20150087936 | Al-Ali et al. | Mar 2015 | A1 |
20150094546 | Al-Ali | Apr 2015 | A1 |
20150099950 | Al-Ali et al. | Apr 2015 | A1 |
20150101844 | Al-Ali et al. | Apr 2015 | A1 |
20150106121 | Muhsin et al. | Apr 2015 | A1 |
20150196249 | Brown et al. | Jul 2015 | A1 |
20150216459 | Al-Ali et al. | Aug 2015 | A1 |
20150238722 | Al-Ali | Aug 2015 | A1 |
20150257689 | Al-Ali et al. | Sep 2015 | A1 |
20150351697 | Weber et al. | Dec 2015 | A1 |
20150366507 | Blank | Dec 2015 | A1 |
20160029932 | Al-Ali | Feb 2016 | A1 |
20160066824 | Al-Ali et al. | Mar 2016 | A1 |
20160081552 | Wojtczuk et al. | Mar 2016 | A1 |
20160095543 | Telfort et al. | Apr 2016 | A1 |
20160103598 | Al-Ali et al. | Apr 2016 | A1 |
20160196388 | Lamego | Jul 2016 | A1 |
20160197436 | Barker et al. | Jul 2016 | A1 |
20160213281 | Eckerbom et al. | Jul 2016 | A1 |
20160228043 | O'Neil et al. | Aug 2016 | A1 |
20160270735 | Diab et al. | Sep 2016 | A1 |
20160283665 | Sampath et al. | Sep 2016 | A1 |
20160287786 | Kiani | Oct 2016 | A1 |
20160314260 | Kiani | Oct 2016 | A1 |
20160324488 | Olsen | Nov 2016 | A1 |
20160327984 | Al-Ali et al. | Nov 2016 | A1 |
20160367173 | Dalvi et al. | Dec 2016 | A1 |
20170000394 | Al-Ali et al. | Jan 2017 | A1 |
20170014083 | Diab et al. | Jan 2017 | A1 |
20170024748 | Haider | Jan 2017 | A1 |
20170042488 | Muhsin | Feb 2017 | A1 |
20170055882 | Al-Ali et al. | Mar 2017 | A1 |
20170143281 | Olsen | May 2017 | A1 |
20170147774 | Kiani | May 2017 | A1 |
20170156620 | Al-Ali et al. | Jun 2017 | A1 |
20170173632 | Al-Ali | Jun 2017 | A1 |
20170196464 | Jansen et al. | Jul 2017 | A1 |
20170196470 | Lamego et al. | Jul 2017 | A1 |
20170228516 | Sampath et al. | Aug 2017 | A1 |
20170235910 | Cantillon | Aug 2017 | A1 |
20170245790 | Al-Ali et al. | Aug 2017 | A1 |
20170251974 | Shreim et al. | Sep 2017 | A1 |
20170251975 | Shreim et al. | Sep 2017 | A1 |
20170311891 | Kiani et al. | Nov 2017 | A1 |
20170340293 | Al-Ali et al. | Nov 2017 | A1 |
20170360310 | Kiani et al. | Dec 2017 | A1 |
20180008146 | Al-Ali et al. | Jan 2018 | A1 |
20180013562 | Haider et al. | Jan 2018 | A1 |
20180014752 | Al-Ali et al. | Jan 2018 | A1 |
20180028124 | Al-Ali et al. | Feb 2018 | A1 |
20180055390 | Kiani et al. | Mar 2018 | A1 |
20180055430 | Diab et al. | Mar 2018 | A1 |
20180064381 | Shakespeare et al. | Mar 2018 | A1 |
20180070867 | Smith et al. | Mar 2018 | A1 |
20180082767 | Al-Ali et al. | Mar 2018 | A1 |
20180085068 | Telfort | Mar 2018 | A1 |
20180087937 | Al-Ali et al. | Mar 2018 | A1 |
20180103874 | Lee et al. | Apr 2018 | A1 |
20180103905 | Kiani | Apr 2018 | A1 |
20180125368 | Lamego et al. | May 2018 | A1 |
20180125430 | Al-Ali et al. | May 2018 | A1 |
20180125445 | Telfort et al. | May 2018 | A1 |
20180132769 | Weber et al. | May 2018 | A1 |
20180146901 | Al-Ali et al. | May 2018 | A1 |
20180146902 | Kiani et al. | May 2018 | A1 |
20180153442 | Eckerbom et al. | Jun 2018 | A1 |
20180153446 | Kiani | Jun 2018 | A1 |
20180153447 | Al-Ali et al. | Jun 2018 | A1 |
20180153448 | Weber et al. | Jun 2018 | A1 |
20180168491 | Al-Ali et al. | Jun 2018 | A1 |
20180184917 | Kiani | Jul 2018 | A1 |
20180192924 | Al-Ali | Jul 2018 | A1 |
20180192953 | Shreim et al. | Jul 2018 | A1 |
20180199871 | Pauley et al. | Jul 2018 | A1 |
20180206795 | Al-Ali | Jul 2018 | A1 |
20180206815 | Telfort | Jul 2018 | A1 |
20180213583 | Al-Ali | Jul 2018 | A1 |
20180214090 | Al-Ali et al. | Aug 2018 | A1 |
20180216370 | Ishiguro et al. | Aug 2018 | A1 |
20180218792 | Muhsin et al. | Aug 2018 | A1 |
20180225960 | Al-Ali et al. | Aug 2018 | A1 |
20180238718 | Dalvi | Aug 2018 | A1 |
20180242853 | Al-Ali | Aug 2018 | A1 |
20180242921 | Muhsin | Aug 2018 | A1 |
20180242923 | Al-Ali et al. | Aug 2018 | A1 |
20180242926 | Muhsin et al. | Aug 2018 | A1 |
20180247353 | Al-Ali et al. | Aug 2018 | A1 |
20180247712 | Muhsin et al. | Aug 2018 | A1 |
20180256087 | Al-Ali et al. | Sep 2018 | A1 |
20180285094 | Housel et al. | Oct 2018 | A1 |
20180289325 | Poeze et al. | Oct 2018 | A1 |
20180296161 | Shreim et al. | Oct 2018 | A1 |
20180300919 | Muhsin et al. | Oct 2018 | A1 |
20180310822 | Indorf et al. | Nov 2018 | A1 |
20180310823 | Al-Ali et al. | Nov 2018 | A1 |
20180317826 | Muhsin | Nov 2018 | A1 |
20180317841 | Novak, Jr. | Nov 2018 | A1 |
20180333055 | Lamego et al. | Nov 2018 | A1 |
20180333087 | Al-Ali | Nov 2018 | A1 |
20190000317 | Muhsin et al. | Jan 2019 | A1 |
20190000362 | Kiani et al. | Jan 2019 | A1 |
20190015023 | Monfre | Jan 2019 | A1 |
20190029574 | Schurman et al. | Jan 2019 | A1 |
20190029578 | Al-Ali et al. | Jan 2019 | A1 |
20190058280 | Al-Ali et al. | Feb 2019 | A1 |
20190058281 | Al-Ali et al. | Feb 2019 | A1 |
20190069813 | Al-Ali | Mar 2019 | A1 |
20190069814 | Al-Ali | Mar 2019 | A1 |
20190076028 | Al-Ali et al. | Mar 2019 | A1 |
20190082979 | Al-Ali et al. | Mar 2019 | A1 |
20190090760 | Kinast et al. | Mar 2019 | A1 |
20190090764 | Al-Ali | Mar 2019 | A1 |
20190117070 | Muhsin et al. | Apr 2019 | A1 |
20190117139 | Al-Ali et al. | Apr 2019 | A1 |
20190117140 | Al-Ali et al. | Apr 2019 | A1 |
20190117141 | Al-Ali | Apr 2019 | A1 |
20190117930 | Al-Ali | Apr 2019 | A1 |
20190122763 | Sampath et al. | Apr 2019 | A1 |
20190133525 | Al-Ali et al. | May 2019 | A1 |
20190142283 | Lamego et al. | May 2019 | A1 |
20190142344 | Telfort et al. | May 2019 | A1 |
20190150856 | Kiani et al. | May 2019 | A1 |
20190167161 | Al-Ali et al. | Jun 2019 | A1 |
20190175019 | Al-Ali et al. | Jun 2019 | A1 |
20190192076 | McHale et al. | Jun 2019 | A1 |
20190200941 | Chandran et al. | Jul 2019 | A1 |
20190201623 | Kiani | Jul 2019 | A1 |
20190209025 | Al-Ali | Jul 2019 | A1 |
20190214778 | Scruggs et al. | Jul 2019 | A1 |
20190216319 | Poeze et al. | Jul 2019 | A1 |
20190216379 | Al-Ali et al. | Jul 2019 | A1 |
20190221966 | Kiani et al. | Jul 2019 | A1 |
20190223804 | Blank et al. | Jul 2019 | A1 |
20190231199 | Al-Ali et al. | Aug 2019 | A1 |
20190231241 | Al-Ali et al. | Aug 2019 | A1 |
20190231270 | Abdul-Hafiz et al. | Aug 2019 | A1 |
20190239787 | Pauley et al. | Aug 2019 | A1 |
20190239824 | Muhsin et al. | Aug 2019 | A1 |
20190254578 | Lamego | Aug 2019 | A1 |
20190261857 | Al-Ali | Aug 2019 | A1 |
20190269370 | Al-Ali et al. | Sep 2019 | A1 |
20190274606 | Kiani et al. | Sep 2019 | A1 |
20190274627 | Al-Ali et al. | Sep 2019 | A1 |
20190274635 | Al-Ali et al. | Sep 2019 | A1 |
20190290136 | Dalvi et al. | Sep 2019 | A1 |
20190298270 | Al-Ali et al. | Oct 2019 | A1 |
20190304601 | Sampath et al. | Oct 2019 | A1 |
20190304605 | Al-Ali | Oct 2019 | A1 |
20190307377 | Perea et al. | Oct 2019 | A1 |
Entry |
---|
International Search Report and Written Opinion from corresponding International Patent Application No. PCT/US2019/027772, dated Aug. 29, 2019 in 21 pages. |
Number | Date | Country | |
---|---|---|---|
20190320988 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
62712154 | Jul 2018 | US | |
62678848 | May 2018 | US | |
62659961 | Apr 2018 | US |